A lecture-by-lecture Description of a Course on Digital Communication based on the book

A. Lapidoth, A Foundation in Digital Communication, second edition, Cambridge University Press, 2017

• Lecture 1

- Topics:
 - * Course information.
 - * Block diagram of a point-to-point digital communication system.
 - * Review of signals: The energy in a signal (why we call it energy), the inner product (complex integral), and orthogonality (why mathematicians object).
 - * Review of the Fourier Transform and Inverse Fourier Transform. Emphasize the 2π 's etc.
 - * Parseval's Theorem.
 - * Real signals have conjugate-symmetric Fourier Transforms, hence the dashed lines in the figures.
 - * Sinc and brickwall.
 - * The definition of bandwidth.
- Sections: 2.3, 3.1, 3.2, 4.1, 4.2, 6.1, 6.2.1-6.2.2.
- Assignment: Read Chapter 4. Review your Fourier Transform!

• Lecture 2

- Topics:
 - * Baseband representation of passband signals.
 - * Bandwidth in baseband and passband.
 - * Inner product in passband and baseband.
 - * The baseband representation of the convolution of two passband signals.
 - * The baseband representation of a filtered passband signal.
- Sections: 7.1–7.8 (without all the mathematical technicalities).
- Assignment: Be sure you can justify all the entries in Table 7.1.
- Lecture 3
 - Topics:
 - * Finite dimensional linear subspaces of L_2 (bases, dimension, orthonormal bases, Gram-Schmidt procedure—just a reminder!).

- * Expressing a signal in terms of a given orthonormal basis.
- * Projection of an arbitrary energy limited function onto a finite dimensional subspace (definition, uniqueness and computation using an orthonormal basis).
- * Projections and closest element in the subspace.
- * Complete Orthonormal Systems (CONS).
- * Implication of Fourier and Parseval (CONS in time if, and only if, CONS in frequency).
- $\ast\,$ The Sampling Theorem as an orthonormal expansion.
- Sections: 8.1–8.4.
- Assignment: Review Chapter 7.
- Lecture 4
 - Topics:
 - * Sampling real passband signals. Emphasize complex vs. real samples and the implementation of complex computations using real circuitry.
 - * Linear Modulation.
 - * Orthogonal Linear Modulation (noiseless demodulation using the inner product).
 - * Implementing the inner product using a matched filter.
 - * What is a stochastic process?
 - * Why is the result of modulating random bits a stochastic process?
 - Sections: 9.1–9.3, 10.1–10.6, 5.8.
 - Assignment: Read Chapter 12.
- Lecture 5
 - Topics:
 - * The definition of PAM, the pulse shape, and the baud period.
 - * Rate calculations in bits-per-symbol and bits-per-second. Examples of the rate being higher than 1, equal to 1, or lower than 1 bit per symbol.
 - * One matched filter for all the inner products: sample the matched filter at different times.
 - * Necessary and sufficient condition for ϕ and its time shifts by integer multiples of T to be orthonormal, i.e., that its selfsimilarity function be a Nyquist pulse.
 - * Excess bandwidth.
 - * Band-edge symmetry.
 - * Raised Cosine.

- Sections: 10.7, 11.1–11.3.
- Assignment: Read Sections 10.8–10.10
- Lecture 6
 - Topics
 - * Energy and Expected Energy in PAM.
 - * Why the transmitted signals are typically centered.
 - * Power in PAM signals makes only sense when sending infinitely many bits. Bi-infinite block-mode is the most interesting case.
 - * Power in PAM when symbols form a centered WSS discretetime stochastic process.
 - Sections: 14.1–14.4, 14.5.1.
 - Assignment: Read Sections 14.5.2 and 14.5.3 (without proof).
- Lecture 7
 - Topics:
 - * Power Spectral Density: motivation and definition of operational PSD.
 - * The symmetry requirement and why the operational PSD is otherwise not unique.
 - * Computation of the operational PSD for PAM signals.
 - Sections: 15.1–15.3, 15.4.1, 15.4.2.
 - Assignment: Read Section 15.4.3.
- Lecture 8
 - Topics:
 - $\ast\,$ Derivation of QAM: getting the right number of dimensions per second per Hz.
 - * Emphasize that W Hz in passband are "just as good" as W in baseband.
 - * Emphasize that two real passband signals are orthogonal if, and only if, the inner product between their baseband representations is imaginary; it need not be zero.
 - * Counting bits per *complex* symbols.
 - * Decoding: Converting to baseband and matched filtering.
 - * Energy in QAM—only expectation of products of the form $\mathsf{E}[C_{\ell}C_{\ell+m}^*]$ appear. Products of the form $\mathsf{E}[C_{\ell}C_{\ell+m}]$ never show up.
 - Sections: 16.1–16.7, 16.8.1, 18.1, 18.2.
 - Assignment: Read Sections 19.1–19.7.

- Lecture 9
 - Topics:
 - * The power in QAM. Emphasize Equations (18.26) & (18.27) without a proof of the latter (Theorem 18.5.2).
 - * The power in QAM.
 - * The operational PSD of QAM.
 - * Introduction to hypothesis testing.
 - * Guessing in the absence of observables.
 - * The joint law of the hypothesis and the observable.
 - Sections: 18.3, 18.4 (without 18.4.2), 20.1–20.4.
 - Assignment: Read Sections 18.3.2 and 18.3.3 without proofs.
- Lecture 10
 - Topics:
 - * Guessing with observables.
 - * Randomized decision rules are no better.
 - * The MAP and ML rules.
 - * The Bhattacharyya Bound.
 - $\ast\,$ Testing for the mean of a Gaussian.
 - * Processing prior to deciding.
 - Sections: 20.5–20.11.
 - Assignment: Read Section 20.15.
- Lecture 11
 - Topics:
 - * Sufficient statistics.
 - * Consequences of optimality.
 - * Multi-dimensional binary Gaussian hypothesis testing.
 - * Multi-hypothesis testing.
 - * 8-PSK example.
 - * Union Bound in general and for the 8-PSK problem.
 - * Sufficient Statistics in multi-hypothesis testing.
 - * Pairwise sufficiency and sufficiency.
 - Sections: 20.12–20.14, 21.1–21.6, 22.3.2 (proof when densities are strictly positive).
 - Assignment: Read Section 21.6.

- Lecture 12
 - Topics:
 - * The Multivariate Gaussian distribution.
 - Sections: 23.1–23.7.

• Lecture 13

- Topics:
 - $\ast\,$ The FDDs.
 - * Weak and Strong sense stationarity.
 - * The PSD.
 - * Gaussian Stochastic Processes: wide sense stationarity and strict sense stationarity; the FDDs are determined by the autocovariance function and the mean.
 - * Linear functionals of Gaussian Processes are Gaussian.
 - * Any set of linear functions of Gaussian Processes results in a multivariate Gaussian vector.
 - * White Gaussian noise with respect to a given bandwidth.
- Sections: 25.1–25.7, 25.9–25.12, 25.15.
- Assignment: Read Sections 25.13–25.14.
- Lecture 14
 - Topics:
 - * From a stochastic process to a random vector.
 - * The random vector of inner products: reduction to the multidimensional multi-hypothesis Gaussian problem.
 - * Optimal guessing rule and performance analysis.
 - * Example of antipodal signaling.
 - Sections: 26.1–26.6, 26.8.
 - Assignment: Read Section 26.9.