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Preface

Claude Shannon, the father of Information Theory, described the fundamental
problem of point-to-point communications in his classic 1948 paper as “that of
reproducing at one point either exactly or approximately a message selected at
another point.” How engineers solve this problem is the subject of this book.
But unlike Shannon’s general problem, where the message can be an image, a
sound clip, or a movie, here we restrict ourselves to bits. We thus envision that
the original message is either a binary sequence to start with, or else that it was
described using bits by a device outside our control and that our job is to reproduce
the describing bits with high reliability. The issue of how images or text files are
converted efficiently into bits is the subject of lossy and lossless data compression
and is addressed in texts on information theory and on quantization.

The engineering solutions to the point-to-point communication problem greatly
depend on the available resources and on the channel between the points. They
typically bring together beautiful techniques from Fourier Analysis, Hilbert Spaces,
Probability Theory, and Decision Theory. The purpose of this book is to introduce
the reader to these techniques and to their interplay.

The book is intended for advanced undergraduates and beginning graduate stu-
dents. The key prerequisites are basic courses in Calculus, Linear Algebra, and
Probability Theory. A course in Linear Systems is a plus but not a must, because
all the results from Linear Systems that are needed for this book are summarized
in Chapters 5 and 6. But more importantly, the book requires a certain mathemat-
ical maturity and patience, because we begin with first principles and develop the
theory before discussing its engineering applications. The book is for those who
appreciate the views along the way as much as getting to the destination; who like
to “stop and smell the roses;” and who prefer fundamentals to acronyms. I firmly
believe that those with a sound foundation can easily pick up the acronyms and
learn the jargon on the job, but that once one leaves the academic environment,
one rarely has the time or peace of mind to study fundamentals.

In the early stages of the planning of this book I took a decision that greatly
influenced the project. I decided that every key concept should be unambiguously
defined; that every key result should be stated as a mathematical theorem; and
that every mathematical theorem should be correct. This, I believe, makes for
a solid foundation on which one can build with confidence. But it is also a tall
order. It required that I scrutinize each “classical” result before I used it in order
to be sure that I knew what the needed qualifiers were, and it forced me to include

xvii
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background material to which the reader may have already been exposed, because
I needed the results “done right.” Hence Chapters 5 and 6 on Linear Systems and
Fourier Analysis. This is also partly the reason why the book is so long. When I
started out my intention was to write a much shorter book. But I found that to do
justice to the beautiful mathematics on which Digital Communications is based I
had to expand the book.

Most physical layer communication problems are at their core of a continuous-
time nature. The transmitted physical waveforms are functions of time and not
sequences synchronized to a clock. But most solutions first reduce the problem to a
discrete-time setting and then solve the problem in the discrete-time domain. The
reduction to discrete-time often requires great ingenuity, which I try to describe.
It is often taken for granted in courses that open with a discrete-time model from
Lecture 1. I emphasize that most communication problems are of a continuous-
time nature, and that the reduction to discrete-time is not always trivial or even
possible. For example, it is extremely difficult to translate a peak-power constraint
(stating that at no epoch is the magnitude of the transmitted waveform allowed to
exceed a given constant) to a statement about the sequence that is used to represent
the waveform. Similarly, in Wireless Communications it is often very difficult to
reduce the received waveform to a sequence without any loss in performance.

The quest for mathematical precision can be demanding. I have therefore tried to
precede the statement of every key theorem with its gist in plain English. Instruc-
tors may well choose to present the material in class with less rigor and direct the
students to the book for a more mathematical approach. I would rather have text-
books be more mathematical than the lectures than the other way round. Having
a rigorous textbook allows the instructor in class to discuss the intuition knowing
that the students can obtain the technical details from the book at home.

The communication problem comes with a beautiful geometric picture that I try
to emphasize. To appreciate this picture one needs the definition of the inner
product between energy-limited signals and some of the geometry of the space of
energy-limited signals. These are therefore introduced early on in Chapters 3 and 4.
Chapters 5 and 6 cover standard material from Linear Systems. But note the early
introduction of the matched filter as a mechanism for computing inner products
in Section 5.8. Also key is Parseval’s Theorem in Section 6.2.2 which relates the
geometric pictures in the time domain and in the frequency domain.

Chapter 7 deals with passband signals and their baseband representation. We em-
phasize how the inner product between passband signals is related to the inner
product between their baseband representations. This elegant geometric relation-
ship is often lost in the haze of various trigonometric identities. While this topic is
important in wireless applications, it is not always taught in a first course in Digital
Communications. Instructors who prefer to discuss baseband communication only
can skip Chapters 7, 9, 16, 17, 18, 24 27, and Sections 26.10 and 28.5. But it would
be a shame.

Chapter 8 presents the celebrated Sampling Theorem from a geometric perspective.
It is inessential to the rest of the book but is a striking example of the geometric
approach. Chapter 9 discusses the Sampling Theorem for passband signals.
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Chapter 10 discusses modulation. I have tried to motivate Linear Modulation
and Pulse Amplitude Modulation and to minimize the use of the “that’s just how
it is done” argument. The use of the Matched Filter for detecting (here in the
absence of noise) is emphasized. This also motivates the Nyquist Theory, which is
treated in Chapter 11. I stress that the motivation for the Nyquist Theory is not
to avoid inter-symbol interference at the sampling points but rather to guarantee
the orthogonality of the time shifts of the pulse shape by integer multiples of the
baud period. This ultimately makes more engineering sense and leads to cleaner
mathematics: compare Theorem 11.3.2 with its corollary, Corollary 11.3.4.

The result of modulating random bits is a stochastic process, a concept which is
first encountered in Chapter 10; formally defined in Chapter 12; and revisited in
Chapters 13, 17, and 25. It is an important concept in Digital Communications,
and I find it best to first introduce man-made synthesized stochastic processes
(as the waveforms produced by an encoder when fed random bits) and only later
to introduce the nature-made stochastic processes that model noise. Stationary
discrete-time stochastic processes are introduced in Chapter 13 and their complex
counterparts in Chapter 17. These are needed for the analysis in Chapter 14 of the
power in Pulse Amplitude Modulation and for the analysis in Chapter 17 of the
power in Quadrature Amplitude Modulation.

I emphasize that power is a physical quantity that is related to the time-averaged
energy in the continuous-time transmitted power. Its relation to the power in the
discrete-time modulating sequence is a nontrivial result. In deriving this relation
I refrain from adding random timing jitters that are often poorly motivated and
that turn out to be unnecessary. (The transmitted power does not depend on the
realization of the fictitious jitter.) The Power Spectral Density in Pulse Amplitude
Modulation and Quadrature Amplitude Modulation is discussed in Chapters 15
and 18. The discussion requires a definition for Power Spectral Density for non-
stationary processes (Definitions 15.3.1 and 18.4.1) and a proof that this definition
coincides with the classical definition when the process is wide-sense stationary
(Theorem 25.14.3).

Chapter 19 opens the second part of the book, which deals with noise and detection.
It introduces the univariate Gaussian distribution and some related distributions.
The principles of Detection Theory are presented in Chapters 20–22. I emphasize
the notion of Sufficient Statistics, which is central to Detection Theory. Building
on Chapter 19, Chapter 23 introduces the all-important multivariate Gaussian
distribution. Chapter 24 treats the complex case.

Chapter 25 deals with continuous-time stochastic processes with an emphasis on
stationary Gaussian processes, which are often used to model the noise in Digital
Communications. This chapter also introduces white Gaussian noise. My approach
to this topic is perhaps new and is probably where this text differs the most from
other textbooks on the subject.

I define white Gaussian noise of double-sided power spectral density N0/2
with respect to the bandwidth W as any measurable,1 stationary, Gaussian
stochastic process whose power spectral density is a nonnegative, symmetric, inte-

1This book does not assume any Measure Theory and does not teach any Measure Theory.
(I do define sets of Lebesgue measure zero in order to be able to state uniqueness theorems.) I
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Figure 1: The power spectral density of a white Gaussian noise process of double-
sided power spectral density N0/2 with respect to the bandwidth W.

grable function of frequency that is equal to N0/2 at all frequencies f satisfying
|f | ≤ W. The power spectral density at other frequencies can be arbitrary. An
example of the power spectral density of such a process is depicted in Figure 1.
Adopting this definition has a number of advantages. The first is, of course, that
such processes exist. One need not discuss “generalized processes,” Gaussian pro-
cesses with infinite variances (that, by definition, do not exist), or introduce the
Itô calculus to study stochastic integrals. (Stochastic integrals with respect to the
Brownian motion are mathematically intricate and physically unappealing. The
idea of the noise having infinite power is ludicrous.) The above definition also frees
me from discussing Dirac’s Delta, and, in fact, Dirac’s Delta is never used in this
book. (A rigorous treatment of Generalized Functions is beyond the engineering
curriculum in most schools, so using Dirac’s Delta always gives the reader the
unsettling feeling of being on unsure footing.)

The detection problem in white Gaussian noise is treated in Chapter 26. No course
in Digital Communications should end without Theorem 26.4.1. Roughly speak-
ing, this theorem states that if the mean-signals are bandlimited to W Hz and if
the noise is white Gaussian noise with respect to the bandwidth W, then the inner
products between the received signal and the mean-signals form a sufficient statis-
tic. Numerous examples as well as a treatment of colored noise are also discussed
in this chapter. Extensions to noncoherent detection are addressed in Chapter 27
and implications for Pulse Amplitude Modulation and for Quadrature Amplitude
Modulation in Chapter 28.

The book concludes with Chapter 29, which introduces Coding. It emphasizes how
the code design influences the transmitted power, the transmitted power spectral
density, the required bandwidth, and the probability of error. The construction of
good codes is left to texts on Coding Theory.

use Measure Theory only in stating theorems that require measurability assumptions. This is
in line with my attempt to state theorems together with all the assumptions that are required
for their validity. I recommend that students ignore measurability issues and just make a mental
note that whenever measurability is mentioned there is a minor technical condition lurking in the
background.
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Basic Latin

Mathematics sometimes reads like a foreign language. I therefore include here a
short glossary for such terms as “i.e.,” “that is,” “in particular,” “a fortiori,” “for
example,” and “e.g.,” whose meaning in Mathematics is slightly different from the
definition you will find in your English dictionary. In mathematical contexts these
terms are actually logical statements that the reader should verify. Verifying these
statements is an important way to make sure that you understand the math.

What are these logical statements? First note the synonym “i.e.” = “that is” and
the synonym “e.g.” = “for example.” Next note that the term “that is” often
indicates that the statement following the term is equivalent to the one preceding
it: “We next show that p is a prime, i.e., that p is a positive integer that is not
divisible by any number other than one and itself.” The terms “in particular”
or “a fortiori” indicate that the statement following them is implied by the one
preceding them: “Since g(·) is differentiable and, a fortiori, continuous, it follows
from the Mean Value Theorem that the integral of g(·) over the interval [0, 1] is
equal to g(ξ) for some ξ ∈ [0, 1].” The term “for example” can have its regular
day-to-day meaning but in mathematical writing it also sometimes indicates that
the statement following it implies the one preceding it: “Suppose that the function
g(·) is monotonically nondecreasing, e.g., that it is differentiable with a nonnegative
derivative.”

Another important word to look out for is “indeed,” which in this book typically
signifies that the statement just made is about to be expanded upon and explained.
So when you read something that is unclear to you, be sure to check whether the
next sentence begins with the word “indeed” before you panic.

The Latin phrases “a priori” and “a posteriori” show up in Probability Theory.
The former is usually associated with the unconditional probability of an event and
the latter with the conditional. Thus, the “a priori” probability that the sun will
shine this Sunday in Zurich is 25%, but now that I know that it is raining today,
my outlook on life changes and I assign this event the a posteriori probability of
15%.

The phrase “prima facie” is roughly equivalent to the phrase “before any further
mathematical arguments have been presented.” For example, the definition of the
projection of a signal v onto the signal u as the vector w that is collinear with u and
for which v−w is orthogonal to u, may be followed by the sentence: “Prima facie,
it is not clear that the projection always exists and that it is unique. Nevertheless,
as we next show, this is the case.”

Syllabuses or Syllabi

The book can be used as a textbook for a number of different courses. For a course
that focuses on deterministic signals one could use Chapters 1–9 & Chapter 11.
A course that covers Stochastic Processes and Detection Theory could be based
on Chapter 12 and Chapters 19–26 with or without discrete-time stochastic pro-
cesses (Chapter 13) and with or without complex random variables and processes
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(Chapters 17 & 24).

For a course on Digital Communications one could use the entire book or, if time
does not permit it, discuss only baseband communication. In the latter case one
could omit Chapters 7, 9, 16, 17, 18, 24, 27, and Section 28.5,

The dependencies between the chapters are depicted on Page xxiii.

A web page for this book can be found at

www.afoundationindigitalcommunication.ethz.ch
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Chapter 1

Some Essential Notation

Reading a whole chapter about notation can be boring. We have thus chosen to
collect here only the essentials and to introduce the rest when it is first used. The
“List of Symbols” on Page 704 is more comprehensive.

We denote the set of complex numbers by C, the set of real numbers by R, the set
of integers by Z, and the set of natural numbers (positive integers) by N. Thus,

N = {n ∈ Z : n ≥ 1}.

The above equation is not meant to belabor the point. We use it to introduce the
notation

{x ∈ A : statement}

for the set consisting of all those elements of the set A for which “statement” holds.

In treating real numbers, we use the notation (a, b), [a, b), [a, b], (a, b] to denote
open, half open on the right, closed, and half open on the left intervals of the real
line. Thus, for example,

[a, b) = {x ∈ R : a ≤ x < b}.

A statement followed by a comma and a condition indicates that the statement
holds whenever the condition is satisfied. For example,

|an − a| < ε, n ≥ n0

means that |an − a| < ε whenever n ≥ n0.

We use I{statement} to denote the indicator of the statement. It is equal to 1, if
the statement is true, and it is equal to 0, if the statement is false. Thus

I{statement} =

{
1 if statement is true,
0 if statement is false.

1



2 Some Essential Notation

In dealing with complex numbers we use i to denote the purely imaginary unit-
magnitude complex number

i =
√
−1.

We use z∗ to denote the complex conjugate of z, we use Re(z) to denote the real
part of z, we use Im(z) to denote the imaginary part of z, and we use |z| to denote
the absolute value (or “modulus”, or “complex magnitude”) of z. Thus, if z = a+ib,
where a, b ∈ R, then z∗ = a− ib, Re(z) = a, Im(z) = b, and |z| =

√
a2 + b2.

The notation used to define functions is extremely important and is, alas, some-
times confusing to students, so please pay attention. A function or a mapping
associates with each element in its domain a unique element in its range. If a
function has a name, the name is often written in bold as in u.1 Alternatively, we
sometimes denote a function u by u(·). The notation

u : A → B

indicates that u is a function of domain A and range B. The rule specifying for
each element of the domain the element in the range to which it is mapped is often
written to the right or underneath. Thus, for example,

u : R→ (−5,∞), t 7→ t2

indicates that the domain of the function u is the reals, that its range is the set
of real numbers that exceed −5, and that u associates with t the nonnegative
number t2. We write u(t) for the result of applying the mapping u to t. The
image of a mapping u : A → B is the set of all elements of the range B to which
at least one element in the domain is mapped by u:(

image of u : A → B
)

=
{
u(x) : x ∈ A

}
. (1.1)

The image of a mapping is a subset of its range. In the above example, the image
of the mapping is the set of nonnegative reals [0,∞). A mapping u : A → B is said
to be onto (or surjective) if its image is equal to its range. Thus, u : A → B is
onto if, and only if, for every y ∈ B there corresponds some x ∈ A (not necessarily
unique) such that u(x) = y. If the image of g(·) is a subset of the domain of
h(·), then the composition of g(·) and h(·) is the mapping x 7→ h

(
g(x)

)
, which is

denoted by h ◦ g.

Sometimes we do not specify the domain and range of a function if they are clear
from the context. Thus, we might write u : t 7→ v(t) cos(2πfct) without making
explicit what the domain and range of u are. In fact, if there is no need to give a
function a name, then we will not. For example, we might write t 7→ v(t) cos(2πfct)
to designate the unnamed function that maps t to v(t) cos(2πfct). (Here v(·) is
some other function, which was presumably defined before.)

If the domain of a function u is R and if the range is R, then we sometimes say
that u is a real-valued signal or a real signal, especially if the argument of u

1But some special functions such as the self-similarity function Rgg, the autocovariance func-
tion KXX , and the power spectral density SXX , which will be introduced in later chapters, are
not in boldface.
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stands for time. Similarly we shall sometimes refer to a function u : R → C as a
complex-valued signal or a complex signal. If we refer to u as a signal, then
the question whether it is complex-valued or real-valued should be clear from the
context, or else immaterial to the claim.

We caution the reader that, while u and u(·) denote functions, u(t) denotes the
result of applying u to t. If u is a real-valued signal then u(t) is a real number!

Given two signals u and v we define their superposition or sum as the signal
t 7→ u(t)+ v(t). We denote this signal by u+v. Also, if α ∈ C and u is any signal,
then we define the amplification of u by α as the signal t 7→ αu(t). We denote
this signal by αu. Thus,

αu + βv

is the signal
t 7→ αu(t) + βv(t).

We refer to the function that maps every element in its domain to zero as the all-
zero function and we denote it by 0. The all-zero signal 0 maps every t ∈ R
to zero. If x : R→ C is a signal that maps every t ∈ R to x(t), then its reflection
or mirror image is denoted by ~x and is the signal that is defined by

~x : t 7→ x(−t).

Dirac’s Delta (which will hardly be mentioned in this book) is not a function.

A probability space is defined as a triplet (Ω,F , P ), where the set Ω is the set of
experiment outcomes, the elements of the set F are subsets of Ω and are called
events, and where P : F → [0, 1] assigns probabilities to the various events. It is
assumed that F forms a σ-algebra, i.e., that Ω ∈ F ; that if a set is in F then so
is its complement (with respect to Ω); and that every finite or countable union of
elements of F is also an element of F . A random variable X is a mapping from Ω
to R that satisfies the technical condition that

{ω ∈ Ω : X(ω) ≤ ξ} ∈ F , ξ ∈ R. (1.2)

This condition guarantees that it is always meaningful to evaluate the probability
that the value of X is smaller or equal to ξ.



Chapter 2

Signals, Integrals, and Sets of Measure Zero

2.1 Introduction

The purpose of this chapter is not to develop the Lebesgue theory of integration.
Mastering this theory is not essential to understanding Digital Communications.
But some concepts from this theory are needed in order to state the main results
of Digital Communications in a mathematically rigorous way. In this chapter
we introduce these required concepts and provide references to the mathematical
literature that develops them.

The less mathematically-inclined may gloss over most of this chapter. Readers
who interpret the integrals in this book as Riemann integrals; who interpret “mea-
surable” as “satisfying a minor mathematical restriction”; who interpret “a set of
Lebesgue measure zero” as “a set that is so small that integrals of functions are
not sensitive to the value the integrand takes in this set”; and who swap orders of
summations, expectations and integrations fearlessly will not miss any engineering
insights.

But all readers should pay attention to the way the integral of complex-valued
signals is defined (Section 2.3); to the basic inequality (2.13); and to the notation
introduced in (2.6).

2.2 Integrals

Recall that a real-valued signal u is a function u : R → R. The integral of u is
denoted by ∫ ∞

−∞
u(t) dt. (2.1)

For (2.1) to be meaningful some technical conditions must be met. (You may re-
call from your calculus studies, for example, that not every function is Riemann
integrable.) In this book all integrals will be understood to be Lebesgue integrals,
but nothing essential will be lost on readers who interpret them as Riemann inte-
grals. For the Lebesgue integral to be defined the integrand u must be a Lebesgue
measurable function. Again, do not worry if you have not studied the Lebesgue

4
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integral or the notion of measurable functions. We point this out merely to cover
ourselves when we state various theorems. Also, for the integral in (2.1) to be
defined we insist that ∫ ∞

−∞
|u(t)|dt <∞. (2.2)

(There are ways of defining the integral in (2.1) also when (2.2) is violated, but
they lead to fragile expressions that are difficult to manipulate.)

A function u : R → R which is Lebesgue measurable and which satisfies (2.2) is
said to be integrable, and we denote the set of all such functions by L1 . We shall
refrain from integrating functions that are not elements of L1 .

2.3 Integrating Complex-Valued Signals

This section should assuage your fear of integrating complex-valued signals. (Some
of you may have a trauma from your Complex Analysis courses where you dealt
with integrals of functions from the complex plane to the complex plane. Here
things are much simpler because we are dealing only with integrals of functions
from the real line to the complex plane.) We formally define the integral of a
complex-valued function u : R→ C by∫ ∞

−∞
u(t) dt ,

∫ ∞

−∞
Re
(
u(t)

)
dt+ i

∫ ∞

−∞
Im
(
u(t)

)
dt. (2.3)

For this to be meaningful, we require that the real functions t 7→ Re
(
u(t)

)
and

t 7→ Im
(
u(t)

)
both be integrable real functions. That is, they should both be

Lebesgue measurable and we should have∫ ∞

−∞

∣∣Re
(
u(t)

)∣∣ dt <∞ and
∫ ∞

−∞

∣∣Im(u(t))∣∣ dt <∞. (2.4)

It is not difficult to show that (2.4) is equivalent to the more compact condition∫ ∞

−∞

∣∣u(t)∣∣ dt <∞. (2.5)

We say that a complex signal u : R→ C is Lebesgue measurable if the mappings
t 7→ Re

(
u(t)

)
and t 7→ Im

(
u(t)

)
are Lebesgue measurable real signals. We say that

a function u : R → C is integrable if it is Lebesgue measurable and (2.4) holds.
The set of all Lebesgue measurable integrable complex signals is denoted by L1 .
Note that we use the same symbol L1 to denote both the set of integrable real
signals and the set of integrable complex signals. To which of these two sets we
refer should be clear from the context, or else immaterial.

For u ∈ L1 we define ‖u‖1 as

‖u‖1 ,
∫ ∞

−∞

∣∣u(t)∣∣ dt. (2.6)
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Before summarizing the key properties of the integral of complex signals we remind
the reader that if u and v are complex signals and if α, β are complex numbers, then
the complex signal αu+βv is defined as the complex signal t 7→ αu(t)+βv(t). The
intuition for the following proposition comes from thinking about the integrals as
Riemann integrals, which can be approximated by finite sums and by then invoking
the analogous results about finite sums.

Proposition 2.3.1 (Properties of Complex Integrals). Let the complex signals u,v
be in L1 , and let α, β be arbitrary complex numbers.

(i) Integration is linear in the sense that αu + βv ∈ L1 and∫ ∞

−∞

(
αu(t) + β v(t)

)
dt = α

∫ ∞

−∞
u(t) dt+ β

∫ ∞

−∞
v(t) dt. (2.7)

(ii) Integration commutes with complex conjugation∫ ∞

−∞
u∗(t) dt =

(∫ ∞

−∞
u(t) dt

)∗
. (2.8)

(iii) Integration commutes with the operation of taking the real part

Re
(∫ ∞

−∞
u(t) dt

)
=
∫ ∞

−∞
Re
(
u(t)

)
dt. (2.9)

(iv) Integration commutes with the operation of taking the imaginary part

Im
(∫ ∞

−∞
u(t) dt

)
=
∫ ∞

−∞
Im
(
u(t)

)
dt. (2.10)

Proof. For a proof of (i) see, for example, (Rudin, 1974, Theorem 1.32). The rest
of the claims follow easily from the definition of the integral of a complex-valued
signal (2.3).

2.4 An Inequality for Integrals

Probably the most important inequality for complex numbers is the Triangle
Inequality for Complex Numbers

|w + z| ≤ |w|+ |z|, w, z ∈ C. (2.11)

This inequality extends by induction to finite sums:∣∣∣∣ n∑
j=1

zj

∣∣∣∣ ≤ n∑
j=1

|zj | , z1, . . . , zn ∈ C. (2.12)

The extension to integrals is the most important inequality for integrals:
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Proposition 2.4.1. For every complex-valued or real-valued signal u in L1∣∣∣∣∫ ∞

−∞
u(t) dt

∣∣∣∣ ≤ ∫ ∞

−∞

∣∣u(t)∣∣ dt. (2.13)

Proof. See, for example, (Rudin, 1974, Theorem 1.33).

Note that in (2.13) we should interpret | · | as the absolute-value function if u is a
real signal, and as the modulus function if u is a complex signal.

Another simple but useful inequality is

‖u + v‖1 ≤ ‖u‖1 + ‖v‖1 , u,v ∈ L1 , (2.14)

which can be proved using the calculation

‖u + v‖1 ,
∫ ∞

−∞
|u(t) + v(t)|dt

≤
∫ ∞

−∞

(
|u(t)|+ |v(t)|

)
dt

=
∫ ∞

−∞
|u(t)|dt+

∫ ∞

−∞
|v(t)|dt

= ‖u‖1 + ‖v‖1 ,

where the inequality follows by applying the Triangle Inequality for Complex Num-
bers (2.11) with the substitution of u(t) for w and v(t) for z.

2.5 Sets of Lebesgue Measure Zero

It is one of life’s minor grievances that the integral of a nonnegative function can
be zero even if the function is not identically zero. For example, t 7→ I{t = 17} is a
nonnegative function whose integral is zero and which is nonetheless not identically
zero (it maps 17 to one). In this section we shall derive a necessary and sufficient
condition for the integral of a nonzero function to be zero. This condition will
allow us later to state conditions under which various integral inequalities hold
with equality. It will give mathematical meaning to the physical intuition that if
the waveform describing some physical phenomenon (such as voltage over a resistor)
is nonnegative and integrates to zero then “for all practical purposes” the waveform
is zero.

We shall define sets of Lebesgue measure zero and then show that a nonnegative
function u : R→ [0,∞) integrates to zero if, and only if, the set {t ∈ R : u(t) > 0}
is of Lebesgue measure zero. We shall then introduce the notation u ≡ v to indicate
that the set {t ∈ R : u(t) 6= v(t)} is of Lebesgue measure zero.

It should be noted that since the integral is unaltered when the integrand is changed
at a finite (or countable) number of points, it follows that any nonnegative function
that is zero except at a countable number of points integrates to zero. The reverse,
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however, is not true. One can find nonnegative functions that integrate to zero
and that are nonzero on an uncountable set of points.

The less mathematically inclined readers may skip the mathematical definition of
sets of measure zero and just think of a subset of the real line as being of Lebesgue
measure zero if it is so “small” that the integral of any function is unaltered when
the values it takes in the subset are altered. Such readers should then think of the
statement u ≡ v as indicating that u− v is just the result of altering the all-zero
signal 0 on a set of Lebesgue measure zero and that, consequently,∫ ∞

−∞
|u(t)− v(t)|dt = 0.

Definition 2.5.1 (Sets of Lebesgue Measure Zero). We say that a subset N of
the real line R is a set of Lebesgue measure zero (or a Lebesgue null set)
if for every ε > 0 we can find a sequence of intervals [a1, b1], [a2, b2], . . . such that
the total length of the intervals is smaller than or equal to ε

∞∑
j=1

(bj − aj) ≤ ε (2.15a)

and such that the union of the intervals cover the set N

N ⊆ [a1, b1] ∪ [a2, b2] ∪ · · · . (2.15b)

As an example, note that the set {1} is of Lebesgue measure zero. Indeed, it is
covered by the single interval [1 − ε/2, 1 + ε/2] whose length is ε. Similarly, any
finite set is of Lebesgue measure zero. Indeed, the set {α1, . . . , αn} can be covered
by n intervals of total length not exceeding ε as follows:

{α1, . . . , αn} ⊂
[
α1 − ε/(2n), α1 + ε/(2n)

]
∪ · · · ∪

[
αn − ε/(2n), αn + ε/(2n)

]
.

This argument can be also extended to show that any countable set is of Lebesgue
measure zero. Indeed the countable set {α1, α2, . . .} can be covered as

{α1, α2, . . .} ⊆
∞⋃
j=1

[
αj − 2−j−1ε, αj + 2−j−1ε

]
where we note that the length of the interval

[
αj − 2−j−1ε, αj + 2−j−1ε

]
is 2−jε,

which when summed over j yields ε.

With a similar argument one can show that the union of a countable number of
sets of Lebesgue measure zero is of Lebesgue measure zero.

The above examples notwithstanding, it should be emphasized that there exist sets
of Lebesgue measure zero that are not countable.1 Thus, the concept of a set of
Lebesgue measure zero is different from the concept of a countable set.

Loosely speaking, we say that two signals are indistinguishable if they agree except
possibly on a set of Lebesgue measure zero. We warn the reader, however, that
this terminology is not standard.

1For example, the Cantor set is of Lebesgue measure zero and uncountable; see (Rudin, 1976,
Section 11.11, Remark (f), p. 309).
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Definition 2.5.2 (Indistinguishable Functions). We say that the Lebesgue measur-
able functions u,v from R to C (or to R) are indistinguishable and write

u ≡ v

if the set {t ∈ R : u(t) 6= v(t)} is of Lebesgue measure zero.

Note that u ≡ v if, and only if, the signal u − v is indistinguishable from the
all-zero signal 0 (

u ≡ v
)
⇔
(
u− v ≡ 0

)
. (2.16)

The main result of this section is the following:

Proposition 2.5.3.

(i) A nonnegative Lebesgue measurable signal integrates to zero if, and only if,
it is indistinguishable from the all-zero signal 0.

(ii) If u,v are Lebesgue measurable functions from R to C (or to R), then(∫ ∞

−∞
|u(t)− v(t)|dt = 0

)
⇔
(
u ≡ v

)
(2.17)

and (∫ ∞

−∞
|u(t)− v(t)|2 dt = 0

)
⇔
(
u ≡ v

)
. (2.18)

(iii) If u and v are integrable and indistinguishable, then their integrals are equal:(
u ≡ v

)
⇒
(∫ ∞

−∞
u(t) dt =

∫ ∞

−∞
v(t) dt

)
, u,v ∈ L1 . (2.19)

Proof. The proof of (i) is not very difficult, but it requires more familiarity with
Measure Theory than we are willing to assume. The interested reader is thus
referred to (Rudin, 1974, Theorem 1.39).

The equivalence in (2.17) follows by applying Part (i) to the nonnegative function
t 7→ |u(t)− v(t)|. Similarly, (2.18) follows by applying Part (i) to the nonnegative
function t 7→ |u(t)−v(t)|2 and by noting that the set of t’s for which |u(t)−v(t)|2 6= 0
is the same as the set of t’s for which u(t) 6= v(t).

Part (iii) follows from (2.17) by noting that∣∣∣∣∫ ∞

−∞
u(t) dt−

∫ ∞

−∞
v(t) dt

∣∣∣∣ = ∣∣∣∣∫ ∞

−∞

(
u(t)− v(t)

)
dt
∣∣∣∣

≤
∫ ∞

−∞

∣∣u(t)− v(t)∣∣ dt,
where the first equality follows by the linearity of integration, and where the sub-
sequent inequality follows from Proposition 2.4.1.
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2.6 Swapping Integration, Summation, and Expectation

In numerous places in this text we shall swap the order of integration as in∫ ∞

−∞

(∫ ∞

−∞
u(α, β) dα

)
dβ =

∫ ∞

−∞

(∫ ∞

−∞
u(α, β) dβ

)
dα (2.20)

or the order of summation as in

∞∑
ν=1

( ∞∑
η=1

aν,η

)
=

∞∑
η=1

( ∞∑
ν=1

aν,η

)
(2.21)

or the order of summation and integration as in∫ ∞

−∞

( ∞∑
ν=1

aνuν(t)
)

dt =
∞∑
ν=1

(
aν

∫ ∞

−∞
uν(t) dt

)
(2.22)

or the order of integration and expectation as in

E

[∫ ∞

−∞
X u(t) dt

]
=
∫ ∞

−∞
E[Xu(t)] dt = E[X]

∫ ∞

−∞
u(t) dt.

These changes of order are usually justified using Fubini’s Theorem, which states
that these changes of order are permissible provided that a very technical measura-
bility condition is satisfied and that, in addition, either the integrand is nonnegative
or that in some order (and hence in all orders) the integrals/summation/expectation
of the absolute value of the integrand is finite.

For example, to justify (2.20) it suffices to verify that the function u : R2 → R in
(2.20) is Lebesgue measurable and that, in addition, it is either nonnegative or∫ ∞

−∞

(∫ ∞

−∞
|u(α, β)|dα

)
dβ <∞

or ∫ ∞

−∞

(∫ ∞

−∞
|u(α, β)|dβ

)
dα <∞.

Similarly, to justify (2.21) it suffices to show that aν,η ≥ 0 or that

∞∑
η=1

( ∞∑
ν=1

|aν,η|
)
<∞

or that
∞∑
ν=1

( ∞∑
η=1

|aν,η|
)
<∞.

(No need to worry about measurability which is automatic in this setup.)
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As a final example, to justify (2.22) it suffices that the functions {uν} are all
measurable and that either aνuν(t) is nonnegative for all ν ∈ N and t ∈ R or∫ ∞

−∞

( ∞∑
ν=1

|aν | |uν(t)|
)

dt <∞

or
∞∑
ν=1

|aν |
(∫ ∞

−∞
|uν(t)|dt

)
<∞.

A precise statement of Fubini’s Theorem requires some Measure Theory that is
beyond the scope of this book. The reader is referred to (Rudin, 1974, Theorem
7.8) and (Billingsley, 1995, Chapter 3, Section 18) for such a statement and for a
proof.

We shall frequently use the swapping-of-order argument to manipulate the square
of a sum or the square of an integral.

Proposition 2.6.1.

(i) If
∑
ν |aν | <∞ then ( ∞∑

ν=1

aν

)2

=
∞∑
ν=1

∞∑
ν′=1

aνaν′ . (2.23)

(ii) If u is an integrable real-valued or complex-valued signal, then(∫ ∞

−∞
u(α) dα

)2

=
∫ ∞

−∞

∫ ∞

−∞
u(α)u(α′) dα dα′. (2.24)

Proof. The proof is a direct application of Fubini’s Theorem. But ignoring the
technicalities, the intuition is quite clear: it all boils down to the fact that (a+ b)2

can be written as (a+b)(a+b), which can in turn be written as aa+ab+ba+bb.

2.7 Additional Reading

Numerous books cover the basics of Lebesgue integration. Classic examples are
(Riesz and Sz.-Nagy, 1990), (Rudin, 1974) and (Royden, 1988). These texts also
cover the notion of sets of Lebesgue measure zero, e.g., (Riesz and Sz.-Nagy,
1990, Chapter 1, Section 2). For the changing of order of Riemann integration
see (Körner, 1988, Chapters 47 & 48).

2.8 Exercises

Exercise 2.1 (Integrating an Exponential). Show that∫ ∞

0

e−zt dt =
1

z
, Re(z) > 0.



12 Signals, Integrals, and Sets of Measure Zero

Exercise 2.2 (Triangle Inequality for Complex Numbers). Prove the Triangle Inequality
for complex numbers (2.11). Under what conditions does it hold with equality?

Exercise 2.3 (When Are Complex Numbers Equal?). Prove that if the complex numbers
w and z are such that Re(βz) = Re(βw) for all β ∈ C, then w = z.

Exercise 2.4 (An Integral Inequality). Show that if u, v, and w are integrable signals,
then ∫ ∞

−∞

∣∣u(t)− w(t)
∣∣ dt ≤ ∫ ∞

−∞

∣∣u(t)− v(t)
∣∣ dt+

∫ ∞

−∞

∣∣v(t)− w(t)
∣∣ dt.

Exercise 2.5 (An Integral to Note). Given some f ∈ R, compute the integral∫ ∞

−∞
I{t = 17}e−i2πft dt.

Exercise 2.6 (Subsets of Sets of Lebesgue Measure Zero). Show that a subset of a set
of Lebesgue measure zero must also be of Lebesgue measure zero.

Exercise 2.7 (Nonuniqueness of the Probability Density Function). We say that the
random variable X is of density fX(·) if fX(·) is a (Lebesgue measurable) nonnegative
function such that

Pr[X ≤ x] =

∫ x

−∞
fX(ξ) dξ, x ∈ R.

Show that if X is of density fX(·) and if g(·) is a nonnegative function that is indistin-
guishable from fX(·), then X is also of density g(·). (The reverse is also true: if X is of
density g1(·) and also of density g2(·), then g1(·) and g2(·) must be indistinguishable.)

Exercise 2.8 (Indistinguishability). Let ψ : R2 → R satisfy ψ(α, β) ≥ 0, for all α, β ∈ R
with equality only if α = β. Let u and v be Lebesgue measurable signals. Show that(∫ ∞

−∞
ψ
(
u(t), v(t)

)
dt = 0

)
⇒
(
v ≡ u

)
.

Exercise 2.9 (Indistinguishable Signals). Show that if the Lebesgue measurable signals g
and h are indistinguishable, then the set of epochs t ∈ R where the sums

∑∞
j=−∞ g(t+ j)

and
∑∞
j=−∞ h(t + j) are different (in the sense that they both converge but to different

limits or that one converges but the other does not) is of Lebesgue measure zero.

Exercise 2.10 (Continuous Nonnegative Functions). A subset of R containing a nonempty
open interval cannot be of Lebesgue measure zero. Use this fact to show that if a con-
tinuous function g : R → R is nonnegative except perhaps on a set of Lebesgue measure
zero, then the exception set is empty and the function is nonnegative.

Exercise 2.11 (Order of Summation Sometimes Matters). For every ν, η ∈ N define

aν,η =


2− 2−ν if ν = η

−2 + 2−ν if ν = η + 1

0 otherwise.

Show that (2.21) is not satisfied. See (Royden, 1988, Chapter 12, Section 4, Exercise 24.).
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Exercise 2.12 (Using Fubini’s Theorem). Using the relation

1

x
=

∫ ∞

0

e−xt dt, x > 0

and Fubini’s Theorem, show that

lim
α→∞

∫ α

0

sinx

x
dx =

π

2
.

See (Rudin, 1974, Chapter 7, Exercise 12).

Hint: See also Problem 2.1.



Chapter 3

The Inner Product

3.1 The Inner Product

The inner product is central to Digital Communications, so it is best to introduce
it early. The motivation will have to wait.

Recall that u : A → B indicates that u (sometimes denoted u(·)) is a function
(or mapping) that maps each element in its domain A to an element in its
range B. If both the domain and the range of u are the set of real numbers R,
then we sometimes refer to u as being a real signal, especially if the argument of
u(·) stands for time. Similarly, if u : R → C where C denotes the set of complex
numbers and the argument of u(·) stands for time, then we sometimes refer to u
as a complex signal.

The inner product between two real functions u : R → R and v : R → R is
denoted by 〈u,v〉 and is defined as

〈u,v〉 ,
∫ ∞

−∞
u(t)v(t) dt, (3.1)

whenever the integral is defined. (In Section 3.2 we shall study conditions un-
der which the integral is defined, i.e., conditions on the functions u and v that
guarantee that the product function t 7→ u(t)v(t) is an integrable function.)

The signals that arise in our study of Digital Communications often represent
electric fields or voltages over resistors. The energy required to generate them is
thus proportional to the integral of their squared magnitude. This motivates us to
define the energy of a Lebesgue measurable real-valued function u : R→ R as∫ ∞

−∞
u2(t) dt.

(If this integral is not finite, then we say that u is of infinite energy.) We say that
u : R→ R is of finite energy if it is Lebesgue measurable and if∫ ∞

−∞
u2(t) dt <∞.

14
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The class of all finite-energy real-valued functions u : R→ R is denoted by L2 .

Since the energy of u : R→ R is nonnegative, we can discuss its nonnegative square
root, which we denote1 by ‖u‖2 :

‖u‖2 ,

√∫ ∞

−∞
u2(t) dt. (3.2)

(Throughout this book we denote by
√
ξ the nonnegative square root of ξ for every

ξ ≥ 0.) We can now express the energy in u using the inner product as

‖u‖22 =
∫ ∞

−∞
u2(t) dt

= 〈u,u〉. (3.3)

In writing ‖u‖22 above we used different fonts for the subscript and the superscript.
The subscript is just a graphical character which is part of the notation ‖·‖2 . We
could have replaced it with � and designated the energy by ‖u‖2� without any
change in mathematical meaning.2 The superscript, however, indicates that the
quantity ‖u‖2 is being squared.

For complex-valued functions u : R→ C and v : R→ C we define the inner product
〈u,v〉 by

〈u,v〉 ,
∫ ∞

−∞
u(t) v∗(t) dt, (3.4)

whenever the integral is defined. Here v∗(t) denotes the complex conjugate of v(t).
The above integral in (3.4) is a complex integral, but that should not worry you:
it can also be written as

〈u,v〉 =
∫ ∞

−∞
Re
(
u(t) v∗(t)

)
dt+ i

∫ ∞

−∞
Im
(
u(t) v∗(t)

)
dt, (3.5)

where i =
√
−1 and where Re(·) and Im(·) denote the functions that map a complex

number to its real and imaginary parts: Re(a+ ib) = a and Im(a+ ib) = b whenever
a, b ∈ R. Each of the two integrals appearing in (3.5) is the integral of a real signal.
See Section 2.3.

Note that (3.1) and (3.4) are in agreement in the sense that if u and v happen
to take on only real values (i.e., satisfy that u(t), v(t) ∈ R for every t ∈ R), then
viewing them as real functions and thus using (3.1) would yield the same inner
product as viewing them as (degenerate) complex functions and using (3.4). Note
also that for complex functions u,v : R→ C the inner product 〈u,v〉 is in general
not the same as 〈v,u〉. One is the complex conjugate of the other.

1The subscript 2 is here to distinguish ‖u‖2 from ‖u‖1 , where the latter was defined in (2.6)
as ‖u‖1 =

∫∞
−∞ |u(t)| dt.

2We prefer ‖·‖2 to ‖·‖� because it reminds us that in the definition (3.2) the integrand is
raised to the second power. This should be contrasted with the symbol ‖·‖1 where the integrand
is raised to the first power (and where no square root is taken of the result); see (2.6).
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Some of the properties of the inner product between complex-valued functions
u,v : R→ C are given below.

〈u,v〉 = 〈v,u〉∗ (3.6)
〈αu,v〉 = α〈u,v〉, α ∈ C (3.7)
〈u, αv〉 = α∗〈u,v〉, α ∈ C (3.8)

〈u1 + u2,v〉 = 〈u1,v〉+ 〈u2,v〉 (3.9)
〈u,v1 + v2〉 = 〈u,v1〉+ 〈u,v2〉. (3.10)

The above equalities hold whenever the inner products appearing on the right-
hand side (RHS) are defined. The reader is encouraged to produce a similar list of
properties for the inner product between real-valued functions u,v : R→ R.

The energy in a Lebesgue measurable complex-valued function u : R → C is de-
fined as ∫ ∞

−∞

∣∣u(t)∣∣2 dt,

where |·| denotes absolute value so |a + ib| =
√
a2 + b2 whenever a, b ∈ R. This

definition of energy might seem a bit contrived because there is no such thing
as complex voltage, so prima facie it seems meaningless to define the energy of
a complex signal. But this is not the case. Complex signals are used to repre-
sent real passband signals, and the representation is such that the energy in the
real passband signal is proportional to the integral of the squared modulus of the
complex-valued signal representing it; see Section 7.6 ahead.

Definition 3.1.1 (Energy-Limited Signal). We say that u : R → C is energy-
limited or of finite energy if u is Lebesgue measurable and∫ ∞

−∞

∣∣u(t)∣∣2 dt <∞.

The set of all energy-limited complex-valued functions u : R→ C is denoted by L2 .
Note that whether L2 stands for the class of energy-limited complex -valued or real -
valued functions should be clear from the context, or else immaterial.

For every u ∈ L2 we define ‖u‖2 as the nonnegative square root of its energy

‖u‖2 ,
√
〈u,u〉, (3.11)

so

‖u‖2 =

√∫ ∞

−∞
|u(t)|2 dt. (3.12)

Again (3.12) and (3.2) are in agreement in the sense that for every u : R → R,
computing ‖u‖2 via (3.2) yields the same result as if we viewed u as mapping
from R to C and computed ‖u‖2 via (3.12).
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3.2 When Is the Inner Product Defined?

As noted in Section 2.2, in this book we shall only discuss the integral of integrable
functions, where a function u : R → R is integrable if it is Lebesgue measurable
and if

∫∞
−∞ |u(t)|dt < ∞. (We shall sometimes make an exception for functions

that take on only nonnegative values. If u : R → [0,∞) is Lebesgue measurable
and if

∫
u(t) dt is not finite, then we shall say that

∫
u(t) dt = +∞.)

Similarly, as in Section 2.3, in integrating complex signals u : R → C we limit
ourselves to signals that are integrable in the sense that both t 7→ Re

(
u(t)

)
and

t 7→ Im
(
u(t)

)
are Lebesgue measurable real-valued signals and

∫∞
−∞ |u(t)|dt <∞.

Consequently, we shall say that the inner product between u : R→ C and v : R→ C
is well-defined only when they are both Lebesgue measurable (thus implying that
t 7→ u(t) v∗(t) is Lebesgue measurable) and when∫ ∞

−∞

∣∣u(t) v(t)∣∣ dt <∞. (3.13)

We next discuss conditions on the Lebesgue measurable complex signals u and v
that guarantee that (3.13) holds. The simplest case is when one of the functions,
say u, is bounded and the other, say v, is integrable. Indeed, if σ∞ ∈ R is such
that |u(t)| ≤ σ∞ for all t ∈ R, then |u(t) v(t)| ≤ σ∞|v(t)| and∫ ∞

−∞

∣∣u(t) v(t)∣∣ dt ≤ σ∞ ∫ ∞

−∞

∣∣v(t)∣∣ dt = σ∞ ‖v‖1 ,

where the RHS is finite by our assumption that v is integrable.

Another case where the inner product is well-defined is when both u and v are of
finite energy. To prove that in this case too the mapping t 7→ u(t) v(t) is integrable
we need the inequality

αβ ≤ 1
2
(α2 + β2), α, β ∈ R, (3.14)

which follows directly from the inequality (α− β)2 ≥ 0 by simple algebra:

0 ≤ (α− β)2

= α2 + β2 − 2αβ.

By substituting |u(t)| for α and |v(t)| for β in (3.14) we obtain the inequality
|u(t) v(t)| ≤ (|u(t)|2 + |v(t)|2)/2 and hence∫ ∞

−∞

∣∣u(t) v(t)∣∣ dt ≤ 1
2

∫ ∞

−∞

∣∣u(t)∣∣2 dt+
1
2

∫ ∞

−∞

∣∣v(t)∣∣2 dt, (3.15)

thus demonstrating that if both u and v are of finite energy (so the RHS is finite),
then the inner product is well-defined, i.e., t 7→ u(t)v(t) is integrable.

As a by-product of this proof we can obtain an upper bound on the magnitude of
the inner product in terms of the energies of u and v. All we need is the inequality∣∣∣∣∫ ∞

−∞
f(ξ) dξ

∣∣∣∣ ≤ ∫ ∞

−∞

∣∣f(ξ)
∣∣ dξ
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(see Proposition 2.4.1) to conclude from (3.15) that

|〈u,v〉| =
∣∣∣∣∫ ∞

−∞
u(t) v∗(t) dt

∣∣∣∣
≤
∫ ∞

−∞

∣∣u(t)∣∣ ∣∣v(t)∣∣ dt
≤ 1

2

∫ ∞

−∞

∣∣u(t)∣∣2 dt+
1
2

∫ ∞

−∞

∣∣v(t)∣∣2 dt

=
1
2
(
‖u‖22 + ‖v‖22

)
. (3.16)

This inequality will be improved in Theorem 3.3.1, which introduces the Cauchy-
Schwarz Inequality.

We finally mention here, without proof, a third case where the inner product
between the Lebesgue measurable signals u,v is defined. The result here is that if
for some numbers 1 < p, q <∞ satisfying 1/p+ 1/q = 1 we have that∫ ∞

−∞

∣∣u(t)∣∣p dt <∞ and
∫ ∞

−∞

∣∣v(t)∣∣q dt <∞,

then t 7→ u(t) v(t) is integrable. The proof of this result follows from Hölder’s
Inequality; see Theorem 3.3.2. Notice that the second case we addressed (where u
and v are both of finite energy) follows from this case by considering p = q = 2.

3.3 The Cauchy-Schwarz Inequality

The Cauchy-Schwarz Inequality is probably the most important inequality on the
inner product. Its discrete version is attributed to Augustin-Louis Cauchy (1789–
1857) and its integral form to Victor Yacovlevich Bunyakovsky (1804–1889) who
studied with him in Paris. Its (double) integral form was derived independently by
Hermann Amandus Schwarz (1843–1921). See (Steele, 2004, pp. 10–12) for more
on the history of this inequality and on how inequalities get their names.

Theorem 3.3.1 (Cauchy-Schwarz Inequality). If the functions u,v : R → C are
of finite energy, then the mapping t 7→ u(t) v∗(t) is integrable and

∣∣〈u,v〉∣∣ ≤ ‖u‖2 ‖v‖2 . (3.17)

That is, ∣∣∣∣∫ ∞

−∞
u(t) v∗(t) dt

∣∣∣∣ ≤
√∫ ∞

−∞

∣∣u(t)∣∣2 dt

√∫ ∞

−∞

∣∣v(t)∣∣2 dt.

Equality in the Cauchy-Schwarz Inequality is possible, e.g., if u is a scaled version
of v, i.e., if for some constant α

u(t) = αv(t), t ∈ R.
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In fact, the Cauchy-Schwarz Inequality holds with equality if, and only if, either v(t)
is zero for all t outside a set of Lebesgue measure zero or for some constant α we
have u(t) = αv(t) for all t outside a set of Lebesgue measure zero.

There are a number of different proofs of this important inequality. We shall focus
here on one that is based on (3.16) because it demonstrates a general technique for
improving inequalities. The idea is that once one obtains a certain inequality—in
our case (3.16)—one can try to improve it by taking advantage of one’s under-
standing of how the quantity in question is affected by various transformations.
This technique is beautifully illustrated in (Steele, 2004).

Proof. The quantity in question is |〈u,v〉|. We shall take advantage of our under-
standing of how this quantity behaves when we replace u with its scaled version
αu and when we replace v with its scaled version βv. Here α, β ∈ C are arbitrary.
The quantity in question transforms as

|〈αu, βv〉| = |α| |β| |〈u,v〉|. (3.18)

We now use (3.16) to upper-bound the left-hand side (LHS) of the above by sub-
stituting αu and βv for u and v in (3.16) to obtain

|α| |β| |〈u,v〉| = |〈αu, βv〉|

≤ 1
2
|α|2 ‖u‖22 +

1
2
|β|2 ‖v‖22 , α, β ∈ C. (3.19)

If both ‖u‖2 and ‖v‖2 are positive, then (3.17) follows from (3.19) by choosing
α = 1/ ‖u‖2 and β = 1/ ‖v‖2 . To conclude the proof it thus remains to show that
(3.17) also holds when either ‖u‖2 or ‖v‖2 is zero so the RHS of (3.17) is zero.
That is, we need to show that if either ‖u‖2 or ‖v‖2 is zero, then 〈u,v〉 must also
be zero. To show this, suppose first that ‖u‖2 is zero. By substituting α = 1 in
(3.19) we obtain in this case that

|β| |〈u,v〉| ≤ 1
2
|β|2 ‖v‖22 ,

which, upon dividing by |β|, yields

|〈u,v〉| ≤ 1
2
|β| ‖v‖22 , β 6= 0.

Upon letting |β| tend to zero from above this demonstrates that 〈u,v〉 must be zero
as we set out to prove. (As an alternative proof of this case one notes that ‖u‖2 = 0
implies, by Proposition 2.5.3, that the set {t ∈ R : u(t) 6= 0} is of Lebesgue measure
zero. Consequently, since every zero of t 7→ u(t) is also a zero of t 7→ u(t) v∗(t),
it follows that {t ∈ R : u(t) v∗(t) 6= 0} is included in {t ∈ R : u(t) 6= 0}, and
must therefore also be of Lebesgue measure zero (Exercise 2.6). Consequently, by
Proposition 2.5.3,

∫∞
−∞ |u(t) v

∗(t)|dt must be zero, which, by Proposition 2.4.1,
implies that |〈u,v〉| must be zero.)

The case where ‖v‖2 = 0 is very similar: by substituting β = 1 in (3.19) we obtain
that (in this case)

|〈u,v〉| ≤ 1
2
|α| ‖u‖22 , α 6= 0
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and the result follows upon letting |α| tend to zero from above.

While we shall not use the following inequality in this book, it is sufficiently im-
portant that we mention it in passing.

Theorem 3.3.2 (Hölder’s Inequality). If u : R → C and v : R → C are Lebesgue
measurable functions satisfying∫ ∞

−∞

∣∣u(t)∣∣p dt <∞ and
∫ ∞

−∞

∣∣v(t)∣∣q dt <∞

for some 1 < p, q <∞ satisfying 1/p+ 1/q = 1, then the function t 7→ u(t) v∗(t) is
integrable and∣∣∣∣∫ ∞

−∞
u(t) v∗(t) dt

∣∣∣∣ ≤ (∫ ∞

−∞

∣∣u(t)∣∣p dt
)1/p(∫ ∞

−∞

∣∣v(t)∣∣q dt
)1/q

. (3.20)

Note that the Cauchy-Schwarz Inequality corresponds to the case where p = q = 2.

Proof. See, for example, (Rudin, 1974, Theorem 3.5) or (Royden, 1988, Section
6.2).

3.4 Applications

There are numerous applications of the Cauchy-Schwarz Inequality. Here we only
mention a few. The first relates the energy in the superposition of two signals to
the energies of the individual signals. The result holds for both complex-valued and
real-valued functions, and—as is our custom—we shall thus not make the range
explicit.

Proposition 3.4.1 (Triangle Inequality for L2 ). If u and v are in L2 , then

‖u + v‖2 ≤ ‖u‖2 + ‖v‖2 . (3.21)

Proof. The proof is a straightforward application of the Cauchy-Schwarz Inequality
and the basic properties of the inner product (3.6)–(3.9):

‖u + v‖22 = 〈u + v,u + v〉
= 〈u,u〉+ 〈v,v〉+ 〈u,v〉+ 〈v,u〉
≤ 〈u,u〉+ 〈v,v〉+ |〈u,v〉|+ |〈v,u〉|

= ‖u‖22 + ‖v‖22 + 2|〈u,v〉|

≤ ‖u‖22 + ‖v‖22 + 2 ‖u‖2 ‖v‖2
=
(
‖u‖2 + ‖v‖2

)2
,

from which the result follows by taking square roots. Here the first line follows
from the definition of ‖·‖2 (3.11); the second by (3.9) & (3.10); the third by the
Triangle Inequality for Complex Numbers (2.12); the fourth because, by (3.6),
〈v,u〉 is the complex conjugate of 〈u,v〉 and is hence of equal modulus; the fifth
by the Cauchy-Schwarz Inequality; and the sixth by simple algebra.
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Another important mathematical consequence of the Cauchy-Schwarz Inequality is
the continuity of the inner product. To state the result we use the notation an → a
to indicate that the sequence a1, a2, . . . converges to a, i.e., that limn→∞ an = a.

Proposition 3.4.2 (Continuity of the Inner Product). Let u and v be in L2 . If
the sequence u1,u2, . . . of elements of L2 satisfies

‖un − u‖2 → 0,

and if the sequence v1,v2, . . . of elements of L2 satisfies

‖vn − v‖2 → 0,

then
〈un,vn〉 → 〈u,v〉.

Proof.

|〈un,vn〉 − 〈u,v〉|
= |〈un − u,v〉+ 〈un − u,vn − v〉+ 〈u,vn − v〉|
≤ |〈un − u,v〉|+ |〈un − u,vn − v〉|+ |〈u,vn − v〉|
≤ ‖un − u‖2 ‖v‖2 + ‖un − u‖2 ‖vn − v‖2 + ‖u‖2 ‖vn − v‖2
→ 0,

where the first equality follows from the basic properties of the inner product (3.6)–
(3.10); the subsequent inequality by the Triangle Inequality for Complex Numbers
(2.12); the subsequent inequality from the Cauchy-Schwarz Inequality; and where
the final limit follows from the proposition’s hypotheses.

Another useful consequence of the Cauchy-Schwarz Inequality is in demonstrating
that if a signal is energy-limited and is zero outside an interval, then it is also
integrable.

Proposition 3.4.3 (Finite-Energy Functions over Finite Intervals are Integrable).
If for some real numbers a and b satisfying a ≤ b we have∫ b

a

∣∣x(ξ)∣∣2 dξ <∞,

then ∫ b

a

∣∣x(ξ)∣∣ dξ ≤ √b− a
√∫ b

a

∣∣x(ξ)∣∣2 dξ,

and, in particular, ∫ b

a

∣∣x(ξ)∣∣ dξ <∞.



22 The Inner Product

Proof. ∫ b

a

∣∣x(ξ)∣∣ dt =
∫ ∞

−∞
I{a ≤ ξ ≤ b}

∣∣x(ξ)∣∣ dξ
=
∫ ∞

−∞
I{a ≤ ξ ≤ b}︸ ︷︷ ︸

u(ξ)

I{a ≤ ξ ≤ b}
∣∣x(ξ)∣∣︸ ︷︷ ︸

v(ξ)

dξ

≤
√
b− a

√∫ b

a

∣∣x(ξ)∣∣2 dξ,

where the inequality is just an application of the Cauchy-Schwarz Inequality to the
function ξ 7→ I{a ≤ ξ ≤ b} |x(ξ)| and the indicator function ξ 7→ I{a ≤ ξ ≤ b}.

Note that, in general, an energy-limited signal need not be integrable. For example,
the real signal

t 7→

{
0 if t ≤ 1,
1/t otherwise,

(3.22)

is of finite energy but is not integrable.

The Cauchy-Schwarz Inequality demonstrates that if both u and v are of finite
energy, then their inner product 〈u,v〉 is well-defined, i.e., the integrand in (3.4) is
integrable. It can also be used in slightly more sophisticated ways. For example, it
can be used to treat cases where one of the functions, say u, is not of finite energy
but where the second function decays to zero sufficiently quickly to compensate for
that. For example:

Proposition 3.4.4. If the Lebesgue measurable functions x : R→ C and y : R→ C
satisfy ∫ ∞

−∞

|x(t)|2

t2 + 1
dt <∞

and ∫ ∞

−∞
|y(t)|2 (t2 + 1) dt <∞,

then the function t 7→ x(t) y∗(t) is integrable and∣∣∣∣∫ ∞

−∞
x(t) y∗(t) dt

∣∣∣∣ ≤
√∫ ∞

−∞

|x(t)|2
t2 + 1

dt

√∫ ∞

−∞
|y(t)|2 (t2 + 1) dt.

Proof. This is a simple application of the Cauchy-Schwarz Inequality to the func-
tions t 7→ x(t)/

√
t2 + 1 and t 7→ y(t)

√
t2 + 1. Simply write∫ ∞

−∞
x(t) y∗(t) dt =

∫ ∞

−∞

x(t)√
t2 + 1︸ ︷︷ ︸
u(t)

√
t2 + 1 y∗(t)︸ ︷︷ ︸
v∗(t)

dt

and apply the Cauchy-Schwarz Inequality to the functions u(·) and v(·).
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3.5 The Cauchy-Schwarz Inequality for Random Variables

There is also a version of the Cauchy-Schwarz Inequality for random variables. It is
very similar to Theorem 3.3.1 but with time integrals replaced by expectations. We
denote the expectation of the random variable X by E[X] and remind the reader
that the variance Var[X] of the random variable X is defined by

Var[X] = E
[
(X − E[X])2

]
. (3.23)

Theorem 3.5.1 (Cauchy-Schwarz Inequality for Random Variables). Let the ran-
dom variables U and V be of finite variance. Then∣∣E[UV ]

∣∣ ≤√E[U2]
√

E[V 2], (3.24)

with equality if, and only if, Pr[αU = βV ] = 1 for some real α and β that are not
both equal to zero.

Proof. Use the proof of Theorem 3.3.1 with all time integrals replaced with ex-
pectations. For a different proof and for the conditions for equality see (Grimmett
and Stirzaker, 2001, Chapter 3, Section 3.5, Theorem 9).

For the next corollary we need to recall that the covariance Cov[U, V ] between the
finite-variance random variables U , V is defined by

Cov[U, V ] = E
[(
U − E[U ]

)(
V − E[V ]

)]
. (3.25)

Corollary 3.5.2 (Covariance Inequality). If the random variables U and V are of
finite variance Var[U ] and Var[V ], then∣∣Cov[U, V ]

∣∣ ≤√Var[U ]
√

Var[V ]. (3.26)

Proof. Apply Theorem 3.5.1 to the random variables U − E[U ] and V − E[V ].

Corollary 3.5.2 shows that the correlation coefficient, which is defined for ran-
dom variables U and V having strictly positive variances as

ρ =
Cov[U, V ]√

Var[U ]
√

Var[V ]
, (3.27)

satisfies
−1 ≤ ρ ≤ +1. (3.28)

3.6 Mathematical Comments

(i) Mathematicians typically consider 〈u,v〉 only when both u and v are of finite
energy. We are more forgiving and simply require that the integral defining
the inner product be well-defined, i.e., that the integrand be integrable.
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(ii) Some refer to ‖u‖2 as the “norm of u” or the “L2 norm of u.” We shall
refrain from this usage because mathematicians use the term “norm” very
selectively. They require that no function other than the all-zero function be
of zero norm, and this is not the case for ‖·‖2 . Indeed, any function u that is
indistinguishable from the all-zero function satisfies ‖u‖2 = 0, and there are
many such functions (e.g., the function that is equal to one at rational times
and that is equal to zero at all other times). This difficulty can be overcome
by defining two functions to be the same if their difference is of zero energy.
In this case ‖·‖2 is a norm in the mathematical sense and is, in fact, what
mathematicians call the L2 norm. This issue is discussed in greater detail in
Section 4.7. To stay out of trouble we shall refrain from giving ‖·‖2 a name.

3.7 Exercises

Exercise 3.1 (Manipulating Inner Products). Show that if u, v, and w are energy-limited
complex signals, then

〈u + v, 3u + v + iw〉 = 3 ‖u‖22 + ‖v‖22 + 〈u,v〉+ 3 〈u,v〉∗ − i 〈u,w〉 − i 〈v,w〉 .

Exercise 3.2 (Orthogonality to All Signals). Let u be an energy-limited signal. Show
that (

u ≡ 0
)
⇔
(
〈u,v〉 = 0, v ∈ L2

)
.

Exercise 3.3 (Finite-Energy Signals). Let x be an energy-limited signal.

(i) Show that, for every t0 ∈ R, the signal t 7→ x(t− t0) must also be energy-limited.

(ii) Show that the reflection of x is also energy-limited. I.e., show that the signal ~x
that maps t to x(−t) is energy-limited.

(iii) How are the energies in t 7→ x(t), t 7→ x(t− t0), and t 7→ x(−t) related?

Exercise 3.4 (Inner Products of Mirror Images). Express the inner product 〈~x, ~y〉 in
terms of the inner product 〈x,y〉.

Exercise 3.5 (On the Cauchy-Schwarz Inequality). Show that the bound obtained from
the Cauchy-Schwarz Inequality is at least as tight as (3.16).

Exercise 3.6 (Truncated Polynomials). Consider the signals u : t 7→ (t + 2) I{0 ≤ t ≤ 1}
and v : t 7→ (t2 − 2t− 3) I{0 ≤ t ≤ 1}. Compute the energies ‖u‖22 & ‖v‖22 and the inner
product 〈u,v〉.

Exercise 3.7 (Indistinguishability and Inner Products). Let u ∈ L2 be indistinguishable
from u′ ∈ L2 , and let v ∈ L2 be indistinguishable from v′ ∈ L2 . Show that the inner
product 〈u′,v′〉 is equal to the inner product 〈u,v〉.
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Exercise 3.8 (Finite Energy and Integrability). Let x : R → C be Lebesgue measurable.

(i) Show that the conditions that x is of finite energy and that the mapping t 7→ t x(t)
is of finite energy are simultaneously met if, and only if,∫ ∞

−∞
|x(t)|2 (1 + t2) dt <∞. (3.29)

(ii) Show that (3.29) implies that x is integrable.

(iii) Give an example of an integrable signal that does not satisfy (3.29).

Exercise 3.9 (The Cauchy-Schwarz Inequality for Sequences).

(i) Let the complex sequences a1, a2, . . . and b1, b2, . . . satisfy

∞∑
ν=1

|aν |2,
∞∑
ν=1

|bν |2 <∞.

Show that ∣∣∣∣ ∞∑
ν=1

aνb
∗
ν

∣∣∣∣2 ≤ ( ∞∑
ν=1

|aν |2
)( ∞∑

ν=1

|bν |2
)
.

(ii) Derive the Cauchy-Schwarz Inequality for d-tuples:∣∣∣∣ d∑
ν=1

aνb
∗
ν

∣∣∣∣2 ≤ ( d∑
ν=1

|aν |2
)( d∑

ν=1

|bν |2
)
.

Exercise 3.10 (Summability and Square Summability). Let a1, a2, . . . be a sequence of
complex numbers. Show that( ∞∑

ν=1

|aν | <∞
)
⇒
( ∞∑
ν=1

|aν |2 <∞
)
.

Exercise 3.11 (A Friendlier GPA). Use the Cauchy-Schwarz Inequality for d-tuples (Prob-
lem 3.9) to show that for any positive integer d,

a1 + · · ·+ ad
d

≤
√
a2
1 + · · ·+ a2

d

d
, a1, . . . , ad ∈ R.



Chapter 4

The Space L2 of Energy-Limited Signals

4.1 Introduction

In this chapter we shall study the space L2 of energy-limited signals in greater
detail. We shall show that its elements can be viewed as vectors in a vector space
and begin developing a geometric intuition for understanding its structure. We
shall focus on the case of complex-valued signals, but with some minor changes the
results are also applicable to real-valued signals. (The main changes that are needed
for translating the results to real-valued signals are replacing C with R, ignoring
the conjugation operation, and interpreting |·| as the absolute value function for
real arguments as opposed to the modulus function.)

We remind the reader that the space L2 was defined in Definition 3.1.1 as the set
of all Lebesgue measurable complex-valued signals u : R→ C satisfying∫ ∞

−∞

∣∣u(t)∣∣2 dt <∞, (4.1)

and that in (3.12) we defined for every u ∈ L2 the quantity ‖u‖2 as

‖u‖2 =

√∫ ∞

−∞

∣∣u(t)∣∣2 dt. (4.2)

We refer to L2 as the space of energy-limited signals and to its elements as energy-
limited signals or signals of finite energy.

4.2 L2 as a Vector Space

In this section we shall explain how to view the space L2 as a vector space over
the complex field by thinking about signals in L2 as vectors, by interpreting the
superposition u + v of two signals as vector-addition, and by interpreting the
amplification of u by α as the operation of multiplying the vector u by the scalar
α ∈ C.

We begin by reminding the reader that the superposition of the two signals u
and v is denoted by u + v and is the signal that maps every t ∈ R to u(t) + v(t).

26
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The amplification of u by α is denoted by αu and is the signal that maps every
t ∈ R to αu(t). More generally, if u and v are signals and if α and β are complex
numbers, then αu + βv is the signal t 7→ αu(t) + βv(t).

If u ∈ L2 and α ∈ C, then αu is also in L2 . Indeed, the measurability of u implies
the measurability of αu, and if u is of finite energy, then αu is also of finite energy,
because the energy in αu is the product of |α|2 by the energy in u. We thus see
that the operation of amplification of u by α results in an element of L2 whenever
u ∈ L2 and α ∈ C.

We next show that if the signals u and v are in L2 , then their superposition
u+v must also be in L2 . This holds because a standard result in Measure Theory
guarantees that the superposition of two Lebesgue measurable signals is a Lebesgue
measurable signal and because Proposition 3.4.1 guarantees that if both u and v
are of finite energy, then so is their superposition. Thus the superposition that
maps u and v to u + v results in an element of L2 whenever u,v ∈ L2 .

It can be readily verified that the following properties hold:

(i) commutativity:
u + v = v + u, u,v ∈ L2 ;

(ii) associativity:

(u + v) + w = u + (v + w), u,v,w ∈ L2 ,

(αβ)u = α(βu),
(
α, β ∈ C, u ∈ L2

)
;

(iii) additive identity: the all-zero signal 0 : t 7→ 0 satisfies

0 + u = u, u ∈ L2 ;

(iv) additive inverse: to every u ∈ L2 there corresponds a signal w ∈ L2

(namely, the signal t 7→ −u(t)) such that

u + w = 0;

(v) multiplicative identity:

1u = u, u ∈ L2 ;

(vi) distributive properties:

α(u + v) = αu + αv,
(
α ∈ C, u,v ∈ L2

)
,

(α+ β)u = αu + βu,
(
α, β ∈ C, u ∈ L2

)
.

We conclude that with the operations of superposition and amplification the set L2

forms a vector space over the complex field (Axler, 1997, Chapter 1). This justifies
referring to the elements of L2 as “vectors,” to the operation of signal superposition
as “vector addition,” and to the operation of amplification of an element of L2 by
a complex scalar as “scalar multiplication.”
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4.3 Subspace, Dimension, and Basis

Once we have noted that L2 together with the operations of superposition and
amplification forms a vector space, we can borrow numerous definitions and results
from the theory of vector spaces. Here we shall focus on the very basic ones.

A linear subspace (or just subspace) of L2 is a nonempty subset U of L2 that
is closed under superposition

u1 + u2 ∈ U , u1,u2 ∈ U (4.3)

and under amplification

αu ∈ U ,
(
α ∈ C, u ∈ U

)
. (4.4)

Example 4.3.1. Consider the set of all functions of the form

t 7→ p(t) e−|t|,

where p(t) is any polynomial of degree no larger than 3. Thus, the set is the set of
all functions of the form

t 7→
(
α0 + α1t+ α2t

2 + α3t
3
)
e−|t|, (4.5)

where α0, α1, α2, α3 are arbitrary complex numbers.

In spite of the polynomial growth of the pre-exponent, all such functions are in L2

because the exponential decay more than compensates for the polynomial growth.
The above set is thus a subset of L2 . Moreover, as we show next, this is a linear
subspace of L2 .

If u is of the form (4.5), then so is αu, because αu is the mapping

t 7→
(
αα0 + αα1t+ αα2t

2 + αα3t
3
)
e−|t|,

which is of the same form.

Similarly, if u is as given in (4.5) and

v : t 7→
(
β0 + β1t+ β2t

2 + β3t
3
)
e−|t|,

then u + v is the mapping

t 7→
(
(α0 + β0) + (α1 + β1)t+ (α2 + β2)t2 + (α3 + β3)t3

)
e−|t|,

which is again of this form.

An n-tuple of vectors from L2 is a (possibly empty) ordered list of n vectors
from L2 separated by commas and enclosed in parentheses, e.g., (v1, . . . ,vn). Here
n ≥ 0 can be any nonnegative integer, where the case n = 0 corresponds to the
empty list.

A vector v ∈ L2 is said to be a linear combination of the n-tuple (v1, . . . ,vn) if
it is equal to

α1v1 + · · ·+ αnvn, (4.6)
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which is written more succinctly as
n∑
ν=1

ανvν , (4.7)

for some scalars α1, . . . , αn ∈ C. The all-zero signal is a linear combination of any
n-tuple including the empty tuple.

The span of an n-tuple (v1, . . . ,vn) of vectors in L2 is denoted by

span(v1, . . . ,vn)

and is the set of all vectors in L2 that are linear combinations of (v1, . . . ,vn):

span(v1, . . . ,vn) , {α1v1 + · · ·+ αnvn : α1, . . . , αn ∈ C}. (4.8)

(The span of the empty tuple is given by the one-element set {0} containing the
all-zero signal only.)

Note that for any n-tuple of vectors (v1, . . . ,vn) in L2 we have that span(v1, . . . ,vn)
is a linear subspace of L2 . Also, if U is a linear subspace of L2 and if the vectors
u1, . . . ,un are in U , then span(u1, . . . ,un) is a linear subspace which is contained
in U . A subspace U of L2 is said to be finite-dimensional if there exists an
n-tuple (u1, . . . ,un) of vectors in U such that span(u1, . . . ,un) = U . Otherwise,
we say that U is infinite-dimensional. For example, the space of all mappings
of the form t 7→ p(t) e−|t| for some polynomial p(·) can be shown to be infinite-
dimensional, but under the restriction that p(·) be of degree smaller than 5, it is
finite-dimensional. If U is a finite-dimensional subspace and if U ′ is a subspace
contained in U , then U ′ must also be finite-dimensional.

An n-tuple of signals (v1, . . . ,vn) in L2 is said to be linearly independent if
whenever the scalars α1, . . . , αn ∈ C are such that α1v1 + · · ·αnvn = 0, we have
α1 = · · · = αn = 0. I.e., if( n∑

ν=1

ανvν = 0
)
⇒
(
αν = 0, ν = 1, . . . , n

)
. (4.9)

(By convention, the empty tuple is linearly independent.) For example, the 3-
tuple consisting of the signals t 7→ e−|t|, t 7→ t e−|t|, and t 7→ t2 e−|t| is linearly
independent. If (v1, . . . ,vn) is not linearly independent, then we say that it is
linearly dependent. For example, the 3-tuple consisting of the signals t 7→ e−|t|,
t 7→ t e−|t|, and t 7→

(
2t + 1

)
e−|t| is linearly dependent. The n-tuple (v1, . . . ,vn)

is linearly dependent if, and only if, (at least) one of the signals in the tuple can
be written as a linear combination of the others.

The d-tuple (u1, . . . ,ud) is said to form a basis for the linear subspace U if it is
linearly independent and if span(u1, . . . ,ud) = U . The latter condition is equivalent
to the requirement that every u ∈ U can be represented as

u = α1u1 + · · ·+ αdud (4.10)

for some α1, . . . , αd ∈ C. The former condition that the tuple (u1, . . . ,ud) be
linearly independent guarantees that if such a representation exists, then it is
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unique. Thus, (u1, . . . ,ud) forms a basis for U if u1, . . . ,ud ∈ U (thus guaranteeing
that span(u1, . . . ,ud) ⊆ U) and if every u ∈ U can be written uniquely as in (4.10).

Every finite-dimensional linear subspace U has a basis, and all bases for U have the
same number of elements. This number is called the dimension of U . Thus, if U
is a finite-dimensional subspace and if both (u1, . . . ,ud) and (u′1, . . . ,u

′
d′) form a

basis for U , then d = d′ and both are equal to the dimension of U . The dimension
of the subspace {0} is zero.

4.4 ‖u‖2 as the “length” of the Signal u(·)

Having presented the elements of L2 as vectors, we next propose to view ‖u‖2 as
the “length” of the vector u ∈ L2 . To motivate this view, we first present the key
properties of ‖·‖2 .

Proposition 4.4.1 (Properties of ‖·‖2 ). Let u and v be elements of L2 , and let α
be some complex number. Then

‖αu‖2 = |α| ‖u‖2 , (4.11)

‖u + v‖2 ≤ ‖u‖2 + ‖v‖2 , (4.12)

and (
‖u‖2 = 0

)
⇔
(
u ≡ 0

)
. (4.13)

Proof. Identity (4.11) follows directly from the definition of ‖·‖2 ; see (4.2). In-
equality (4.12) is a restatement of Proposition 3.4.1. The equivalence of the con-
dition ‖u‖2 = 0 and the condition that u is indistinguishable from the all-zero
signal 0 follows from Proposition 2.5.3.

Identity (4.11) is in agreement with our intuition that stretching a vector merely
scales its length. Inequality (4.12) is sometimes called the Triangle Inequality
because it is reminiscent of the theorem from planar geometry that states that the
length of no side of a triangle can exceed the sum of the lengths of the others; see
Figure 4.1.

Substituting −y for u and x + y for v in (4.12) yields ‖x‖2 ≤ ‖y‖2 + ‖x + y‖2 ,
i.e., the inequality ‖x + y‖2 ≥ ‖x‖2 −‖y‖2 . And substituting −x for u and x+y
for v in (4.12) yields the inequality ‖y‖2 ≤ ‖x‖2 + ‖x + y‖2 , i.e., the inequality
‖x + y‖2 ≥ ‖y‖2 −‖x‖2 . Combining the two inequalities we obtain the inequality
‖x + y‖2 ≥

∣∣‖x‖2 − ‖y‖2 ∣∣. This inequality can be combined with the inequality
‖x + y‖2 ≤ ‖x‖2 + ‖y‖2 in the compact form of a double-sided inequality∣∣‖x‖2 − ‖y‖2 ∣∣ ≤ ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2 , x,y ∈ L2 . (4.14)

Finally, (4.13) “almost” supports the intuition that the only vector of length zero
is the zero-vector. In our case, alas, we can only claim that if a vector is of zero
length, then it is indistinguishable from the all-zero signal, i.e., that all t’s outside
a set of Lebesgue measure zero are mapped by the signal to zero.
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u

vu + v

Figure 4.1: A geometric interpretation of the Triangle Inequality for energy-limited
signals: ‖u + v‖2 ≤ ‖u‖2 + ‖v‖2 .
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v

u

w

w − v

u−w

u− v

Figure 4.2: Illustration of the shortest path property in L2 . The shortest path
from A to B is no longer than the sum of the shortest path from A to C and the
shortest path from C to B.

The Triangle Inequality (4.12) can also be stated slightly differently. In planar
geometry the sum of the lengths of two sides of a triangle can never be smaller
than the length of the remaining side. Thus, the shortest path from Point A to
Point B cannot exceed the sum of the lengths of the shortest paths from Point A to
Point C, and from Point C to Point B. By applying Inequality (4.12) to the signal
u−w and w − v we obtain

‖u− v‖2 ≤ ‖u−w‖2 + ‖w − v‖2 , u,v,w ∈ L2 ,

i.e., that the distance from u to v cannot exceed the sum of distances from u to w
and from w to v. See Figure 4.2.



32 The Space L2 of Energy-Limited Signals

4.5 Orthogonality and Inner Products

To further develop our geometric view of L2 we next discuss orthogonality. We
shall motivate its definition with an attempt to generalize Pythagoras’s Theorem
to L2 . As an initial attempt at defining orthogonality we might define two func-
tions u,v ∈ L2 to be orthogonal if ‖u + v‖22 = ‖u‖22 + ‖v‖22 . Recalling the
definition of ‖·‖2 (4.2) we obtain that this condition is equivalent to the condition
Re
(∫
u(t) v∗(t) dt

)
= 0, because

‖u + v‖22 =
∫ ∞

−∞
|u(t) + v(t)|2 dt

=
∫ ∞

−∞

(
u(t) + v(t)

)(
u(t) + v(t)

)∗ dt

=
∫ ∞

−∞

(
|u(t)|2 + |v(t)|2 + 2 Re

(
u(t) v∗(t)

))
dt

= ‖u‖22 + ‖v‖22 + 2 Re
(∫ ∞

−∞
u(t) v∗(t) dt

)
, u,v ∈ L2 , (4.15)

where we have used the fact that integration commutes with the operation of taking
the real part; see Proposition 2.3.1.

While this approach would work well for real-valued functions, it has some embar-
rassing consequences when it comes to complex-valued functions. It allows for the
possibility that u is orthogonal to v, but that its scaled version αu is not. For exam-
ple, with this definition, the function t 7→ i I{|t| ≤ 5} is orthogonal to the function
t 7→ I{|t| ≤ 17} but its scaled (by α = i) version t 7→ i i I{|t| ≤ 5} = − I{|t| ≤ 5} is
not. To avoid this embarrassment, we define u to be orthogonal to v if

‖αu + v‖22 = ‖αu‖22 + ‖v‖22 , α ∈ C.

This, by (4.15), is equivalent to

Re
(
α

∫ ∞

−∞
u(t) v∗(t) dt

)
= 0, α ∈ C,

i.e., to the condition ∫ ∞

−∞
u(t) v∗(t) dt = 0 (4.16)

(because if z ∈ C is such that Re(αz) = 0 for all α ∈ C, then z = 0). Recalling the
definition of the inner product 〈u,v〉 from (3.4)

〈u,v〉 =
∫ ∞

−∞
u(t) v∗(t) dt, (4.17)

we conclude that (4.16) is equivalent to the condition 〈u,v〉 = 0 or, equivalently
(because by (3.6) 〈u,v〉 = 〈v,u〉∗) to the condition 〈v,u〉 = 0.

Definition 4.5.1 (Orthogonal Signals in L2 ). The signals u,v ∈ L2 are said to
be orthogonal if

〈u,v〉 = 0. (4.18)
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The n-tuple (u1, . . . ,un) is said to be orthogonal if any two signals in the tuple are
orthogonal

〈u`,u`′〉 = 0,
(
` 6= `′, `, `′ ∈ {1, . . . , n}

)
. (4.19)

The reader is encouraged to verify that if u is orthogonal to v then so is αu. Also,
u is orthogonal to v if, and only if, v is orthogonal to u. Finally every function is
orthogonal to the all-zero function 0.

Having judiciously defined orthogonality in L2 , we can now extend Pythagoras’s
Theorem.

Theorem 4.5.2 (A Pythagorean Theorem). If the n-tuple of vectors (u1, . . . ,un)
in L2 is orthogonal, then

‖u1 + · · ·+ un‖22 = ‖u1‖22 + · · ·+ ‖un‖22 .

Proof. This theorem can be proved by induction on n. The case n = 2 follows
from (4.15) using Definition 4.5.1 and (4.17).

Assume now that the theorem holds for n = ν, for some ν ≥ 2, i.e.,

‖u1 + · · ·+ uν‖22 = ‖u1‖22 + · · ·+ ‖uν‖22 ,

and let us show that this implies that it also holds for n = ν + 1, i.e., that

‖u1 + · · ·+ uν+1‖22 = ‖u1‖22 + · · ·+ ‖uν+1‖22 .

To that end, let
v = u1 + · · ·+ uν . (4.20)

Since the ν-tuple (u1, . . . ,uν) is orthogonal, our induction hypothesis guarantees
that

‖v‖22 = ‖u1‖22 + · · ·+ ‖uν‖22 . (4.21)

Now v is orthogonal to uν+1 because

〈v,uν+1〉 = 〈u1 + · · ·+ uν ,uν+1〉
= 〈u1,uν+1〉+ · · ·+ 〈uν ,uν+1〉
= 0,

so by the n = 2 case

‖v + uν+1‖22 = ‖v‖22 + ‖uν+1‖22 . (4.22)

Combining (4.20), (4.21), and (4.22) we obtain

‖u1 + · · ·+ uν+1‖22 = ‖v + uν+1‖22
= ‖v‖22 + ‖uν+1‖22
= ‖u1‖22 + · · ·+ ‖uν+1‖22 .



34 The Space L2 of Energy-Limited Signals

v

u

w

Figure 4.3: The projection w of the vector v onto u.

To derive a geometric interpretation for the inner product 〈u,v〉 we next extend
to L2 the notion of the projection of a vector onto another. We first recall the
definition for vectors in R2. Consider two nonzero vectors u and v in the real
plane R2. The projection w of the vector v onto u is a scaled version of u. More
specifically, it is a scaled version of u and its length is equal to the product of the
length of v multiplied by the cosine of the angle between v and u (see Figure 4.3).
More explicitly,

w = (length of v) cos(angle between v and u)
u

length of u
. (4.23)

This definition does not seem to have a natural extension to L2 because we have not
defined the angle between two signals. An alternative definition of the projection,
and one that is more amenable to extensions to L2 , is the following. The vector w
is the projection of the vector v onto u, if w is a scaled version of u, and if v−w
is orthogonal to u.

This definition makes perfect sense in L2 too, because we have already defined
what we mean by “scaled version” (i.e., “amplification” or “scalar multiplication”)
and “orthogonality.” We thus have:

Definition 4.5.3 (Projection of a Signal in L2 onto another). Let u ∈ L2 have
positive energy. The projection of the signal v ∈ L2 onto the signal u ∈ L2

is the signal w that satisfies both of the following conditions:

1) w = αu for some α ∈ C and

2) v −w is orthogonal to u.

Note that since L2 is closed with respect to scalar multiplication, Condition 1)
guarantees that the projection w is in L2 .

Prima facie it is not clear that a projection always exists and that it is unique.
Nevertheless, this is the case. We prove this by finding an explicit expression
for w. We need to find some α ∈ C so that αu will satisfy the requirements of
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the projection. The scalar α is chosen so as to guarantee that v−w is orthogonal
to u. That is, we seek to solve for α ∈ C satisfying

〈v − αu,u〉 = 0,

i.e.,
〈v,u〉 − α ‖u‖22 = 0.

Recalling our hypothesis that ‖u‖2 > 0 (strictly), we conclude that α is uniquely
given by

α =
〈v,u〉
‖u‖22

,

and the projection w is thus unique and is given by

w =
〈v,u〉
‖u‖22

u. (4.24)

Comparing (4.23) and (4.24) we can interpret

〈v,u〉
‖u‖2 ‖v‖2

(4.25)

as the cosine of the angle between the function v and the function u (provided
that neither u nor v is zero). If the inner product is zero, then we have said that
v and u are orthogonal, which is consistent with the cosine of the angle between
them being zero. Note, however, that this interpretation should be taken with a
grain of salt because in the complex case the inner product in (4.25) is typically a
complex number.

The interpretation of (4.25) as the cosine of the angle between v and u is further
supported by noting that the magnitude of (4.25) is always in the range [0, 1]. This
follows directly from the Cauchy-Schwarz Inequality (Theorem 3.3.1) to which we
next give another (geometric) proof. Let w be the projection of v onto u. Then
starting from (4.24)

|〈v,u〉|2

‖u‖22
= ‖w‖22

≤ ‖w‖22 + ‖v −w‖22
= ‖w + (v −w)‖22
= ‖v‖22 , (4.26)

where the first equality follows from (4.24); the subsequent inequality from the
nonnegativity of ‖·‖2 ; and the subsequent equality by the Pythagorean Theorem
because, by its definition, the projection w of v onto u must satisfy that v−w is
orthogonal to u and hence also to w, which is a scaled version of u. The Cauchy-
Schwarz Inequality now follows by taking the square root of both sides of (4.26).
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4.6 Orthonormal Bases

We next consider orthonormal bases for finite-dimensional linear subspaces. These
are special bases that are particularly useful for the calculation of projections and
inner products.

4.6.1 Definition

Definition 4.6.1 (Orthonormal Tuple). An n-tuple of signals in L2 is said to be
orthonormal if it is orthogonal and if each of the signals in the tuple is of unit
energy.

Thus, the n-tuple (φ1, . . . ,φn) of signals in L2 is orthonormal, if

〈φ`,φ`′〉 =

{
0 if ` 6= `′,
1 if ` = `′,

`, `′ ∈ {1, . . . , n}. (4.27)

Linearly independent tuples need not be orthonormal, but orthonormal tuples must
be linearly independent:

Proposition 4.6.2 (Orthonormal Tuples Are Linearly Independent). If a tuple of
signals in L2 is orthonormal, then it must be linearly independent.

Proof. Let the n-tuple (φ1, . . . ,φn) of signals in L2 be orthonormal, i.e., satisfy
(4.27). We need to show that if

n∑
`=1

α`φ` = 0, (4.28)

then all the coefficients α1, . . . , αn must be zero. To that end, assume (4.28). It
then follows that for every `′ ∈ {1, . . . , n}

0 = 〈0,φ`′〉

=
〈 n∑
`=1

α`φ`,φ`′

〉

=
n∑
`=1

α` 〈φ`,φ`′〉

=
n∑
`=1

α` I{` = `′}

= α`′ ,

thus demonstrating that (4.28) implies that α`′ = 0 for every `′ ∈ {1, . . . , n}. Here
the first equality follows because 0 is orthogonal to every energy-limited signal
and, a fortiori, to φ`′ ; the second by (4.28); the third by the linearity of the inner
product in its left argument (3.7) & (3.9); and the fourth by (4.27).
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Definition 4.6.3 (Orthonormal Basis). A d-tuple of signals in L2 is said to form
an orthonormal basis for the linear subspace U ⊂ L2 if it is orthonormal and
its span is U .

4.6.2 Representing a Signal Using an Orthonormal Basis

Suppose that (φ1, . . . ,φd) is an orthonormal basis for U ⊂ L2 . The fact that
(φ1, . . . ,φd) spans U guarantees that every u ∈ U can be written as u =

∑
` α`φ`

for some coefficients α1, . . . , αd ∈ C. The fact that (φ1, . . . ,φd) is orthonormal
implies, by Proposition 4.6.2, that it is also linearly independent and hence that
the coefficients {α`} are unique. How does one go about finding these coefficients?
We next show that the orthonormality of (φ1, . . . ,φd) also implies a very simple
expression for α` above. Indeed, as the next proposition demonstrates, α` is given
explicitly as 〈u,φ`〉.

Proposition 4.6.4 (Representing a Signal Using an Orthonormal Basis).

(i) If (φ1, . . . ,φd) is an orthonormal tuple of functions in L2 and if u ∈ L2

can be written as u =
∑d
`=1 α`φ` for some complex numbers α1, . . . , αd, then

α` = 〈u,φ`〉 for every ` ∈ {1, . . . , d}:

(
u =

d∑
`=1

α`φ`

)
⇒
(
α` = 〈u,φ`〉 , ` ∈ {1, . . . , d}

)
,(

(φ1, . . . ,φd) orthonormal
)
. (4.29)

(ii) If (φ1, . . . ,φd) is an orthonormal basis for the subspace U ⊂ L2 , then

u =
d∑
`=1

〈u,φ`〉φ`, u ∈ U . (4.30)

Proof. We begin by proving Part (i). If u =
∑d
`=1 α`φ`, then for every `′ ∈

{1, . . . , d}

〈u,φ`′〉 =
〈 d∑
`=1

α`φ`,φ`′

〉

=
d∑
`=1

α` 〈φ`,φ`′〉

=
d∑
`=1

α` I{` = `′}

= α`′ ,

thus proving Part (i).
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We next prove Part (ii). Let u ∈ U be arbitrary. Since, by assumption, the tuple
(φ1, . . . ,φd) forms an orthonormal basis for U it follows a fortiori that its span
is U and, consequently, that there exist coefficients α1, . . . , αd ∈ C such that

u =
d∑
`=1

α`φ`. (4.31)

It now follows from Part (i) that for each ` ∈ {1, . . . , d} the coefficient α` in (4.31)
must be equal to 〈u,φ`〉, thus establishing (4.30).

This proposition shows that if (φ1, . . . ,φd) is an orthonormal basis for the sub-
space U and if u ∈ U , then u is fully determined by the complex constants 〈u,φ1〉,
. . . , 〈u,φd〉. Thus, any calculation involving u can be computed from these con-
stants by first reconstructing u using the proposition. As we shall see in Proposi-
tion 4.6.9, calculations involving inner products and norms are, however, simpler
than that.

4.6.3 Projection

We next discuss the projection of a signal v ∈ L2 onto a finite-dimensional linear
subspace U that has an orthonormal basis (φ1, . . . ,φd).1 To define the projection
we shall extend the approach we adopted in Section 4.5 for the projection of the
vector v onto the vector u. Recall that in that section we defined the projection
as the vector w that is a scaled version of u and that satisfies that (v − w) is
orthogonal to u. Of course, if (v −w) is orthogonal to u, then it is orthogonal to
any scaled version of u, i.e., it is orthogonal to every signal in the space span(u).

We would like to adopt this approach and to define the projection of v ∈ L2 onto U
as the element w of U for which (v−w) is orthogonal to every signal in U . Before
we can adopt this definition, we must show that such an element of U always exists
and that it is unique.

Lemma 4.6.5. Let (φ1, . . . ,φd) be an orthonormal basis for the linear subspace
U ⊂ L2 . Let v ∈ L2 be arbitrary.

(i) The signal v −
∑d
`=1 〈v,φ`〉φ` is orthogonal to every signal in U :〈

v −
d∑
`=1

〈v,φ`〉φ`,u
〉

= 0,
(
v ∈ L2 , u ∈ U

)
. (4.32)

(ii) If w ∈ U is such that v −w is orthogonal to every signal in U , then

w =
d∑
`=1

〈v,φ`〉φ`. (4.33)

1As we shall see in Section 4.6.5, not every finite-dimensional linear subspace of L2 has an
orthonormal basis. Here we shall only discuss projections onto subspaces that do.
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Proof. To prove (4.32) we first verify that it holds when u = φ`′ , for some `′ in
the set {1, . . . , d}:〈

v −
d∑
`=1

〈v,φ`〉φ`,φ`′
〉

= 〈v,φ`′〉 −
〈 d∑
`=1

〈v,φ`〉φ`,φ`′
〉

= 〈v,φ`′〉 −
d∑
`=1

〈v,φ`〉 〈φ`,φ`′〉

= 〈v,φ`′〉 −
d∑
`=1

〈v,φ`〉 I{` = `′}

= 〈v,φ`′〉 − 〈v,φ`′〉
= 0, `′ ∈ {1, . . . , d}. (4.34)

Having verified (4.32) for u = φ`′ we next verify that this implies that it holds
for all u ∈ U . By Proposition 4.6.4 we obtain that any u ∈ U can be written as
u =

∑d
`′=1 β`′φ`′ , where β`′ = 〈u,φ`′〉. Consequently,〈

v −
d∑
`=1

〈v,φ`〉φ`,u
〉

=
〈
v −

d∑
`=1

〈v,φ`〉φ`,
d∑

`′=1

β`′φ`′

〉

=
d∑

`′=1

β∗`′

〈
v −

d∑
`=1

〈v,φ`〉φ`,φ`′
〉

=
d∑

`′=1

β∗`′0

= 0, u ∈ U ,

where the third equality follows from (4.34) and the basic properties of the inner
product (3.6)–(3.10).

We next prove Part (ii) by showing that if w,w′ ∈ U satisfy

〈v −w,u〉 = 0, u ∈ U (4.35)

and
〈v −w′,u〉 = 0, u ∈ U , (4.36)

then w = w′.

This follows from the calculation:

w −w′ =
d∑
`=1

〈w,φ`〉φ` −
d∑
`=1

〈w′,φ`〉φ`

=
d∑
`=1

〈w −w′,φ`〉φ`

=
d∑
`=1

〈
(v −w′)− (v −w),φ`

〉
φ`
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=
d∑
`=1

(〈
(v −w′),φ`

〉
−
〈
(v −w),φ`

〉)
φ`

=
d∑
`=1

(
0− 0

)
φ`

= 0,

where the first equality follows from Proposition 4.6.4; the second by the linearity of
the inner product in its left argument (3.9); the third by adding and subtracting v;
the fourth by the linearity of the inner product in its left argument (3.9); and the
fifth equality from (4.35) & (4.36) applied by substituting φ` for u.

With the aid of the above lemma we can now define the projection of a signal onto
a finite-dimensional subspace that has an orthonormal basis.2

Definition 4.6.6 (Projection of v ∈ L2 onto U). Let U ⊂ L2 be a finite-
dimensional linear subspace of L2 having an orthonormal basis. Let v ∈ L2 be an
arbitrary energy-limited signal. Then the projection of v onto U is the unique
element w of U such that

〈v −w,u〉 = 0, u ∈ U . (4.37)

Note 4.6.7. By Lemma 4.6.5 it follows that if (φ1, . . . ,φd) is an orthonormal basis
for U , then the projection of v ∈ L2 onto U is given by

d∑
`=1

〈v,φ`〉φ`. (4.38)

To further develop the geometric picture of L2 , we next show that, loosely speaking,
the projection of v ∈ L2 onto U is the element in U that is closest to v. This result
can also be viewed as an optimal approximation result: if we wish to approximate v
by an element of U , then the optimal approximation is the projection of v onto U ,
provided that we measure the quality of our approximation using the energy in the
error signal.

Proposition 4.6.8 (Projection as Best Approximation). Let U ⊂ L2 be a finite-
dimensional subspace of L2 having an orthonormal basis (φ1, . . . ,φd). Let v ∈ L2

be arbitrary. Then the projection of v onto U is the element w ∈ U that, among
all the elements of U , is closest to v in the sense that

‖v − u‖2 ≥ ‖v −w‖2 , u ∈ U . (4.39)

Proof. Let w be the projection of v onto U and let u be an arbitrary signal in U .
Since, by the definition of projection, w is in U and since U is a linear subspace,
it follows that w − u ∈ U . Consequently, since by the definition of the projection

2A projection can also be defined if the subspace does not have an orthonormal basis, but in
this case there is a uniqueness issue. There may be numerous vectors w ∈ U such that v −w is
orthogonal to all vectors in U . Fortunately, they are all indistinguishable.



4.6 Orthonormal Bases 41

v − w is orthogonal to every element of U , it follows that v − w is a fortiori
orthogonal to w − u. Thus

‖v − u‖22 = ‖(v −w) + (w − u)‖22
= ‖v −w‖22 + ‖w − u‖22 (4.40)

≥ ‖v −w‖22 , (4.41)

where the first equality follows by subtracting and adding w, the second equality
from the orthogonality of (v − w) and (w − u), and the final equality by the
nonnegativity of ‖·‖2 . It follows from (4.41) that no signal in U is closer to v
than w is. And it follows from (4.40) that if u ∈ U is as close to v as w is,
then u − w must be an element of U that is of zero energy. We shall see in
Proposition 4.6.10 that the hypothesis that U has an orthonormal basis implies
that the only zero-energy element of U is 0. Thus u and w must be identical, and
no other element of U is as close to v as w is.

4.6.4 Energy, Inner Products, and Orthonormal Bases

As demonstrated by Proposition 4.6.4, if (φ1, . . . ,φd) forms an orthonormal basis
for the subspace U ⊂ L2 , then any signal u ∈ U can be reconstructed from the d
numbers 〈u,φ1〉 , . . . , 〈u,φd〉. Any quantity that can be computed from u can thus
be computed from 〈u,φ1〉 , . . . , 〈u,φd〉 by first reconstructing u and by then per-
forming the calculation on u. But some calculations involving u can be performed
based on 〈u,φ1〉 , . . . , 〈u,φd〉 much more easily.

Proposition 4.6.9. Let (φ1, . . . ,φd) be an orthonormal basis for the linear subspace
U ⊂ L2 .

(i) The energy ‖u‖22 of every u ∈ U can be expressed in terms of the d inner
products 〈u,φ1〉 , . . . , 〈u,φd〉 as

‖u‖22 =
d∑
`=1

∣∣〈u,φ`〉∣∣2. (4.42)

(ii) More generally, if v ∈ L2 (not necessarily in U), then

‖v‖22 ≥
d∑
`=1

∣∣〈v,φ`〉∣∣2 (4.43)

with equality if, and only if, v is indistinguishable from some signal in U .

(iii) The inner product between any v ∈ L2 and any u ∈ U can be expressed in
terms of the inner products {〈v,φ`〉} and {〈u,φ`〉} as

〈v,u〉 =
d∑
`=1

〈v,φ`〉 〈u,φ`〉∗ . (4.44)
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Proof. Part (i) follows directly from the Pythagorean Theorem (Theorem 4.5.2)
applied to the d-tuple

(
〈u,φ1〉φ1, . . . , 〈u,φd〉φd

)
.

To prove Part (ii) we expand the energy in v as

‖v‖22 =
∥∥∥(v − d∑

`=1

〈v,φ`〉φ`
)

+
d∑
`=1

〈v,φ`〉φ`
∥∥∥2

2

=
∥∥∥v − d∑

`=1

〈v,φ`〉φ`
∥∥∥2

2
+
∥∥∥ d∑
`=1

〈v,φ`〉φ`
∥∥∥2

2

=
∥∥∥v − d∑

`=1

〈v,φ`〉φ`
∥∥∥2

2
+

d∑
`=1

∣∣〈v,φ`〉∣∣2
≥

d∑
`=1

∣∣〈v,φ`〉∣∣2, (4.45)

where the first equality follows by subtracting and adding the projection of v
onto U ; the second from the Pythagorean Theorem and by Lemma 4.6.5, which
guarantees that the difference between v and its projection is orthogonal to any
signal in U and hence a fortiori also to the projection itself; the third by Part (i)
applied to the projection of v onto U ; and the final inequality by the nonnegativity
of energy.

If Inequality (4.45) holds with equality, then the last inequality in its derivation
must hold with equality, so

∥∥∥v −∑d
`=1 〈v,φ`〉φ`

∥∥∥
2

= 0 and hence v must be

indistinguishable from the signal
∑d
`=1 〈v,φ`〉φ`, which is in U .

Conversely, if v is indistinguishable from some u′ ∈ U , then

‖v‖22 = ‖(v − u′) + u′‖22
= ‖v − u′‖22 + ‖u′‖22
= ‖u′‖22

=
d∑
`=1

|〈u′,φ`〉|2

=
d∑
`=1

|〈v,φ`〉+ 〈u′ − v,φ`〉|2

=
d∑
`=1

|〈v,φ`〉|2,

where the first equality follows by subtracting and adding u′; the second follows
from the Pythagorean Theorem because the fact that ‖v − u′‖2 = 0 implies that
〈v − u′,u′〉 = 0 (as can be readily verified using the Cauchy-Schwarz Inequality
|〈v − u′,u′〉| ≤ ‖v − u′‖2 ‖u′‖2 ); the third from our assumption that v and u′ are
indistinguishable; the fourth from Part (i) applied to the function u′ (which is in U);
the fifth by adding and subtracting v; and where the final equality follows because
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〈u′ − v,φ`〉 = 0 (as can be readily verified from the Cauchy Schwarz Inequality
|〈u′ − v,φ`〉| ≤ ‖u′ − v‖2 ‖φ`‖2 ).

To prove Part (iii) we compute 〈v,u〉 as

〈v,u〉 =
〈
v −

d∑
`=1

〈v,φ`〉φ` +
d∑
`=1

〈v,φ`〉φ`,u
〉

=
〈
v −

d∑
`=1

〈v,φ`〉φ`,u
〉

+
〈 d∑
`=1

〈v,φ`〉φ`,u
〉

=
〈 d∑
`=1

〈v,φ`〉φ`,u
〉

=
d∑
`=1

〈v,φ`〉 〈φ`,u〉

=
d∑
`=1

〈v,φ`〉 〈u,φ`〉∗ ,

where the first equality follows by subtracting and adding
∑d
`=1 〈v,φ`〉φ`; the

second by the linearity of the inner product in its left argument (3.9); the third
because, by Lemma 4.6.5, the signal v−

∑d
`=1 〈v,φ`〉φ` is orthogonal to any signal

in U and a fortiori to u; the fourth by the linearity of the inner product in its left
argument (3.7) & (3.9); and the final equality by (3.6).

Proposition 4.6.9 has interesting consequences. It shows that if one thinks of 〈u,φ`〉
as the `-th coordinate of u (with respect to the orthonormal basis (φ1, . . . ,φd)),
then the energy in u is simply the sum of the squares of the coordinates, and the
inner product between two functions is the sum of the products of each coordinate
of u and the conjugate of the corresponding coordinate of v.

We hope that the properties of orthonormal bases that we presented above have
convinced the reader by now that there are certain advantages to describing func-
tions using an orthonormal basis. A crucial question arises as to whether orthonor-
mal bases always exist. This question is addressed next.

4.6.5 Does an Orthonormal Basis Exist?

Word on the street has it that every finite-dimensional subspace of L2 has an
orthonormal basis, but this is not true. (It is true for the space L2 that we shall
encounter later.) For example, the set{

u ∈ L2 : u(t) = 0 whenever t 6= 17
}

of all energy-limited signals that map t to zero whenever t 6= 17 (with the value
to which t = 17 is mapped being unspecified) is a one dimensional subspace of L2

that does not have an orthonormal basis. (All the signals in this subspace are of
zero energy, so there are no unit-energy signals in it.)
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Proposition 4.6.10. If U is a finite-dimensional subspace of L2 , then the following
two statements are equivalent:

(a) U has an orthonormal basis.

(b) The only element of U of zero energy is the all-zero signal 0.

Proof. The proof has two parts. The first consists of showing that (a) ⇒ (b), i.e.,
that if U has an orthonormal basis and if u ∈ U is of zero energy, then u must
be the all-zero signal 0. The second part consists of showing that (b) ⇒ (a), i.e.,
that if the only element of zero energy in U is the all-zero signal 0, then U has an
orthonormal basis.

We begin with the first part, namely, (a)⇒ (b). We thus assume that (φ1, . . . ,φd)
is an orthonormal basis for U and that u ∈ U satisfies ‖u‖2 = 0 and proceed
to prove that u = 0. We simply note that, by the Cauchy-Schwarz Inequality,
|〈u,φ`〉| ≤ ‖u‖2 ‖φ`‖2 so the condition ‖u‖2 = 0 implies

〈u,φ`〉 = 0, ` ∈ {1, . . . , d}, (4.46)

and hence, by Proposition 4.6.4, that u = 0.

To show (b) ⇒ (a) we need to show that if no signal in U other than 0 has zero
energy, then U has an orthonormal basis. The proof is based on the Gram-Schmidt
Procedure, which is presented next. As we shall prove, if the input to this procedure
is a basis for U and if no element of U other than 0 is of energy zero, then the
procedure produces an orthonormal basis for U . The procedure is actually even
more powerful. If it is fed a basis for a subspace that does contain an element other
than 0 of zero-energy, then the procedure produces such an element and halts.

It should be emphasized that the Gram-Schmidt Procedure is not only useful for
proving theorems; it can be quite useful for finding orthonormal bases for practical
problems.3

4.6.6 The Gram-Schmidt Procedure

The Gram-Schmidt Procedure is named after the mathematicians Jørgen Pedersen
Gram (1850–1916) and Erhard Schmidt (1876–1959). However, as pointed out in
(Farebrother, 1988), this procedure was apparently already presented by Pierre-
Simon Laplace (1749–1827) and was used by Augustin Louis Cauchy (1789–1857).

The input to the Gram-Schmidt Procedure is a basis (u1, . . . ,ud) for a d-dimensional
subspace U ⊂ L2 . We assume that d ≥ 1. (The only 0-dimensional subspace of L2

is the subspace {0} containing the all-zero signal only, and for this subspace the
empty tuple is an orthonormal basis; there is not much else to say here.) If U
does not contain a signal of zero energy other than the all-zero signal 0, then the
procedure runs in d steps and produces an orthonormal basis for U (and thus also
proves that U does not contain a zero-energy signal other than 0). Otherwise, the

3Numerically, however, it is unstable; see (Golub and van Loan, 1996).
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procedure stops after d or fewer steps and produces an element of U of zero energy
other than 0.

The Gram-Schmidt Procedure:

Step 1: If ‖u1‖2 = 0, then the procedure declares that there exists a
zero-energy element of U other than 0, it produces u1 as proof, and it
halts. Otherwise, it defines

φ1 =
u1

‖u1‖2
and halts with the output (φ1) (if d = 1) or proceeds to Step 2 (if
d > 1).

Assuming that the procedure has run for ν − 1 steps without halting
and has defined the vectors φ1, . . . ,φν−1, we next describe Step ν.

Step ν: Consider the signal

ũν = uν −
ν−1∑
`=1

〈uν ,φ`〉φ`. (4.47)

If ‖ũν‖2 = 0, then the procedure declares that there exists a zero-
energy element of U other than 0, it produces ũν as proof, and it halts.
Otherwise, the procedure defines

φν =
ũν
‖ũν‖2

(4.48)

and halts with the output (φ1, . . . ,φd) (if ν is equal to d) or proceeds
to Step ν + 1 (if ν < d).

We next prove that the procedure behaves as we claim.

Proof. To prove that the procedure behaves as we claim, we shall assume that the
procedure performs Step ν (i.e., that it has not halted in the steps preceding ν)
and prove the following: if at Step ν the procedure declares that U contains a
nonzero signal of zero-energy and produces ũν as proof, then this is indeed the
case; otherwise, if it defines φν as in (4.48), then (φ1, . . . ,φν) is an orthonormal
basis for span(u1, . . . ,uν).

We prove this by induction on ν. For ν = 1 this can be verified as follows. If
‖u1‖2 = 0, then we need to show that u1 ∈ U and that it is not equal to 0. This
follows from the assumption that the procedure’s input (u1, . . . ,ud) forms a basis
for U , so a fortiori the signals u1, . . . ,ud must all be elements of U and neither
of them can be the all-zero signal. If ‖u1‖2 > 0, then φ1 is a unit-energy scaled
version of u1 and thus (φ1) is an orthonormal basis for span(u1).

We now assume that our claim is true for ν− 1 and proceed to prove that it is also
true for ν. We thus assume that Step ν is executed and that (φ1, . . . ,φν−1) is an
orthonormal basis for span(u1, . . . ,uν−1):

φ1, . . . ,φν−1 ∈ U ; (4.49)
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span(φ1, . . . ,φν−1) = span(u1, . . . ,uν−1); (4.50)

and
〈φ`,φ`′〉 = I{` = `′}, `, `′ ∈ {1, . . . , ν − 1}. (4.51)

We need to prove that if ũν is of zero energy, then it is a nonzero element of U of
zero energy, and that otherwise the ν-tuple (φ1, . . . ,φν) is an orthonormal basis
for span(u1, . . . ,uν). To that end we first prove that

ũν ∈ U (4.52)

and that
ũν 6= 0. (4.53)

We begin with a proof of (4.52). Since (4.47) expresses ũν as a linear combination
of (φ1, . . . ,φν−1,uν), and since U is by assumption a linear subspace, it suffices to
show that φ1, . . . ,φν−1 ∈ U and that uν ∈ U . The former follows from (4.49) and
the latter from our assumption that (u1, . . . ,ud) forms a basis for U .

We next prove (4.53). By (4.47) it suffices to show that uν /∈ span(φ1, . . . ,φν−1).
By (4.50) this is equivalent to showing that uν /∈ span(u1, . . . ,uν−1), which fol-
lows from our assumption that (u1, . . . ,ud) is a basis for U and a fortiori linearly
independent.

Having established (4.52) and (4.53) it follows that if ‖ũν‖2 = 0, then ũν is a
nonzero element of U which is of zero-energy as we had claimed.

To conclude the proof we now assume ‖ũν‖2 > 0 and prove that (φ1, . . . ,φν) is
an orthonormal basis for span(u1, . . . ,uν). That (φ1, . . . ,φν) is orthonormal fol-
lows because (4.51) guarantees that (φ1, . . . ,φν−1) is orthonormal; because (4.48)
guarantees that φν is of unit energy; and because Lemma 4.6.5 (applied to the lin-
ear subspace span(φ1, . . . ,φν−1)) guarantees that ũν—and hence also its scaled
version φν—is orthogonal to every element of span(φ1, . . . ,φν−1) and in par-
ticular to φ1, . . . ,φν−1. It thus only remains to show that span(φ1, . . . ,φν) =
span(u1, . . . ,uν). We first show that span(φ1, . . . ,φν) ⊆ span(u1, . . . ,uν). This
follows because (4.50) implies that

φ1, . . . ,φν−1 ∈ span(u1, . . . ,uν−1); (4.54)

because (4.54), (4.47) and (4.48) imply that

φν ∈ span(u1, . . . ,uν); (4.55)

and because (4.54) and (4.55) imply that φ1, . . . ,φν ∈ span(u1, . . . ,uν) and hence
that span(φ1, . . . ,φν) ⊆ span(u1, . . . ,uν). The reverse inclusion can be argued
very similarly: by (4.50)

u1, . . . ,uν−1 ∈ span(φ1, . . . ,φν−1); (4.56)

by (4.47) and (4.48) we can express uν as a linear combination of (φ1, . . . ,φν)

uν = ‖ũν‖2 φν +
ν−1∑
`=1

〈uν ,φ`〉φ`; (4.57)

and (4.56) & (4.57) combine to prove that u1, . . . ,uν ∈ span(φ1, . . . ,φν) and hence
that span(u1, . . . ,uν) ⊆ span(φ1, . . . ,φν).
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By far the more important scenario for us is when U does not contain a nonzero
element of zero energy. This is because we shall mostly focus on signals that are
bandlimited (see Chapter 6), and the only energy-limited signal that is bandlimited
to W Hz and that has zero-energy is the all-zero signal (Note 6.4.2). For subspaces
not containing zero-energy signals other than 0 the key properties to note about
the signals φ1, . . . ,φd produced by the Gram-Schmidt procedure are that they
satisfy for each ν ∈ {1, . . . , d}

span(u1, . . . ,uν) = span(φ1, . . . ,φν) (4.58a)

and (
φ1, . . . ,φν

)
is an orthonormal basis for span(u1, . . . ,uν). (4.58b)

These properties are, of course, of greatest importance when ν = d.

We next provide an example of the Gram-Schmidt procedure.

Example 4.6.11. Consider the following three signals: u1 : t 7→ I{0 ≤ t ≤ 1},
u2 : t 7→ t I{0 ≤ t ≤ 1}, and u3 : t 7→ t2 I{0 ≤ t ≤ 1}. The tuple (u1,u2,u3) forms
a basis for the subspace of all signals of the form t 7→ p(t) I{0 ≤ t ≤ 1}, where p(·)
is a polynomial of degree smaller than 3. To construct an orthonormal basis for
this subspace with the Gram-Schmidt Procedure, we begin by normalizing u1. To
that end, we compute

‖u1‖22 =
∫ ∞

−∞
|I{0 ≤ t ≤ 1}|2 dt = 1

and set φ1 = u1/ ‖u1‖2 , so

φ1 : t 7→ I{0 ≤ t ≤ 1}. (4.59a)

The second function φ2 is now obtained by normalizing u2 − 〈u2,φ1〉φ1. We first
compute the inner product 〈u2,φ1〉

〈u2,φ1〉 =
∫ ∞

−∞
I{0 ≤ t ≤ 1} t I{0 ≤ t ≤ 1}dt =

∫ 1

0

tdt =
1
2

to obtain that u2 − 〈u2,φ1〉φ1 : t 7→ (t− 1/2) I{0 ≤ t ≤ 1}, which is of energy

‖u2 − 〈u2,φ1〉φ1‖22 =
∫ 1

0

(
t− 1

2

)2

dt =
1
12
.

Hence,

φ2 : t 7→
√

12
(
t− 1

2

)
I{0 ≤ t ≤ 1}. (4.59b)

The third function φ3 is the normalized version of u3 − 〈u3,φ1〉φ1 − 〈u3,φ2〉φ2.
The inner products 〈u3,φ1〉 and 〈u3,φ2〉 are respectively

〈u3,φ1〉 =
∫ 1

0

t2 dt =
1
3
,

〈u3,φ2〉 =
∫ 1

0

t2
√

12
(
t− 1

2

)
dt =

1√
12
.
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Consequently

u3 − 〈u3,φ1〉φ1 − 〈u3,φ2〉φ2 : t 7→
(
t2 − 1

3
−
(
t− 1

2

))
I{0 ≤ t ≤ 1}

with corresponding energy

‖u3 − 〈u3,φ1〉φ1 − 〈u3,φ2〉φ2‖22 =
∫ 1

0

(
t2 − t+

1
6

)2

dt =
1

180
.

Hence, the orthonormal basis is completed by the third function

φ3 : t 7→
√

180
(
t2 − t+

1
6

)
I{0 ≤ t ≤ 1}. (4.59c)

4.7 The Space L2

Very informally one can describe the space L2 as the space of all energy-limited
complex-valued signals, where we think of two signals as being different only if they
are distinguishable. This section defines L2 more precisely. It can be skipped be-
cause we shall have only little to do with L2 . Understanding this space is, however,
important for readers who wish to fully understand how the Fourier Transform is
defined for energy-limited signals that are not integrable (Section 6.2.3). Readers
who continue should recall from Section 2.5 that two energy-limited signals u and v
are said to be indistinguishable if the set {t ∈ R : u(t) 6= v(t)} is of Lebesgue
measure zero. We write u ≡ v to indicate that u and v are indistinguishable. By
Proposition 2.5.3, the condition u ≡ v is equivalent to the condition ‖u− v‖2 = 0.

To motivate the definition of the space L2 , we begin by noting that the space L2

of energy-limited signals is “almost” an example of what mathematicians call an
“inner product space,” but it is not. The problem is that mathematicians insist
that in an inner product space the only vector whose inner product with itself is
zero be the zero vector. This is not the case in L2 : it is possible that u ∈ L2

satisfy 〈u,u〉 = 0 (i.e., ‖u‖2 = 0) and yet not be the all-zero signal 0. From the
condition ‖u‖2 = 0 we can only infer that u is indistinguishable from 0.

The fact that L2 is not an inner product space is an annoyance because it pre-
cludes us from borrowing from the vast literature on inner product spaces (and
Hilbert spaces, which are special kinds of inner product spaces), and because it
does not allow us to view some of the results about L2 as instances of more gen-
eral principles. For this reason mathematicians prefer to study the space L2 , which
is an inner product space (and which is, in fact, a Hilbert space) rather than L2 .
Unfortunately, for this luxury they pay a certain price that I am loath to pay.
Consequently, in most of this book I have decided to stick to L2 even though this
precludes me from using the standard results on inner product spaces. The price
one pays for using L2 will become apparent once we define it.

To understand how L2 is constructed it is useful to note that the relation “u ≡ v”,
i.e., “u is indistinguishable from v” is an equivalence relation on L2 , i.e., it
satisfies

u ≡ u, u ∈ L2 ; (reflexive)
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(
u ≡ v

)
⇔
(
v ≡ u

)
, u,v ∈ L2 ; (symmetric)

and (
u ≡ v and v ≡ w

)
⇒
(
u ≡ w

)
, u,v,w ∈ L2 . (transitive)

Using these properties one can verify that if for every u ∈ L2 we define its equiv-
alence class [u] as

[u] ,
{
ũ ∈ L2 : ũ ≡ u}, (4.60)

then two equivalence classes [u] and [v] must be either identical or disjoint. In
fact, the sets [u] ⊂ L2 and [v] ⊂ L2 are identical if, and only if, u and v are
indistinguishable (

[u] = [v]
)
⇔
(
‖u− v‖2 = 0

)
, u,v ∈ L2 ,

and they are disjoint if, and only if, u and v are distinguishable(
[u] ∩ [v] = ∅

)
⇔
(
‖u− v‖2 > 0

)
, u,v ∈ L2 .

We define L2 as the set of all such equivalence classes

L2 ,
{
[u] : u ∈ L2}. (4.61)

Thus, the elements of L2 are not functions, but sets of functions. Each element
of L2 is an equivalence class, i.e., a set of the form [u] for some u ∈ L2 . And for
each u ∈ L2 the equivalence class [u] is an element of L2 .

As we next show, the space L2 can also be viewed as a vector space. To this end
we need to first define “amplification of an equivalence class by a scalar α ∈ C” and
“superposition of two equivalence classes.” How do we define the scaling-by-α of
an equivalence class S ∈ L2 ? A natural approach is to find some function u ∈ L2

such that S is its equivalence class (i.e., satisfying S = [u]), and to define the
scaling-by-α of S as the equivalence class of αu, i.e., as [αu]. Thus we would define
αS as the equivalence class of the signal t 7→ αu(t). While this turns out to be
a good approach, the careful reader might be concerned by something. Suppose
that S = [u] but that also S = [ũ]. Should αS be defined as the equivalence class
of t 7→ αu(t) or of t 7→ αũ(t)? Fortunately, it does not matter because the two
equivalence classes are the same! Indeed, if [u] = [ũ], then the equivalence class of
t 7→ αu(t) is equal to the equivalence class of t 7→ αũ(t) (because [u] = [ũ] implies
that u and ũ agree except on a set of measure zero so αu and αũ also agree except
on a set of measure zero, which in turn implies that [αu] = [αũ]).

Similarly, one can show that if S1 ∈ L2 and S2 ∈ L2 are two equivalence classes,
then we can define their sum (or superposition) S1 + S2 as [u1 + u2] where u1

is any function in L2 such that S1 = [u1] and where u2 is any function in L2

such that S2 = [u2]. Again, to make sure that the result of the superposition of
S1 and S2 does not depend on the choice of u1 and u2 we need to verify that if
S1 = [u1] = [ũ1] and if S2 = [u2] = [ũ2] then [u1 + u2] = [ũ1 + ũ2]. This is not
difficult but is omitted.
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Using these definitions and by defining the zero vector to be the equivalence
class [0], it is not difficult to show that L2 forms a linear space over the com-
plex field. To make it into an inner product space we need to define the inner
product 〈S1,S2〉 between two equivalence classes. If S1 = [u1] and if S2 = [u2]
we define the inner product 〈S1,S2〉 as the complex number 〈u1,u2〉. Again, we
have to show that our definition is good in the sense that it does not depend on
the particular choice of u1 and u2. More specifically, we need to verify that if
S1 = [u1] = [ũ1] and if S2 = [u2] = [ũ2] then 〈u1,u2〉 = 〈ũ1, ũ2〉. This can be
proved as follows:

〈u1,u2〉 = 〈ũ1 + (u1 − ũ1),u2〉
= 〈ũ1,u2〉+ 〈u1 − ũ1,u2〉
= 〈ũ1,u2〉
= 〈ũ1, ũ2 + (u2 − ũ2)〉
= 〈ũ1, ũ2〉+ 〈ũ1,u2 − ũ2〉
= 〈ũ1, ũ2〉 ,

where the third equality follows because [u1] = [ũ1] implies that ‖u1 − ũ1‖2 = 0
and hence that 〈u1 − ũ1,u2〉 = 0 (Cauchy-Schwarz Inequality), and where the
last equality follows by a similar reasoning about u2 and ũ2. Using the above
definition of the inner product between equivalence classes one can show that if for
some equivalence class S we have 〈S,S〉 = 0, then S is the zero vector, i.e., the
equivalence class [0].

With these definitions of the scaling of an equivalence class by a scalar, the super-
position of two equivalence classes, and the inner product between two equivalence
classes, the space of equivalence classes L2 becomes an inner product space in the
sense that mathematicians like. In fact, it is a Hilbert space.

What is the price we have to pay for working in an inner product space? It
is that the elements of L2 are not functions but equivalence classes and that it
is meaningless to talk about the value they take at a given time. For example,
it is meaningless to discuss the supremum (or maximum) of an element of L2 .4

To add to the confusion, mathematicians refer to elements of L2 as “functions”
(even though they are equivalence classes of functions), and they drop the square
brackets. Things get even trickier when one deals with signals contaminated by
noise. If one views the signals as elements of L2 , then the result of adding noise to
them is not a stochastic process (Definition 12.2.1 ahead). We find this price too
high, and in this book we shall mostly deal with L2 .

4.8 Additional Reading

Most of the results of this chapter follows from basic results on inner product
spaces and can be found, for example, in (Axler, 1997). However, since L2 is not
an inner-product space, we had to introduce some slight modifications.

4To deal with this, mathematicians define the essential supremum.
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More on the definition of the space L2 can be found in most texts on analysis. See,
for example, (Rudin, 1974, Chapter 3, Remark 3.10) and (Royden, 1988, Chapter 1
Section 7).

4.9 Exercises

Exercise 4.1 (Linear Subspace). Consider the set of signals u of the form u : t 7→ e−t
2
p(t),

where p(·) is a polynomial whose degree does not exceed d. Is this a linear subspace of L2?
If yes, find a basis for this subspace.

Exercise 4.2 (Characterizing Infinite-Dimensional Subspaces). Recall that we say that a
linear subspace is infinite dimensional if it is not of finite dimension. Show that a linear
subspace U is infinite dimensional if, and only if, there exists a sequence u1,u2, . . . of
elements of U such that for every n ∈ N the tuple (u1, . . . ,un) is linearly independent.

Exercise 4.3 (L2 Is Infinite Dimensional). Show that L2 is infinite dimensional.

Hint: Exercises 4.1 and 4.2 may be useful.

Exercise 4.4 (Separation between Signals). Given u1,u2 ∈ L2 , let V be the set of all
complex signals v that are equidistant to u1 and u2:

V =
{
v ∈ L2 : ‖v − u1‖2 = ‖v − u2‖2

}
.

(i) Show that

V =

{
v ∈ L2 : Re

(〈
v,u2 − u1

〉)
=
‖u2‖22 − ‖u1‖22

2

}
.

(ii) Is V a linear subspace of L2?

(iii) Show that (u1 + u2)/2 ∈ V.

Exercise 4.5 (Projecting a Signal). Let u ∈ L2 be of positive energy, and let v ∈ L2 be
arbitrary.

(i) Show that Definitions 4.6.6 and 4.5.3 agree in the sense that the projection of v
onto span(u) (according to Definition 4.6.6) is the same as the projection of v onto
the signal u (according to Definition 4.5.3).

(ii) Show that if the signal u is an element of a finite-dimensional subspace U having
an orthonormal basis, then the projection of u onto U is given by u.

Exercise 4.6 (Orthogonal Subspace). Given signals v1, . . . ,vn ∈ L2 , define the set

U =
{
u ∈ L2 : 〈u,v1〉 = 〈u,v2〉 = · · · = 〈u,vn〉 = 0

}
.

Show that U is a linear subspace of L2 .

Exercise 4.7 (Constructing an Orthonormal Basis). Let Ts be a positive constant. Con-
sider the signals s1 : t 7→ I{0 ≤ t ≤ Ts/2} − I{Ts/2 < t ≤ Ts}; s2 : t 7→ I{0 ≤ t ≤ Ts};
s3 : t 7→ I{0 ≤ t ≤ Ts/4} + I{3Ts/4 ≤ t ≤ Ts}; and s4 : t 7→ I{0 ≤ t ≤ Ts/4} − I{3Ts/4 ≤
t ≤ Ts}.
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(i) Plot s1, s2, s3, and s4.

(ii) Find an orthonormal basis for span (s1, s2, s3, s4).

(iii) Express each of the signals s1, s2, s3, and s4 as a linear combination of the basis
vectors found in Part (ii).

Exercise 4.8 (Is the L2 -Limit Unique?). Show that for signals ζ,x1,x2, . . . in L2 the
statement

lim
n→∞

‖xn − ζ‖2 = 0

is equivalent to the statement(
lim
n→∞

∥∥xn − ζ̃∥∥2
= 0

)
⇔
(
ζ̃ ∈ [ζ]

)
.

Exercise 4.9 (Signals of Zero Energy). Given v1, . . . ,vn ∈ L2 , show that there exist
integers 1 ≤ ν1 < ν2 < · · · < νd ≤ n such that the following three conditions hold:
the d-tuple

(
vν1 , . . . ,vνd

)
is linearly independent; span(vν1 , . . . ,vνd) contains no signal

of zero energy other than the all-zero signal 0; and each element of span(v1, . . . ,vn) is
indistinguishable from some element of span(vν1 , . . . ,vνd).

Exercise 4.10 (Orthogonal Subspace). Given v1, . . . ,vn ∈ L2 , define the set

U =
{
u ∈ L2 : 〈u,v1〉 = 〈u,v2〉 = · · · = 〈u,vn〉 = 0

}
,

and the set of all energy-limited signals that are orthogonal to all the signals in U :

U⊥ =
{
w ∈ L2 :

(
〈w,u〉 = 0, u ∈ U

)}
.

(i) Show that U⊥ is a linear subspace of L2 .

(ii) Show that an energy-limited signal is in U⊥ if, and only if, it is indistinguishable
from some element of span(v1, . . . ,vn).

Hint: For Part (ii) you may find Exercise 4.9 useful.

Exercise 4.11 (More on Indistinguishability). Given v1, . . . ,vn ∈ L2 and some w ∈ L2 ,
propose an algorithm to check whether there exists an element of span(v1, . . . ,vn) that
is indistinguishable from w.

Hint: Exercise 4.9 may be useful.



Chapter 5

Convolutions and Filters

5.1 Introduction

Convolutions play a central role in the analysis of linear systems, and it is thus
not surprising that they will appear repeatedly in this book. Most of the readers
have probably seen the definition and key properties in an earlier course on linear
systems, so this chapter can be viewed as a very short review. New perhaps is
the following section on notation and the all-important Section 5.8 on the matched
filter and its use in calculating inner products.

5.2 Time Shifts and Reflections

Suppose that x : R→ R is a real signal, where we think of the argument as being
time. Such functions are typically plotted on paper with the time arrow pointing
to the right. Take a moment to plot an example of such a function, and on the
same coordinates plot the function

t 7→ x(t− t0),

which maps every t ∈ R to x(t − t0) for some positive t0. Repeat with t0 being
negative. This may seem like a mindless exercise but there is a point to it. It
will help you understand convolutions graphically and help you visualize mappings
such as t 7→

∑
` α` g(t − `Ts), which we will encounter later in our study of Pulse

Amplitude Modulation (PAM). It will also help you visualize the matched filter.

Given a complex signal x : R → C, we denote its reflection or mirror image
by ~x:

~x : t 7→ x(−t). (5.1)

Its plot is the mirror image of the plot of x(·) about the vertical axis. The mirror
image of the mirror image of x is x.

53
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5.3 The Convolution Expression

The convolution x ? h between two complex signals x : R → C and h : R → C is
formally defined as the complex signal whose time-t value (x ? h)(t) is given by

(x ? h)(t) =
∫ ∞

−∞
x(τ)h(t− τ) dτ. (5.2)

Note that the integrand in the above is complex. (See Section 2.3 for a discussion
of such integrals.) This definition also holds for real signals.

We used the term “formally defined” because certain conditions need to be met
for this integral to be defined. It is conceivable that for some t ∈ R the integrand
τ 7→ x(τ)h(t− τ) will not be integrable, so the integral will be undefined. (Recall
that in this book we only allow integrals of the form

∫∞
−∞ g(t) dt if the integrand

g(·) is in L1 so
∫∞
−∞ |g(t)|dt <∞. Otherwise, we say that the integral

∫∞
−∞ g(t) dt

is undefined.) We thus say that x ? h is defined at t ∈ R if τ 7→ x(τ)h(t − τ) is
integrable.

While (5.2) does not make it apparent, the convolution is in fact symmetric in x
and h. Thus, the integral in (5.2) is defined for a given t if, and only if, the integral∫ ∞

−∞
h(σ)x(t− σ) dσ (5.3)

is defined. And if both are defined, then their values are identical. This follows
directly by the change of variable σ , t− τ .

5.4 Thinking About the Convolution

Depending on the application, we can think about the convolution operation in a
number of different ways.

(i) Especially when h(·) is nonnegative and integrates to one, one can think of
the convolution as an averaging, or smoothing, operation. Thus, when x is
convolved with h the result at time t0 is not x(t0) but rather a smoothed
version thereof, namely,

∫∞
−∞ x(t0− τ)h(τ) dτ . For example, if h is the map-

ping t 7→ I{|t| ≤ T/2}/T for some T > 0, then the convolution x ? h at time
t0 is not x(t0) but rather

1
T

∫ t0+T/2

t0−T/2

x(τ) dτ.

Thus, in this example, we can think of x ?h as being a “moving average,” or
a “sliding-window average” of x.

(ii) For energy-limited signals it is sometimes beneficial to think about (x?h)(t0)
as the inner product between the functions τ 7→ x(τ) and τ 7→ h∗(t0 − τ):

(x ? h)(t0) =
〈
τ 7→ x(τ), τ 7→ h∗(t0 − τ)

〉
. (5.4)
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(iii) Another useful informal way is to think about x ? h as a limit of expressions
of the form ∑

j

h(tj)x(t− tj), (5.5)

i.e., as a limit of linear combinations of the time shifts of x where the coeffi-
cients are determined by h.

5.5 When Is the Convolution Defined?

There are a number of useful theorems providing sufficient conditions for the con-
volution’s existence. These theorems can be classified into two kinds: those that
guarantee that the convolution x ? h is defined at every epoch t ∈ R and those
that only guarantee that the convolution is defined for all epochs t outside a set of
Lebesgue measure zero. Both types are useful. We begin with the former.

Convolution defined for every t ∈ R:

(i) A particularly simple case where the convolution is defined at every time
instant t is when both x and h are energy-limited:

x,h ∈ L2 . (5.6a)

In this case we can use (5.4) and the Cauchy-Schwarz Inequality (Theo-
rem 3.3.1) to conclude that the integral in (5.2) is defined for every t ∈ R
and that x ? h is a bounded function with∣∣(x ? h)(t)

∣∣ ≤ ‖x‖2 ‖h‖2 , t ∈ R. (5.6b)

Indeed, ∣∣(x ? h)(t)
∣∣ = ∣∣〈τ 7→ x(τ), τ 7→ h∗(t− τ)

〉∣∣
≤ ‖τ 7→ x(τ)‖2 ‖τ 7→ h∗(t− τ)‖2
= ‖x‖2 ‖h‖2 .

In fact, it can be shown that the result of convolving two energy-limited
signals is not only bounded but also uniformly continuous.1 (See, for example,
(Adams and Fournier, 2003, Paragraph 2.23).)

Note that even if both x and h are of finite energy, the convolution x ? h
need not be. However, if x, h are both of finite energy and if one of them
is additionally also integrable, then the convolution x ? h is a finite energy
signal. Indeed,

‖x ? h‖2 ≤ ‖h‖1 ‖x‖2 , h ∈ L1 ∩ L2 , x ∈ L2 . (5.7)

For a proof see, for example, (Rudin, 1974, Chapter 7, Exercise 4) or (Stein
and Weiss, 1990, Chapter 1, Section 1, Theorem 1.3).

1A function s : R → C is said to be uniformly continuous if for every ε > 0 there corresponds
some positive δ(ε) such that |s(ξ′) − s(ξ′′)| is smaller than ε whenever ξ′, ξ′′ ∈ R are such that
|ξ′ − ξ′′| < δ(ε).
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(ii) Another simple case where the convolution is defined at every epoch t ∈ R is
when one of the functions is measurable and bounded and when the other is
integrable. For example, if

h ∈ L1 (5.8a)

and if x is a Lebesgue measurable function that is bounded in the sense that

|x(t)| ≤ σ∞, t ∈ R (5.8b)

for some constant σ∞, then for every t ∈ R the integrand in (5.3) is integrable
because |h(σ)x(t − σ)| ≤ |h(σ)|σ∞, with the latter being integrable by our
assumption that h is integrable. The result of the convolution is a bounded
function because

|(x ? h)(t)| =
∣∣∣∣∫ ∞

−∞
h(τ)x(t− τ) dτ

∣∣∣∣
≤
∫ ∞

−∞

∣∣h(τ)x(t− τ)∣∣ dτ
≤ σ∞ ‖h‖1 , t ∈ R, (5.8c)

where the first inequality follows from Proposition 2.4.1, and where the second
inequality follows from (5.8b).

For this case too one can show that the result of the convolution is not only
bounded but also uniformly continuous.

(iii) Using Hölder’s Inequality, we can generalize the above two cases to show
that whenever x and h satisfy the assumptions of Hölder’s Inequality, their
convolution is defined at every epoch t ∈ R and is, in fact, a bounded uni-
formly continuous function. See, for example, (Adams and Fournier, 2003,
Paragraph 2.23).

(iv) Another important case where the convolution is defined at every time instant
will be discussed in Proposition 6.2.5. There it is shown that the convolution
between an integrable function (of time) with the Inverse Fourier Transform
of an integrable function (of frequency) is defined at every time instant and
has a simple representation. This scenario is not as contrived as the reader
might suspect. It arises quite naturally, for example, when discussing the
lowpass filtering of an integrable signal (Section 6.4.2). The impulse response
of an ideal lowpass filter (LPF) is not integrable, but it can be represented
as the Inverse Fourier Transform of an integrable function; see (6.35).

Regarding theorems that guarantee that the convolution be defined for every t
outside a set of Lebesgue measure zero, we mention two.

Convolution defined for t outside a set of Lebesgue measure zero:

(i) If both x and h are integrable, then one can show (see, for example, (Rudin,
1974, Theorem 7.14), (Katznelson, 1976, Section VI.1), or (Stein and Weiss,
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1990, Chapter 1, Section 1, Theorem 1.3)) that, for all t outside a set of
Lebesgue measure zero, the mapping τ 7→ x(τ)h(t − τ) is integrable, so for
all such t the function (x ?h)(t) is defined. Moreover, irrespective of how we
define (x ? h)(t) for t inside the set of Lebesgue measure zero

‖x ? h‖1 ≤ ‖x‖1 ‖h‖1 , x,h ∈ L1 . (5.9)

What is nice about this case is that the result of the convolution stays in
the same class of integrable functions. This makes it meaningful to discuss
associativity and other important properties of the convolution.

(ii) Another case where the convolution is defined for all t outside a set of
Lebesgue measure zero is when h is integrable and when x is a measur-
able function for which τ 7→ |x(τ)|p is integrable for some 1 ≤ p < ∞. In
this case we have (see, for example, (Rudin, 1974, Exercise 7.4) or (Stein and
Weiss, 1990, Chapter 1, Section 1, Theorem 1.3)) that for all t outside a set
of Lebesgue measure zero the mapping τ 7→ x(τ)h(t− τ) is integrable so for
such t the convolution (x ? h)(t) is well-defined. Moreover, irrespective of
how we define (x ? h)(t) for t inside the set of Lebesgue measure zero(∫ ∞

−∞

∣∣(x ? h)(t)
∣∣p dt

)1/p

≤ ‖h‖1

(∫ ∞

−∞
|x(t)|p dt

)1/p

. (5.10)

This is written more compactly as

‖x ? h‖p ≤ ‖h‖1 ‖x‖p , p ≥ 1, (5.11)

where we use the notation that for any measurable function g and p > 0

‖g‖p ,

(∫ ∞

−∞
|g(t)|p dt

)1/p

. (5.12)

5.6 Basic Properties of the Convolution

The main properties of the convolution are summarized in the following theorem.

Theorem 5.6.1 (Properties of the Convolution). The convolution is

x ? h ≡ h ? x, (commutative)(
x ? g

)
? h ≡ x ?

(
g ? h

)
, (associative)

x ?
(
g + h

)
≡ x ? g + x ? h, (distributive)

and linear in each of its arguments

x ?
(
αg + βh

)
≡ α

(
x ? g

)
+ β

(
x ? h

)(
αg + βh

)
? x ≡ α

(
g ? x

)
+ β

(
h ? x

)
,

where the above hold for all g,h,x ∈ L1 , and α, β ∈ C.

Some of these properties hold under more general or different sets of assumptions
so the reader should focus here on the properties rather than on the restrictions.
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5.7 Filters

A filter of impulse response h is a physical device that when fed the input
waveform x produces the output waveform h ? x. The impulse response h is
assumed to be a real or complex signal, and it is tacitly assumed that we only feed
the device with inputs x for which the convolution x ? h is defined.2

Definition 5.7.1 (Stable Filter). A filter is said to be stable if its impulse response
is integrable.

Stable filters are also called bounded-input/bounded-output stable or BIBO
stable, because, as the next proposition shows, if such filters are fed a bounded
signal, then their output is also a bounded signal.

Proposition 5.7.2 (BIBO Stability). If h is integrable and if x is a bounded
Lebesgue measurable signal, then the signal x ? h is also bounded.

Proof. If the impulse response h is integrable, and if the input x is bounded by
some constant σ∞, then (5.8a) and (5.8b) are both satisfied, and the boundedness
of the output then follows from (5.8c).

Definition 5.7.3 (Causal Filter). A filter of impulse response h is said to be causal
or nonanticipative if h is zero at negative times, i.e., if

h(t) = 0, t < 0. (5.13)

Causal filters play an important role in engineering because (5.13) guarantees that
the present filter output be computable from the past filter inputs. Indeed, the
time-t filter output can be expressed in the form

(x ? h)(t) =
∫ ∞

−∞
x(τ)h(t− τ) dτ

=
∫ t

−∞
x(τ)h(t− τ) dτ, h causal,

where the calculation of the latter integral only requires knowledge of x(τ) for
τ < t. Here the first equality follows from the definition of the convolution (5.2),
and the second equality follows from (5.13).

5.8 The Matched Filter

In Digital Communications inner products are often computed using a matched
filter. In its definition we shall use the notation (5.1).

2This definition of a filter is reminiscent of the concept of a “linear time invariant system.”
Note, however, that since we do not deal with Dirac’s Delta in this book, our definition is more
restrictive. For example, a device that produces at its output a waveform that is identical to its
input is excluded from our discussion here because we do not allow h to be Dirac’s Delta.
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Definition 5.8.1 (The Matched Filter). The matched filter for the signal φ is
a filter whose impulse response is ~φ∗, i.e., the mapping

t 7→ φ∗(−t). (5.14)

The main use of the matched filter is for computing inner products:

Theorem 5.8.2 (Computing Inner Products with a Matched Filter). The inner
product 〈u,φ〉 between the energy-limited signals u and φ is given by the output at
time t = 0 of a matched filter for φ that is fed u:

〈u,φ〉 =
(
u ? ~φ∗

)
(0), u,φ ∈ L2 . (5.15)

More generally, if g : t 7→ φ(t− t0), then 〈u,g〉 is the time-t0 output corresponding
to feeding the waveform u to the matched filter for φ:∫ ∞

−∞
u(t)φ∗(t− t0) dt =

(
u ? ~φ∗

)
(t0). (5.16)

Proof. We shall prove the second part of the theorem, i.e., (5.16); the first follows
from the second by setting t0 = 0. We express the time-t0 output of the matched
filter as: (

u ? ~φ∗
)
(t0) =

∫ ∞

−∞
u(τ) ~φ∗(t0 − τ) dτ

=
∫ ∞

−∞
u(τ)φ∗(τ − t0) dτ,

where the first equality follows from the definition of convolution (5.2) and the
second from the definition of ~φ∗ as the conjugated mirror image of φ.

From the above theorem we see that if we wish to compute, say, the three inner
products 〈u,g1〉, 〈u,g2〉, and 〈u,g3〉 in the very special case where the functions
g1,g2,g3 are all time shifts of the same waveform φ, i.e., when g1 : t 7→ φ(t− t1),
g2 : t 7→ φ(t− t2), and g3 : t 7→ φ(t− t3), then we need only one filter, namely, the
matched filter for φ. Indeed, we can feed u to the matched filter for φ and the
inner products 〈u,g1〉, 〈u,g2〉, and 〈u,g3〉 simply correspond to the filter’s outputs
at times t1, t2, and t3. One circuit computes all three inner products. This is so
exciting that it is worth repeating:

Corollary 5.8.3 (Computing Many Inner Products using One Filter). If the
energy-limited signals {gj}Jj=1 are all time shifts of the same signal φ in the sense
that

gj : t 7→ φ(t− tj), j = 1, . . . , J,

and if u is any energy-limited signal, then all J inner products

〈u,gj〉 , j = 1, . . . , J
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can be computed using one filter by feeding u to a matched filter for φ and sampling
the output at the appropriate times t1, . . . , tJ:

〈u,gj〉 =
(
u ? ~φ∗

)
(tj), j = 1, . . . , J. (5.17)

5.9 The Ideal Unit-Gain Lowpass Filter

The impulse response of the ideal unit-gain lowpass filter of cutoff frequency Wc

is denoted by LPFWc(·) and is given for every Wc > 0 by3

LPFWc(t) ,

{
2Wc

sin(2πWct)
2πWct

if t 6= 0,
2Wc if t = 0,

t ∈ R. (5.18)

This can be alternatively written as

LPFWc(t) = 2Wc sinc(2Wct), t ∈ R, (5.19)

where the function sinc(·) is defined by4

sinc(ξ) ,

{
sin(πξ)
πξ if ξ 6= 0,

1 if ξ = 0,
ξ ∈ R. (5.20)

Notice that the definition of sinc(0) as being 1 makes sense because, for very small
(but nonzero) values of ξ the value of sin(ξ)/ξ is approximately 1. In fact, with
this definition at zero the function is not only continuous at zero but also infinitely
differentiable there. Indeed, the function from C to C

z 7→

{
sin(πz)
πz if z 6= 0,

1 otherwise,

is an entire function, i.e., an analytic function throughout the complex plane.

The importance of the ideal unit-gain lowpass filter will become clearer when we
discuss the filter’s frequency response in Section 6.3. It is thus named because
the Fourier Transform of LPFWc(·) is equal to 1 (hence “unit gain”), whenever
|f | ≤Wc, and is equal to zero, whenever |f | > Wc. See (6.38) ahead.

From a mathematical point of view, working with the ideal unit-gain lowpass filter
is tricky because the impulse response (5.18) is not an integrable function. (It
decays like 1/t, which does not have a finite integral from t = 1 to t = ∞.) This
filter is thus not a stable filter. We shall revisit this issue in Section 6.4. Note,
however, that the impulse response (5.18) is of finite energy. (The square of the
impulse response decays like 1/t2 which does have a finite integral from one to
infinity.) Consequently, the result of feeding an energy-limited signal to the ideal
unit-gain lowpass filter is always well-defined.

Note also that the ideal unit-gain lowpass filter is not causal.

3For convenience we define the impulse response of the ideal unit-gain lowpass filter of cutoff
frequency zero as the all zero signal. This is in agreement with (5.19).

4Some texts omit the π’s in (5.20) and define the sinc(·) function as sin(ξ)/ξ for ξ 6= 0.
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5.10 The Ideal Unit-Gain Bandpass Filter

The ideal unit-gain bandpass filter (BPF) of bandwidth W around the carrier
frequency fc, where fc > W/2 > 0 is a filter of impulse response BPFW,fc(·),
where

BPFW,fc(t) , 2W cos(2πfct) sinc(Wt), t ∈ R. (5.21)

This filter too is nonstable and noncausal. It derives its name from its frequency
response (discussed in Section 6.3 ahead), which is equal to one at frequencies f
satisfying

∣∣|f | − fc∣∣ ≤W/2 and which is equal to zero at all other frequencies.

5.11 Young’s Inequality

Many of the inequalities regarding convolutions are special cases of a result known
as Young’s Inequality. Recalling (5.12), we can state Young’s Inequality as follows.

Theorem 5.11.1 (Young’s Inequality). Let x and h be measurable functions such
that ‖x‖p , ‖h‖q < ∞ for some 1 ≤ p, q < ∞ satisfying 1/p + 1/q > 1. Define r
through 1/p+1/q = 1+1/r. Then the convolution integral (5.2) is defined for all t
outside a set of Lebesgue measure zero; it is a measurable function; and

‖x ? h‖r ≤ K ‖x‖p ‖h‖q , (5.22)

where K < 1 is some constant that depends only on p and q.

Proof. See (Adams and Fournier, 2003, Corollary 2.25). Alternatively, see (Stein
and Weiss, 1990, Chapter 5, Section 1) where it is derived from the M. Riesz
Convexity Theorem.

5.12 Additional Reading

For some of the properties of the convolution and its use in the analysis of linear
systems see (Oppenheim and Willsky, 1997) and (Kwakernaak and Sivan, 1991).

5.13 Exercises

Exercise 5.1 (Convolution of Delayed Signals). Let x and h be energy-limited signals.
Let xd : t 7→ x(t− td) be the result of delaying x by some td ∈ R. Show that(

xd ? h
)
(t) =

(
x ? h

)
(t− td), t ∈ R.

Exercise 5.2 (The Convolution of Reflections). Let the signals x,y be such that their
convolution (x ? y)(t) is defined at every t ∈ R. Show that the convolution of their
reflections is also defined at every t ∈ R and that it is equal to the reflection of their
convolution: (

~x ? ~y
)
(t) =

(
x ? y

)
(−t), t ∈ R.
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Exercise 5.3 (Convolving Brickwall Functions). For a given a > 0, compute the convolu-
tion of the signal t 7→ I{|t| ≤ a} with itself.

Exercise 5.4 (The Convolution and Inner Products). Let y and φ be energy-limited
complex signals, and let h be an integrable complex signal. Argue that〈

y,h ?φ
〉

=
〈
y ? ~h∗,φ

〉
.

Exercise 5.5 (The Convolution’s Derivative). Let the signal g : R → C be differentiable,
and let g′ denote its derivative. Let h : R → C be another signal. Assume that g, g′,
and h are all bounded, continuous, and integrable. Show that g ? h is differentiable and
that its derivative (g ? h)′ is given by g′ ? h.

See (Körner, 1988, Chapter 53, Theorem 53.1).

Exercise 5.6 (Continuity of the Convolution). Show that if the signals x and y are both
in L2 then their convolution is a continuous function.

Hint: Use the Cauchy-Schwarz Inequality and the fact that if x ∈ L2 and if we define
xδ : t 7→ x(t− δ), then lim

δ→0
‖x− xδ‖2 = 0.

Exercise 5.7 (More on the Continuity of the Convolution). Let x and y be in L2 . Let the
sequence of energy-limited signals x1,x2, . . . converge to x in the sense that ‖x− xn‖2
tends to zero as n tends to infinity. Show that at every epoch t ∈ R,

lim
n→∞

(
xn ? y

)
(t) =

(
x ? y

)
(t).

Hint: Use the Cauchy-Schwarz Inequality

Exercise 5.8 (Convolving Bi-Infinite Sequences). The convolution of the bi-infinite se-
quence . . . , a−1, a0, a1 . . . with the bi-infinite sequence . . . , b−1, b0, b1 . . . is the bi-infinite
sequence . . . , c−1, c0, c1 . . . formally defined by

cm =
∞∑

ν=−∞

aνbm−ν , m ∈ Z. (5.23)

Show that if
∞∑

ν=−∞

|aν | ,
∞∑

ν=−∞

|bν | <∞,

then the sum on the RHS of (5.23) converges for every integer m, and

∞∑
m=−∞

|cm| ≤
( ∞∑
ν=−∞

|aν |
)( ∞∑

ν=−∞

|bν |
)
.

Hint: Recall Problems 3.10 & 3.9 and the Triangle Inequality for Complex Numbers.

Exercise 5.9 (Stability of the Matched Filter). Let g be an energy-limited signal. Under
what conditions is the matched filter for g stable?
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Exercise 5.10 (Causality of the Matched Filter). Let g be an energy-limited signal.

(i) Under what conditions is the matched filter for g causal?

(ii) Under what conditions can you find a causal filter of impulse response h and a
sampling time t0 such that(

r ? h
)
(t0) = 〈r,g〉 , r ∈ L2?

(iii) Show that for every δ > 0 we can find a stable causal filter of impulse response h
and a sampling epoch t0 such that for every r ∈ L2∣∣(r ? h

)
(t0)− 〈r,g〉

∣∣ ≤ δ ‖r‖2 .

Exercise 5.11 (The Output of the Matched Filter). Compute and plot the output of the
matched filter for the signal t 7→ e−t I{t ≥ 0} when it is fed the input t 7→ I{|t| ≤ 1/2}.



Chapter 6

The Frequency Response of Filters and
Bandlimited Signals

6.1 Introduction

We begin this chapter with a review of the Fourier Transform and its key properties.
We then use these properties to define the frequency response of filters, to discuss
the ideal unit-gain lowpass filter, and to define bandlimited signals.

6.2 Review of the Fourier Transform

6.2.1 On Hats, 2π’s, ω’s, and f ’s

We denote the Fourier Transform (FT) of a (possibly complex) signal x(·) by
x̂(·). Some other books denote it by X(·), but we prefer our notation because,
where possible, we use lowercase letters for deterministic quantities and reserve
uppercase letters for random quantities. In places where convention forces us to
use uppercase letters for deterministic quantities, we try to use a special font, e.g.,
P for power, W for bandwidth, or A for a deterministic matrix.

More importantly, our definition of the Fourier Transform may be different from
the one you are used to.

Definition 6.2.1 (Fourier Transform). The Fourier Transform (or the L1 -
Fourier Transform) of an integrable signal x : R→ C is the mapping x̂ : R→ C
defined by

x̂ : f 7→
∫ ∞

−∞
x(t) e−i2πft dt. (6.1)

(The FT can also be defined in more general settings. For example, in Section 6.2.3
it will be defined via a limiting argument for finite-energy signals that are not
integrable.)

64
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This definition should be contrasted with the definition

X(iω) =
∫ ∞

−∞
x(t) e−iωt dt, (6.2)

which you may have seen before. Note the 2π, which appears in the exponent in
our definition (6.1) and not in (6.2). We apologize to readers who are used to (6.2)
for forcing a new definition, but we have some good reasons:

(i) With our definition, the transform and its inverse are very similar; see (6.1)
and (6.4) below. If one uses the definition of (6.2), then the expression for
the Inverse Fourier Transform requires scaling the integral by 1/(2π).

(ii) With our definition, the Fourier Transform and the Inverse Fourier Trans-
form of a symmetric function are the same; see (6.6). This simplifies the
memorization of some Fourier pairs.

(iii) As we shall state more precisely in Section 6.2.2 and Section 6.2.3, with our
definition the Fourier Transform possesses an extremely important property:
it preserves inner products

〈u,v〉 = 〈û, v̂〉 (certain restrictions apply).

Again, no 2π’s.

(iv) If x(·) models a function of time, then x̂(·) becomes a function of frequency.
Thus, it is natural to use the generic argument t for such signals x(·) and the
generic argument f for their transforms. It is more common these days to
describe tones in terms of their frequencies (i.e., in Hz) and not in terms of
their radial frequency (in radians per second).

(v) It seems that all books on communications use our definition, perhaps because
people are used to setting their radios in Hz, kHz, or MHz.

Plotting the FT of a signal is tricky, because it is a complex-valued function. This
is generally true even for real signals. However, for any integrable real signal
x : R→ R the Fourier Transform x̂(·) is conjugate-symmetric, i.e.,(

x̂(−f) = x̂∗(f), f ∈ R
)
, x ∈ L1 is real-valued. (6.3)

Equivalently, the magnitude of the FT of an integrable real signal is symmetric, and
the argument is anti-symmetric.1 (The reverse statement is “essentially” correct.
If x̂ is conjugate-symmetric then the set of epochs t for which x(t) is not real is
of Lebesgue measure zero.) Consequently, when plotting the FT of a “generic”
real signal we shall plot a symmetric function, but with solid lines for the positive
frequencies and dashed lines for the negative frequencies. This is to remind the
reader that the FT of a real signal is not symmetric but conjugate symmetric. See,
for example, Figures 7.1 and 7.2 for plots of the Fourier Transforms of real signals.

1The argument of a nonzero complex number z is defined as the element θ of [−π, π) such
that z = |z| eiθ.
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When plotting the FT of a complex-valued signal, we shall use a generic plot that
is “highly asymmetric,” using solid lines. See, for example, Figure 7.4 for the FT
of a complex signal.

Definition 6.2.2 (Inverse Fourier Transform). The Inverse Fourier Transform
(IFT) of an integrable function g : R→ C is denoted by ǧ and is defined by

ǧ : t 7→
∫ ∞

−∞
g(f) ei2πft df. (6.4)

We emphasize that the word “inverse” here is just part of the name of the transform.
Applying the IFT to the FT of a signal does not always recover the signal.2 (Condi-
tions under which the IFT does recover the signal are explored in Theorem 6.2.13.)
However, if one does not insist on using the IFT, then every integrable signal can
be reconstructed to within indistinguishability from its FT; see Theorem 6.2.12.

Proposition 6.2.3 (Some Properties of the Inverse Fourier Transform).

(i) If g is integrable, then its IFT is the FT of its mirror image

ǧ = ~̂g, g ∈ L1 . (6.5)

(ii) If g is integrable and also symmetric in the sense that ~g = g, then the IFT
of g is equal to its FT

ĝ = ǧ,
(
g ∈ L1 and ~g = g

)
. (6.6)

(iii) If g is integrable and ǧ is also integrable, then

ˆ̌g = ˇ̂g. (6.7)

Proof. Part (i) follows by a simple change of integration variable:

ǧ(ξ) =
∫ ∞

−∞
g(α) ei2παξ dα = −

∫ −∞

∞
g(−β) e−i2πβξ dβ

=
∫ ∞

−∞
~g(β) e−i2πβξ dβ

= ~̂g(ξ), ξ ∈ R,

where we have changed the integration variable to β , −α.

2This can be seen by considering the signal t 7→ I{t = 17}, which is zero everywhere except
at 17 where it takes on the value 1. Its FT is zero at all frequencies, but if one applies the IFT to
the all-zero function one obtains the all-zero function, which is not the function we started with.
Things could be much worse. The FT of some integrable signals (such as the signal t 7→ I{|t| ≤ 1})
is not integrable, so the IFT of their FT is not even defined.
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Part (ii) is a special case of Part (i). To prove Part (iii) we compute

ˆ̌g(ξ) =
∫ ∞

−∞

(∫ ∞

−∞
g(f) ei2πft df

)
e−i2πξt dt

=
∫ ∞

−∞
ĝ(−t) e−i2πξt dt

=
∫ ∞

−∞
ĝ(τ) ei2πξτ dτ

= ˇ̂g(ξ), ξ ∈ R,

where we have changed the integration variable to τ , −t.

Identity (6.6) will be useful in Section 6.2.5 when we memorize the FT of the
Brickwall function ξ 7→ β I{|ξ| ≤ γ}, which is symmetric. Once we succeed we will
also know its IFT.

Table 6.1 summarizes some of the properties of the FT. Note that some of these
properties require additional technical assumptions.

Property Function Fourier Transform

linearity αx + βy αx̂ + βŷ
time shifting t 7→ x(t− t0) f 7→ e−i2πft0 x̂(f)
frequency shifting t 7→ ei2πf0t x(t) f 7→ x̂(f − f0)
conjugation t 7→ x∗(t) f 7→ x̂∗(−f)
stretching (α ∈ R, α 6= 0) t 7→ x(αt) f 7→ 1

|α| x̂(
f
α )

convolution in time x ? y f 7→ x̂(f) ŷ(f)
multiplication in time t 7→ x(t) y(t) x̂ ? ŷ
real part t 7→ Re

(
x(t)

)
f 7→ 1

2 x̂(f) + 1
2 x̂

∗(−f)
time reflection ~x x̌
transforming twice x̂ ~x
FT of IFT x̌ x

Table 6.1: Basic properties of the Fourier Transform. Some restrictions apply!

6.2.2 Parseval-like Theorems

A key result on the Fourier Transform is that, subject to some restrictions, it pre-
serves inner products. Thus, if x̂1 and x̂2 are the Fourier Transforms of x1 and x2,
then the inner product 〈x1,x2〉 between x1 and x2 is typically equal to the inner
product 〈x̂1, x̂2〉 between their transforms. In this section we shall describe two
scenarios where this holds. A third scenario, which is described in Theorem 6.2.9,
will have to wait until we discuss the FT of signals that are energy-limited but not
integrable.
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To see how the next proposition is related to the preservation of the inner product
under the Fourier Transform, think about g as being a function of frequency and
of its IFT ǧ as a function of time.

Proposition 6.2.4. If g : f 7→ g(f) and x : t 7→ x(t) are integrable mappings from R
to C, then ∫ ∞

−∞
x(t) ǧ∗(t) dt =

∫ ∞

−∞
x̂(f) g∗(f) df, (6.8)

i.e.,
〈x, ǧ〉 = 〈x̂,g〉 , g,x ∈ L1 . (6.9)

Proof. The key to the proof is to use Fubini’s Theorem to justify changing the
order of integration in the following calculation:∫ ∞

−∞
x(t) ǧ∗(t) dt =

∫ ∞

−∞
x(t)

(∫ ∞

−∞
g(f) ei2πft df

)∗
dt

=
∫ ∞

−∞
x(t)

∫ ∞

−∞
g∗(f) e−i2πft df dt

=
∫ ∞

−∞
g∗(f)

∫ ∞

−∞
x(t) e−i2πft dt df

=
∫ ∞

−∞
g∗(f) x̂(f) df,

where the first equality follows from the definition of ǧ; the second because the
conjugation of an integral is accomplished by conjugating the integrand (Proposi-
tion 2.3.1); the third by changing the order of integration; and the final equality
by the definition of the FT of x.

A related result is that the convolution of an integrable function with the IFT of
an integrable function is always defined:

Proposition 6.2.5. If the mappings x : t 7→ x(t) and g : f 7→ g(f) from R to C are
both integrable, then the convolution x ? ǧ is defined at every epoch t ∈ R and(

x ? ǧ
)
(t) =

∫ ∞

−∞
g(f) x̂(f) ei2πft df, t ∈ R. (6.10)

Proof. Here too the key is in changing the order of integration:(
x ? ǧ

)
(t) =

∫ ∞

−∞
x(τ) ǧ(t− τ) dτ

=
∫ ∞

−∞
x(τ)

∫ ∞

−∞
ei2πf(t−τ) g(f) df dτ

=
∫ ∞

−∞
g(f) ei2πft

∫ ∞

−∞
x(τ) e−i2πfτ dτ df

=
∫ ∞

−∞
g(f) x̂(f) ei2πft df,
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where the first equality follows from the definition of the convolution; the second
from the definition of the IFT; the third by changing the order of integration; and
the final equality by the definition of the FT. The justification of the changing of the
order of integration can be argued using Fubini’s Theorem because, by assumption,
both g and x are integrable.

We next present another useful version of the preservation of inner products under
the FT. It is useful for functions (of time) that are zero outside some interval
[−T, T ] or for the IFT of functions (of frequency) that are zero outside an interval
[−W,W ].

Proposition 6.2.6 (A Mini Parseval Theorem).

(i) Let the signals x1 and x2 be given by

xν(t) =
∫ ∞

−∞
gν(f) ei2πft df,

(
t ∈ R, ν = 1, 2

)
, (6.11a)

where the functions gν : f 7→ gν(f) satisfy

gν(f) = 0,
(
|f | > W, ν = 1, 2

)
, (6.11b)

for some W ≥ 0, and ∫ ∞

−∞
|gν(f)|2 df <∞, ν = 1, 2. (6.11c)

Then
〈x1,x2〉 = 〈g1,g2〉 . (6.11d)

(ii) Let g1 and g2 be given by

gν(f) =
∫ ∞

−∞
xν(t) e−i2πft dt,

(
f ∈ R, ν = 1, 2

)
, (6.12a)

where the signals x1,x2 ∈ L2 are such that for some T ≥ 0

xν(t) = 0,
(
|t| > T, ν = 1, 2

)
. (6.12b)

Then
〈x1,x2〉 = 〈g1,g2〉 . (6.12c)

Proof. See the proof of Lemma A.3.6 on Page 693 and its corollary in the appendix.
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6.2.3 The L2 -Fourier Transform

To appreciate some of the mathematical subtleties of this section, the reader is
encouraged to review Section 4.7 in order to recall the difference between the
space L2 and the space L2 and in order to recall the difference between an energy-
limited signal x ∈ L2 and the equivalence class [x] ∈ L2 to which it belongs. In this
section we shall sketch how the Fourier Transform is defined for elements of L2 .
This section can be skipped provided that you are willing to take on faith that
such a transform exists and that, very roughly speaking, it has some of the same
properties of the Fourier Transform of Definition 6.2.1. To differentiate between
the transform of Definition 6.2.1 and the transform that we are about to define
for elements of L2 , we shall refer in this section to the former as the L1 -Fourier
Transform and to the latter as the L2 -Fourier Transform. Both will be denoted
by a “hat.” In subsequent sections the Fourier Transform will be understood to be
the L1 -Fourier Transform unless explicitly otherwise specified.

Some readers may have already encountered the L2 -Fourier Transform without
even being aware of it. For example, the sinc(·) function, which is defined in (5.20),
is an energy-limited signal that is not integrable. Consequently, its L1 -Fourier
Transform is undefined. Nevertheless, you may have seen its Fourier Transform
being given as the Brickwall function. As we shall see, this is somewhat in line
with how the L2 -Fourier Transform of the sinc(·) is defined.3 For more on the
Fourier Transform of the sinc(·) see Section 6.2.5. Another example of an energy-
limited signal that is not integrable is t 7→ 1/(1 + |t|).
We next sketch how the L2 -Fourier Transform is defined and explore some of its
key properties. We begin with the bad news.

(i) There is no explicit simple expression for the L2 -Fourier Transform.

(ii) The result of applying the transform is not a function but an equivalence
class of functions.

The L2 -Fourier Transform is a mapping

:̂ L2 → L2

that maps elements of L2 to elements of L2 . It thus maps equivalence classes
to equivalence classes, not functions. As long as the operation we perform on
the result of the L2 -Fourier Transform does not depend on which member of the
equivalence class it is performed on, there is no need to worry about this issue.
Otherwise, we can end up performing operations that are ill-defined. For example,
an operation that is ill-defined is evaluating the result of the transform at a given
frequency, say at f = 17.

An operation you cannot go wrong with is integration, because the integrals of
two functions that differ on a set of measure zero are equal; see Proposition 2.5.3.
Consequently, inner products, which are defined via integration, are fine too. In

3However, as we shall see, the result of the L2 -Fourier Transform is an element of L2 , i.e., an
equivalence class, and not a function.
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this book we shall therefore refrain from applying to the result of the L2 -Fourier
Transform any operation other than integration (or related operations such as the
computation of energy or inner product). In fact, since we find the notion of
equivalence classes somewhat abstract we shall try to minimize its use.

Suppose that x ∈ L2 is an energy-limited signal and that [x] ∈ L2 is its equivalence
class. How do we define the L2 -Fourier Transform of [x]? We first define for every
positive integer n the time-truncated function

xn : t 7→ x(t) I{|t| ≤ n}

and note that, by Proposition 3.4.3, xn is integrable. Consequently, its L1 -Fourier
Transform x̂n is well-defined and is given by

x̂n(f) =
∫ n

−n
x(t) e−i2πft dt, f ∈ R.

We then note that ‖x− xn‖2 tends to zero as n tends to infinity, so for every ε > 0
there exists some L(ε) sufficiently large so that

‖xn − xm‖2 < ε, n,m > L(ε). (6.13)

Applying Proposition 6.2.6 (ii) with the substitution of max{n,m} for T and of
xn − xm for both x1 and x2, we obtain that (6.13) implies

‖x̂n − x̂m‖2 < ε, n,m > L(ε). (6.14)

Because the space of energy-limited signals is complete in the sense of Theo-
rem 8.5.1 ahead, we may infer from (6.14) that there exists some function ζ ∈ L2

such that ‖x̂n − ζ‖2 converges to zero.4 We then define the L2 -Fourier Transform
of the equivalence class [x] to be the equivalence class [ζ]. In view of Footnote 4
we can define the L2 -Fourier Transform as follows.

Definition 6.2.7 (L2 -Fourier Transform). The L2 -Fourier Transform of the
equivalence class [x] ∈ L2 is denoted by [̂x] and is given by

[̂x] ,

{
g ∈ L2 : lim

n→∞

∫ ∞

−∞

∣∣∣∣g(f)−
∫ n

−n
x(t) e−i2πft dt

∣∣∣∣2 df = 0

}
.

The main properties of the L2 -Fourier Transform are summarized in the following
theorem.

Theorem 6.2.8 (Properties of the L2 -Fourier Transform). The L2 -Fourier Trans-
form is a mapping from L2 onto L2 with the following properties:

(i) If x ∈ L2 ∩L1 , then the L2 -Fourier Transform of [x] is the equivalence class
of the mapping

f 7→
∫ ∞

−∞
x(t) e−i2πft dt.

4The function ζ is not unique. If ‖xn − ζ‖2 → 0, then also
∥∥xn− ζ̃∥∥2 → 0 whenever ζ̃ ∈ [ζ].

And conversely, if ‖xn − ζ‖2 → 0 and
∥∥xn − ζ̃∥∥2 → 0, then ζ̃ must be in [ζ].
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(ii) The L2 -Fourier Transform is linear in the sense that

̂α[x1] + β[x2] = α[̂x1] + β [̂x2],
(
x1,x2 ∈ L2 , α, β ∈ C

)
.

(iii) The L2 -Fourier Transform is invertible in the sense that to each [g] ∈ L2

there corresponds a unique equivalence class in L2 whose L2 -Fourier Trans-
form is [g]. This equivalence class can be obtained by reflecting each of the
elements of [g] to obtain the equivalence class [~g] of ~g, and by then applying
the L2 -Fourier Transform to it. The result [̂~g] then satisfies

̂̂[
~g
]

= [g], g ∈ L2 . (6.15)

(iv) Applying the L2 -Fourier Transform twice is equivalent to reflecting the ele-
ments of the equivalence class

̂̂
[x] = [~x], x ∈ L2 . (6.16)

(v) The L2 -Fourier Transform preserves energies:5∥∥∥[̂x]
∥∥∥
2

=
∥∥∥[x]

∥∥∥
2
, x ∈ L2 . (6.17)

(vi) The L2 -Fourier Transform preserves inner products:6〈
[x], [y]

〉
=
〈
[̂x], [̂y]

〉
, x,y ∈ L2 . (6.18)

Proof. This theorem is a restatement of (Rudin, 1974, Chapter 9, Theorem 9.13).
Identity (6.16) appears in this form in (Stein and Weiss, 1990, Chapter 1, Section 2,
Theorem 2.4).

The result that the L2 -Fourier Transform preserves energies is sometimes called
Plancherel’s Theorem and the result that it preserves inner products Parseval’s
Theorem. We shall use “Parseval’s Theorem” for both. It is so important that
we repeat it here in the form of a theorem. Following mathematical practice, we
drop the square brackets in the theorem’s statement.

Theorem 6.2.9 (Parseval’s Theorem). For any x,y ∈ L2

〈x,y〉 = 〈x̂, ŷ〉 (6.19)

and

‖x‖2 = ‖x̂‖2 . (6.20)

5The energy of an equivalence class was defined in Section 4.7.
6The inner product between equivalence classes was defined in Section 4.7.
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As we mentioned earlier, there is no simple explicit expression for the L2 -Fourier
Transform. The following proposition simplifies its calculation under certain as-
sumptions that are, for example, satisfied by the sinc(·) function.

Proposition 6.2.10. If x = ǧ for some g ∈ L1 ∩ L2 , then:

(i) x ∈ L2 .

(ii) ‖x‖2 = ‖g‖2 .

(iii) The L2 -Fourier Transform of [x] is the equivalence class [g].

Proof. It suffices to prove Part (iii) because Parts (i) and (ii) will then follow from
the preservation of energy under the L2 -Fourier Transform (Theorem 6.2.8 (v)).
To prove Part (iii) we compute

[g] =
̂̂[
~g
]

=
[̂
~̂g
]

= [̂x],

where the first equality follows from (6.15); the second from Theorem 6.2.8 (i)
(because the hypothesis g ∈ L1 ∩ L2 implies that ~g ∈ L1 ∩ L2 ); and the final
equality from Proposition 6.2.3 (i) and from the hypothesis that x = ǧ.

6.2.4 More on the Fourier Transform

In this section we present additional results that shed some light on the problem of
reconstructing a signal from its FT. The first is a continuity result, which may seem
technical but which has some useful consequences. It can be used to show that the
IFT (of an integrable function) always yields a continuous signal. Consequently,
if one starts with a discontinuous function, takes its FT, and then the IFT, one
does not obtain the original function. It can also be used—once we define the
frequency response of a filter in Section 6.3—to show that no stable filter can have
a discontinuous frequency response.

Theorem 6.2.11 (Continuity and Boundedness of the Fourier Transform).

(i) If x is integrable, then its FT x̂ is a uniformly continuous function satisfying

∣∣x̂(f)
∣∣ ≤ ∫ ∞

−∞
|x(t)|dt, f ∈ R, (6.21)

and
lim

|f |→∞
x̂(f) = 0. (6.22)
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(ii) If g is integrable, then its IFT ǧ is a uniformly continuous function satisfying∣∣ǧ(t)∣∣ ≤ ∫ ∞

−∞
|g(f)|df, t ∈ R. (6.23)

Proof. We begin with Part (i). Inequality (6.21) follows directly from the definition
of the FT and from Proposition 2.4.1. The proof of the uniform continuity of x̂ is
not very difficult but is omitted. See (Katznelson, 1976, Section VI.1, Theorem 1.2).
A proof of (6.22) can be found in (Katznelson, 1976, Section VI.1, Theorem 1.7).

Part (ii) follows by substituting ~g for x in Part (i) because the IFT of g is the FT
of its mirror image (6.5).

The second result we present is that every integrable signal can be reconstructed
from its FT, but not necessarily via the IFT. The reconstruction formula in (6.25)
ahead works even when the IFT does not do the job.

Theorem 6.2.12 (Reconstructing a Signal from Its Fourier Transform).

(i) If two integrable signals have the same FT, then they are indistinguishable:(
x̂1(f) = x̂2(f), f ∈ R

)
⇒
(
x1 ≡ x2

)
, x1,x2 ∈ L1 . (6.24)

(ii) Every integrable function x can be reconstructed from its FT in the sense that

lim
λ→∞

∫ ∞

−∞

∣∣∣∣x(t)− ∫ λ

−λ

(
1− |f |

λ

)
x̂(f) ei2πft df

∣∣∣∣ dt = 0. (6.25)

Proof. See (Katznelson, 1976, Section VI.1.10).

Conditions under which the IFT of the FT of a signal recovers the signal are given
in the following theorem.

Theorem 6.2.13 (The Inversion Theorem).

(i) Suppose that x is integrable and that its FT x̂ is also integrable. Define

x̃ = ˇ̂x. (6.26)

Then x̃ is a continuous function with

lim
|t|→∞

x̃(t) = 0, (6.27)

and the functions x and x̃ agree except on a set of Lebesgue measure zero.

(ii) Suppose that g is integrable and that its IFT ǧ is also integrable. Define

g̃ = ˆ̌g. (6.28)

Then g̃ is a continuous function with

lim
|f |→∞

g̃(f) = 0 (6.29)

and the functions g and g̃ agree except on a set of Lebesgue measure zero.
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Proof. For a proof of Part (i) see (Rudin, 1974, Theorem 9.11). Part (ii) follows
by substituting g for x in Part (i) and using Proposition 6.2.3 (iii).

Corollary 6.2.14.

(i) If x is a continuous integrable signal whose FT is integrable, then

ˇ̂x = x. (6.30)

(ii) If g is continuous and integrable, and if ǧ is also integrable, then

ˆ̌g = g. (6.31)

Proof. Part (i) follows from Theorem 6.2.13 (i) by noting that if two continuous
functions are equal outside a set of Lebesgue measure zero, then they are identical.
Part (ii) follows similarly from Theorem 6.2.13 (ii).

6.2.5 On the Brickwall and the sinc(·) Functions

We next discuss the FT and the IFT of the Brickwall function

ξ 7→ I{|ξ| ≤ 1}, (6.32)

which derives its name from the shape of its plot. Since it is a symmetric function,
it follows from (6.6) that its FT and IFT are identical. Both are equal to a properly
stretched and scaled sinc(·) function (5.20).

More generally, we offer the reader advice on how to remember that for α, γ > 0,

t 7→ δ sinc(αt) is the IFT of f 7→ β I{|f | ≤ γ} (6.33)

if, and only if,
δ = 2γβ (6.34a)

and
γ

1
α

=
1
2
. (6.34b)

Condition (6.34a) is easily remembered because its LHS is the value at t = 0 of
δ sinc(αt) and its RHS is the value at t = 0 of the IFT of f 7→ β I{|f | ≤ γ}:∫ ∞

−∞
β I{|f | ≤ γ} ei2πft df

∣∣∣∣
t=0

=
∫ ∞

−∞
β I{|f | ≤ γ}df = 2γβ.

Condition (6.34b) is intimately related to the Sampling Theorem that you may
have already seen and that we shall discuss in Chapter 8. Indeed, in the Sam-
pling Theorem (Theorem 8.4.3) the time between consecutive samples T and the
bandwidth W satisfy

T W =
1
2
.

(In this application α corresponds to 1/T and γ corresponds to the bandwidth W.)
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δ

first zero at 1
α

β

cutoff γ

Figure 6.1: The stretched & scaled sinc(·) function and the stretched & scaled
Brickwall function above are an L2 Fourier pair if the value of the former at zero
(i.e., δ) is the integral of the latter (i.e., 2 × β × cutoff) and if the product of the
location of the first zero of the former by the cutoff of the latter is 1/2.

It is tempting to say that Conditions (6.34) also imply that the FT of the func-
tion t 7→ δ sinc(αt) is the function f 7→ β I{|f | ≤ γ}, but there is a caveat. The
signal t 7→ δ sinc(αt) is not integrable. Consequently, its L1 -Fourier Transform
(Definition 6.2.1) is undefined. However, since it is energy-limited, its L2 -Fourier
Transform is defined (Definition 6.2.7). Using Proposition 6.2.10 with the substitu-
tion of f 7→ β I{|f | ≤ γ} for g, we obtain that, indeed, Conditions (6.34) imply that
the L2 -Fourier Transform of the (equivalence class of the) function t 7→ δ sinc(αt)
is the (equivalence class of the) function f 7→ β I{|f | ≤ γ}.
The relation between the sinc(·) and the Brickwall functions is summarized in
Figure 6.1.

The derivation of the result is straightforward: the IFT of the Brickwall function
can be computed as∫ ∞

−∞
β I{|f | ≤ γ} ei2πft df = β

∫ γ

−γ
ei2πft df

=
β

i2πt
ei2πft

∣∣∣γ
−γ

=
β

i2πt
(
ei2πγt− e−i2πγt

)
=

β

πt
sin(2πγt)

= 2βγ sinc(2γt). (6.35)
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6.3 The Frequency Response of a Filter

Recall that in Section 5.7 we defined a filter of impulse response h to be a physical
device that when fed the input x produces the output x?h. Of course, this is only
meaningful if the convolution is defined. Subject to some technical assumptions
that are made precise in Theorem 6.3.2, the FT of the output waveform x?h is the
product of the FT of the input waveform x by the FT of the impulse response h.
Consequently, we can think of a filter of impulse response h as a physical device
that produces an output signal whose FT is the product of the FT of the input
signal and the FT of the impulse response.

The FT of the impulse response is called the frequency response of the filter. If
the filter is stable and its impulse response therefore integrable, then we define the
filter’s frequency response as the Fourier Transform of the impulse response using
Definition 6.2.1 (the L1 -Fourier Transform). If the impulse response is energy-
limited but not integrable, then we define the frequency response as the Fourier
Transform of the impulse response using the definition of the Fourier Transform for
energy-limited signals that are not integrable as in Section 6.2.3 (the L2 -Fourier
Transform).

Definition 6.3.1 (Frequency Response).

(i) The frequency response of a stable filter is the Fourier Transform of its
impulse response as defined in Definition 6.2.1.

(ii) The frequency response of an unstable filter whose impulse response is
energy-limited is the L2 -Fourier Transform of its impulse response as defined
in Section 6.2.3.

As discussed in Section 5.5, if x,h are both integrable, then x ? h is defined at
all epochs t outside a set of Lebesgue measure zero, and x ? h is integrable. In
this case the FT of x ? h is the mapping f 7→ x̂(f) ĥ(f). If x is integrable and
h is of finite energy, then x ? h is also defined at all epochs t outside a set of
Lebesgue measure zero. But in this case the convolution is only guaranteed to be
of finite energy; it need not be integrable. We can discuss its Fourier Transform
using the definition of the L2 -Fourier Transform for energy-limited signals that are
not integrable as in Section 6.2.3. In this case, again, the L2 -Fourier Transform of
x ? h is the (equivalence class of the) mapping f 7→ x̂(f) ĥ(f):7

Theorem 6.3.2 (The Fourier Transform of a Convolution).

(i) If the signals h and x are both integrable, then the convolution x?h is defined
for all t outside a set of Lebesgue measure zero; it is integrable; and its
L1 -Fourier Transform x̂ ? h is given by

x̂ ? h(f) = x̂(f) ĥ(f), f ∈ R, (6.36)

7To be precise we should say that the L2 -Fourier Transform of x?h is the equivalence class of
the product of the L1 -Fourier Transform of x by any element in the equivalence class consisting
of the L2 -Fourier Transform of [h].
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f

L̂PFWc(f)

Wc−Wc

Wc

1

Figure 6.2: The frequency response of the ideal unit-gain lowpass filter of cutoff
frequency Wc. Notice that Wc is the length of the interval of positive frequencies
where the gain is one.

where x̂ and ĥ are the L1 -Fourier Transforms of x and h.

(ii) If the signal x is integrable and if h is of finite energy, then the convolution
x ? h is defined for all t outside a set of Lebesgue measure zero; it is energy-
limited; and its L2 -Fourier Transform x̂ ? h is also given by (6.36) with x̂,
as before, being the L1 -Fourier Transform of x but with ĥ now being the
L2 -Fourier Transform of h.

Proof. For a proof of Part (i) see, for example, (Stein and Weiss, 1990, Chapter 1,
Section 1, Theorem 1.4). For Part (ii) see (Stein and Weiss, 1990, Chapter 1,
Section 2, Theorem 2.6).

As an example, recall from Section 5.9 that the unit-gain ideal lowpass filter of
cutoff frequency Wc is a filter of impulse response

h(t) = 2Wc sinc(2Wct), t ∈ R. (6.37)

This filter is not causal and not stable, but its impulse response is energy-limited.
The filter’s frequency response is the L2 -Fourier Transform of the impulse response
(6.37), which, using the results from Section 6.2.5, is given by (the equivalence class
of) the mapping

f 7→ I{|f | ≤Wc}, f ∈ R. (6.38)

This mapping maps all frequencies f satisfying |f | > Wc to 0 and all frequencies
satisfying |f | ≤Wc to one. It is for this reason that we use the adjective “unit-gain”
in describing this filter. We denote the mapping in (6.38) by L̂PFWc(·) so

L̂PFWc(f) , I{|f | ≤Wc}, f ∈ R. (6.39)

This mapping is depicted in Figure 6.2. Note that Wc is the length of the interval
of positive frequencies where the response is one.

Turning to the ideal unit-gain bandpass filter of bandwidth W around the carrier
frequency fc satisfying fc ≥ W/2, we note that, by (5.21), its time-t impulse
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f

B̂PFW,fc(f)

fc−fc

W

1

Figure 6.3: The frequency response of the ideal unit-gain bandpass filter of band-
width W around the carrier frequency fc. Notice that, as for the lowpass filter, W

is the length of the interval of positive frequencies where the gain is one.

response BPFW,fc(t) is given by

BPFW,fc(t) = 2W cos(2πfct) sinc(Wt)

= 2Re
(
LPFW/2(t) ei2πfct

)
. (6.40)

This filter too is noncausal and nonstable. From (6.40) and (6.39) we obtain using
Table 6.1 that its frequency response is (the equivalence class of) the mapping

f 7→ I
{∣∣|f | − fc∣∣ ≤ W

2

}
.

We denote this mapping by B̂PFW,fc(·) so

B̂PFW,fc(f) , I
{∣∣|f | − fc∣∣ ≤ W

2

}
, f ∈ R. (6.41)

This mapping is depicted in Figure 6.3. Note that, as for the lowpass filter, W is
the length of the interval of positive frequencies where the response is one.

6.4 Bandlimited Signals and Lowpass Filtering

In this section we define bandlimited signals and discuss lowpass filtering. We
treat energy-limited signals and integrable signals separately. As we shall see, any
integrable signal that is bandlimited to W Hz is also an energy-limited signal that
is bandlimited to W Hz (Note 6.4.12).

6.4.1 Energy-Limited Signals

The main result of this section is that the following three statements are equivalent:

(a) The signal x is an energy-limited signal satisfying

(x ? LPFW)(t) = x(t), t ∈ R. (6.42)
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(b) The signal x can be expressed in the form

x(t) =
∫ W

−W

g(f) ei2πft df, t ∈ R, (6.43a)

for some measurable function g : f 7→ g(f) satisfying∫ W

−W

|g(f)|2 df <∞. (6.43b)

(c) The signal x is a continuous energy-limited signal whose L2 -Fourier Trans-
form x̂ satisfies ∫ ∞

−∞
|x̂(f)|2 df =

∫ W

−W

|x̂(f)|2 df. (6.44)

We can thus define x to be an energy-limited signal that is bandlimited to W Hz
if one (and hence all) of the above conditions hold.

In deriving this result we shall take (a) as the definition. We shall then establish
the equivalence (a) ⇔ (b) in Proposition 6.4.5, which also establishes that the
function g in (6.43a) can be taken as any element in the equivalence class of the
L2 -Fourier Transform of x, and that the LHS of (6.43b) is then ‖x‖22 . Finally, we
shall establish the equivalence (a) ⇔ (c) in Proposition 6.4.6.

We conclude the section with a summary of the key properties of the result of
passing an energy-limited signal through an ideal unit-gain lowpass filter.

We begin by defining an energy-limited signal to be bandlimited to W Hz if it is
unaltered when it is lowpass filtered by an ideal unit-gain lowpass filter of cutoff
frequency W. Recalling that we are denoting by LPFW(t) the time-t impulse
response of an ideal unit-gain lowpass filter of cutoff frequency W (see (5.19)), we
have the following definition.8

Definition 6.4.1 (Energy-Limited Bandlimited Signals). We say that the signal x
is an energy-limited signal that is bandlimited to W Hz if x is in L2 and

(x ? LPFW)(t) = x(t), t ∈ R. (6.45)

Note 6.4.2. If an energy-limited signal that is bandlimited to W Hz is of zero
energy, then it is the all-zero signal 0.

Proof. Let x be an energy-limited signal that is bandlimited to W Hz and that
has zero energy. Then

|x(t)| =
∣∣(x ? LPFW)(t)

∣∣
≤ ‖x‖2 ‖LPFW‖2
= ‖x‖2

√
2W

= 0, t ∈ R,
8Even though the ideal unit-gain lowpass filter of cutoff frequency W is not stable, its impulse

response LPFW(·) is of finite energy (because it decays like 1/t and the integral of 1/t2 from one
to infinity is finite). Consequently, we can use the Cauchy-Schwarz Inequality to prove that if
x ∈ L2 then the mapping τ 7→ x(τ) LPFW(t − τ) is integrable for every time instant t ∈ R.
Consequently, the convolution x ? LPFW is defined at every time instant t; see Section 5.5.
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where the first equality follows because x is an energy-limited signal that is band-
limited to W Hz and is thus unaltered when it is lowpass filtered; the subsequent
inequality follows from (5.6b); the subsequent equality by computing ‖LPFW‖2
using Parseval’s Theorem and the explicit form of the frequency response of the
ideal unit-gain lowpass filter of bandwidth W (6.38); and where the final equality
follows from the hypothesis that x is of zero energy.

Having defined what it means for an energy-limited signal to be bandlimited to W

Hz, we can now define its bandwidth.9

Definition 6.4.3 (Bandwidth). The bandwidth of an energy-limited signal x is
the smallest frequency W to which x is bandlimited.

The next lemma shows that the result of passing an energy-limited signal through
an ideal unit-gain lowpass filter of cutoff frequency W is an energy-limited signal
that is bandlimited to W Hz.

Lemma 6.4.4.

(i) Let y = x ? LPFW be the output of an ideal unit-gain lowpass filter of cutoff
frequency W that is fed the energy-limited input x ∈ L2 . Then y ∈ L2 ;

y(t) =
∫ W

−W

x̂(f) ei2πft df, t ∈ R; (6.46)

and the L2 -Fourier Transform of y is the (equivalence class of the) mapping

f 7→ x̂(f) I{|f | ≤W}. (6.47)

(ii) If g : f 7→ g(f) is a bounded integrable function and if x is energy-limited,
then x ? ǧ is in L2 ; it can be expressed as

(
x ? ǧ

)
(t) =

∫ ∞

−∞
x̂(f) g(f) ei2πft df, t ∈ R; (6.48)

and its L2 -Fourier Transform is given by (the equivalence class of) the map-
ping f 7→ x̂(f) g(f).

Proof. Even though Part (i) is a special case of Part (ii) corresponding to g being
the mapping f 7→ I{|f | ≤ W}, we shall prove the two parts separately. We begin
with a proof of Part (i). The idea of the proof is to express for each t ∈ R the
time-t output y(t) as an inner product and to then use Parseval’s Theorem. Thus,

9To be more rigorous we should use in this definition the term “infimum” instead of “smallest,”
but it turns out that the infimum here is also a minimum.
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(6.46) follows from the calculation

y(t) =
(
x ? LPFW

)
(t)

=
∫ ∞

−∞
x(τ) LPFW(t− τ) dτ

=
〈
x, τ 7→ LPFW(t− τ)

〉
=
〈
x, τ 7→ LPFW(τ − t)

〉
=
〈
x̂, f 7→ e−i2πft L̂PFW(f)

〉
=
〈
x̂, f 7→ e−i2πft I{|f | ≤W}

〉
=
∫ W

−W

x̂(f) ei2πft df,

where the fourth equality follows from the symmetry of the function LPFW(·), and
where the fifth equality follows from Parseval’s Theorem and the fact that delaying
a function multiplies its FT by a complex exponential. Having established (6.46),
Part (i) now follows from Proposition 6.2.10, because, by Parseval’s Theorem, the
mapping f 7→ x̂(f) I{|f | ≤ W} is of finite energy and hence, by Proposition 3.4.3,
also integrable.

We next turn to Part (ii). We first note that the assumption that g is bounded
and integrable implies that it is also energy-limited, because if |g(f)| ≤ σ∞ for all
f ∈ R, then |g(f)|2 ≤ σ∞|g(f)| and

∫
|g(f)|2 df ≤ σ∞

∫
|g(f)|df . Thus,

g ∈ L1 ∩ L2 . (6.49)

We next prove (6.48). To that end we express the convolution x ? ǧ at time t as
an inner product and then use Parseval’s Theorem to obtain(

x ? ǧ
)
(t) =

∫ ∞

−∞
x(τ) ǧ(t− τ) dτ

= 〈x, τ 7→ ǧ∗(t− τ)〉
=
〈
x̂, f 7→ e−i2πft g∗(f)

〉
=
∫ ∞

−∞
x̂(f) g(f) ei2πft df, t ∈ R, (6.50)

where the third equality follows from Parseval’s Theorem and by noting that the
L2 -Fourier Transform of the mapping τ 7→ ǧ∗(t − τ) is the equivalence class of
the mapping f 7→ e−i2πft g∗(f), as can be verified by expressing the mapping
τ 7→ ǧ∗(t− τ) as the IFT of the mapping f 7→ e−i2πft g∗(f)

ǧ∗(t− τ) =
(∫ ∞

−∞
g(f) ei2πf(t−τ) df

)∗
=
∫ ∞

−∞
g∗(f) ei2πf(τ−t) df

=
∫ ∞

−∞

(
g∗(f) e−i2πft

)
ei2πfτ df, t, τ ∈ R,
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and by then applying Proposition 6.2.10 to the mapping f 7→ g∗(f) e−i2πft, which
is in L1 ∩ L2 by (6.49).

Having established (6.48) we next examine the integrand in (6.48) and note that
if |g(f)| is upper-bounded by σ∞, then the modulus of the integrand is upper-
bounded by σ∞|x̂(f)|, so the assumption that x ∈ L2 (and hence that x̂ is of finite
energy) guarantees that the integrand is square integrable. Also, by the Cauchy-
Schwarz Inequality, the square integrability of g and of x̂ implies that the integrand
is integrable. Thus, the integrand is both square integrable and integrable so, by
Proposition 6.2.10, the signal x ? ǧ is square integrable and its Fourier Transform
is the (equivalence class of the) mapping f 7→ x̂(f) g(f).

With the aid of the above lemma we can now give an equivalent definition for
energy-limited signals that are bandlimited to W Hz. This definition is popular
among mathematicians, because it does not involve the L2 -Fourier Transform and
because the continuity of the signal is implied.

Proposition 6.4.5 (On the Definition of Bandlimited Functions in L2 ).

(i) If x is an energy-limited signal that is bandlimited to W Hz, then it can be
expressed in the form

x(t) =
∫ W

−W

g(f) ei2πft df, t ∈ R, (6.51)

where g(·) satisfies ∫ W

−W

|g(f)|2 df <∞ (6.52)

and can be taken as (any function in the equivalence class of) x̂.

(ii) If a signal x can be expressed as in (6.51) for some function g(·) satisfying
(6.52), then x is an energy-limited signal that is bandlimited to W Hz and x̂
is (the equivalence class of) the mapping f 7→ g(f) I{|f | ≤W}.

Proof. We first prove Part (i). Let x be an energy-limited signal that is band-
limited to W Hz. Then

x(t) = (x ? LPFW)(t)

=
∫ W

−W

x̂(f) ei2πft df, t ∈ R,

where the first equality follows from Definition 6.4.1, and where the second equality
follows from Lemma 6.4.4 (i). Consequently, if we pick g as (any element of the
equivalence class of) f 7→ x̂(f) I{|f | ≤W}, then (6.51) will be satisfied and (6.52)
will follow from Parseval’s Theorem.

To prove Part (ii) define g̃ : f 7→ g(f) I{|f | ≤W}. From the assumption (6.52) and
from Proposition 3.4.3 it then follows that g̃ ∈ L1 ∩L2 . This and (6.51) imply that
x ∈ L2 and that the L2 -Fourier Transform of (the equivalence class of) x is (the
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equivalence class of) g̃; see Proposition 6.2.10. To complete the proof of Part (ii)
it thus remains to show that x ? LPFW = x. This follows from the calculation:

(
x ? LPFW

)
(t) =

∫ W

−W

x̂(f) ei2πft df

=
∫ W

−W

g(f) ei2πft df

= x(t), t ∈ R,

where the first equality follows from Lemma 6.4.4 (i); the second because we have
already established that the L2 -Fourier Transform of (the equivalence class of) x is
(the equivalence class of) f 7→ g(f) I{|f | ≤W}; and where the last equality follows
from (6.51).

In the engineering literature a function is often defined as bandlimited to W Hz
if its FT is zero for frequencies f outside the interval [−W,W ]. This definition
is imprecise because the L2 -Fourier Transform of a signal is an equivalence class
and its value at a given frequency is technically undefined. It would be better to
define an energy-limited signal as bandlimited to W Hz if ‖x‖22 =

∫W

−W

∣∣x̂(f)
∣∣2 df

so “all its energy is contained in the frequency band [−W,W ].” However, this is
not quite equivalent to our definition. For example, the L2 -Fourier Transform of
the discontinuous signal

x(t) =

{
17 if t = 0,
sinc 2Wt otherwise,

is (the equivalence class of) the Brickwall (frequency domain) function

1
2W

I{|f | ≤W}, f ∈ R

(because the discontinuity at t = 0 does not influence the Fourier integral), but
the signal is altered by the lowpass filter, which smooths it out to produce the
continuous waveform t 7→ sinc(2Wt). Readers who have already seen the Sampling
Theorem will note that the above signal x(·) provides a counterexample to the
Sampling Theorem as it is often imprecisely stated.

The following proposition clarifies the relationship between this definition and ours.

Proposition 6.4.6 (More on the Definition of Bandlimited Functions in L2 ).

(i) If x is an energy-limited signal that is bandlimited to W Hz, then x is a
continuous function and all its energy is contained in the frequency interval
[−W,W ] in the sense that its L2 -Fourier Transform x̂ satisfies∫ ∞

−∞
|x̂(f)|2 df =

∫ W

−W

|x̂(f)|2 df. (6.53)
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(ii) If the signal x ∈ L2 satisfies (6.53), then x is indistinguishable from the
signal x ? LPFW, which is an energy-limited signal that is bandlimited to W

Hz. If in addition to satisfying (6.53) the signal x is continuous, then x is
an energy-limited signal that is bandlimited to W Hz.

Proof. This proposition’s claims are a subset of those of Proposition 6.4.7, which
summarizes some of the results relating to lowpass filtering. The proof is therefore
omitted.

Proposition 6.4.7. Let y = x ? LPFW be the result of feeding the signal x ∈ L2 to
an ideal unit-gain lowpass filter of cutoff frequency W. Then:

(i) y is energy-limited with

‖y‖2 ≤ ‖x‖2 . (6.54)

(ii) y is an energy-limited signal that is bandlimited to W Hz.

(iii) Its L2 -Fourier Transform ŷ is given by (the equivalence class of) the mapping
f 7→ x̂(f) I{|f | ≤W}.

(iv) All the energy in y is concentrated in the frequency band [−W,W ] in the
sense that: ∫ ∞

−∞
|ŷ(f)|2 df =

∫ W

−W

|ŷ(f)|2 df.

(v) y can be represented as

y(t) =
∫ ∞

−∞
ŷ(f) ei2πft df, t ∈ R (6.55)

=
∫ W

−W

x̂(f) ei2πft df, t ∈ R. (6.56)

(vi) y is uniformly continuous.

(vii) If x ∈ L2 has all its energy concentrated in the frequency band [−W,W ] in
the sense that ∫ ∞

−∞
|x̂(f)|2 df =

∫ W

−W

|x̂(f)|2 df, (6.57)

then x is indistinguishable from the bandlimited signal x ? LPFW.

(viii) x is an energy-limited signal that is bandlimited to W if, and only if, it
satisfies all three of the following conditions: it is in L2 ; it is continuous;
and it satisfies (6.57).
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Proof. Part (i) follows from Lemma 6.4.4 (i), which demonstrates that ŷ is (the
equivalence class of) the mapping f 7→ x̂(f) I{|f | ≤W} so, by Parseval’s Theorem,

‖y‖22 =
∫ ∞

−∞
|ŷ(f)|2 df

=
∫ W

−W

|x̂(f)|2 df

≤
∫ ∞

−∞
|x̂(f)|2 df

= ‖x‖22 .

Part (ii) follows because, by Lemma 6.4.4 (i), the signal y satisfies

y(t) =
∫ W

−W

x̂(f) ei2πft df

where ∫ W

−W

|x̂(f)|2 df ≤
∫ ∞

−∞
|x̂(f)|2 df = ‖x‖22 <∞,

so, by Proposition 6.4.5, y is an energy-limited signal that is bandlimited to W Hz.

Part (iii) follows directly from Lemma 6.4.4 (i). Part (iv) follows from Part (iii).
Part (v) follows, again, directly from Lemma 6.4.4.

Part (vi) follows from the representation (6.56); from the fact that the IFT of
integrable functions is uniformly continuous (Theorem 6.2.11); and because the
condition ‖x‖2 < ∞ implies, by Proposition 3.4.3, that f 7→ x̂(f) I{|f | ≤ W} is
integrable.

To prove Part (vii) we note that by Part (ii) x ? LPFW is an energy-limited signal
that is bandlimited to W Hz, and we note that (6.57) implies that x is indistin-
guishable from x ? LPFW because

‖x− x ? LPFW‖22 =
∫ ∞

−∞

∣∣∣x̂(f)− ̂x ? LPFW(f)
∣∣∣2 df

=
∫ ∞

−∞

∣∣x̂(f)− x̂(f) I{|f | ≤W}
∣∣2 df

=
∫
|f |>W

∣∣x̂(f)
∣∣2 df

= 0,

where the first equality follows from Parseval’s Theorem; the second equality from
Lemma 6.4.4 (i); the third equality because the integrand is zero for |f | ≤W; and
the final equality from (6.57).

To prove Part (viii) define y = x ? LPFW and note that if x is an energy-limited
signal that is bandlimited to W Hz then, by Definition 6.4.1, y = x so the continuity
of x and the fact that its energy is concentrated in the interval [−W,W ] follow from
Parts (iv) and (vi). In the other direction, if x satisfies (6.57) then by Part (vii)
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it is indistinguishable from the signal y, which is continuous by Part (vi). If,
additionally, x is continuous, then x must be identical to y because two continuous
functions that are indistinguishable must be identical.

6.4.2 Integrable Signals

We next discuss what we mean when we say that x is an integrable signal that is
bandlimited to W Hz. Also important will be Note 6.4.11, which establishes that
if x is such a signal, then x is equal to the IFT of its FT.

Even though the ideal unit-gain lowpass filter is unstable, its convolution with any
integrable signal is well-defined. Denoting the cutoff frequency by Wc we have:

Proposition 6.4.8. For any x ∈ L1 the convolution integral∫ ∞

−∞
x(τ) LPFWc(t− τ) dτ

is defined at every epoch t ∈ R and is given by∫ ∞

−∞
x(τ) LPFWc(t− τ) dτ =

∫ Wc

−Wc

x̂(f) ei2πft df, t ∈ R. (6.58)

Moreover, x ? LPFWc is an energy-limited function that is bandlimited to Wc Hz.
Its L2 -Fourier Transform is (the equivalence class of) the mapping

f 7→ x̂(f) I{|f | ≤Wc}.

Proof. The key to the proof is to note that, although the sinc(·) function is not
integrable, it follows from (6.35) that it can be represented as the Inverse Fourier
Transform of an integrable function (of frequency). Consequently, the existence
of the convolution and its representation as (6.58) follow directly from Proposi-
tion 6.2.5 and (6.35).

To prove the remaining assertions of the proposition we note that, since x is inte-
grable, it follows from Theorem 6.2.11 that |x̂(f)| ≤ ‖x‖1 and hence∫ Wc

−Wc

|x̂(f)|2 df <∞. (6.59)

The result now follows from (6.58), (6.59), and Proposition 6.4.5.

With the aid of Proposition 6.4.8 we can now define bandlimited integrable signals:

Definition 6.4.9 (Bandlimited Integrable Signals). We say that the signal x is
an integrable signal that is bandlimited to W Hz if x is integrable and if it
is unaltered when it is lowpass filtered by an ideal unit-gain lowpass filter of cutoff
frequency W:

x(t) = (x ? LPFW)(t), t ∈ R.
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Proposition 6.4.10 (Characterizing Integrable Signals that Are Bandlimited to
W Hz). If x is an integrable signal, then each of the following statements is equiv-
alent to the statement that x is an integrable signal that is bandlimited to W Hz:

(a) The signal x is unaltered when it is lowpass filtered:

x(t) = (x ? LPFW)(t), t ∈ R. (6.60)

(b) The signal x can be expressed as

x(t) =
∫ W

−W

x̂(f) ei2πft df, t ∈ R. (6.61)

(c) The signal x is continuous and

x̂(f) = 0, |f | > W. (6.62)

(d) There exists an integrable function g such that

x(t) =
∫ W

−W

g(f) ei2πft df, t ∈ R. (6.63)

Proof. Condition (a) is the condition given in Definition 6.4.9, so it only remains
to show that the four conditions are equivalent. We proceed to do so by proving
that (a) ⇔ (b); that (b) ⇒ (d); that (d) ⇒ (c); and that (c) ⇒ (b).

That (a) ⇔ (b) follows directly from Proposition 6.4.8 and, more specifically, from
the representation (6.58). The implication (b) ⇒ (d) is obvious because nothing
precludes us from picking g to be the mapping f 7→ x̂(f) I{|f | ≤ W}, which is
integrable because x̂ is bounded by ‖x‖1 (Theorem 6.2.11).

We next prove that (d) ⇒ (c). We thus assume that there exists an integrable
function g such that (6.63) holds and proceed to prove that x is continuous and
that (6.62) holds. To that end we first note that the integrability of g implies,
by Theorem 6.2.11, that x (= ǧ) is continuous. It thus remains to prove that x̂
satisfies (6.62). Define g0 as the mapping f 7→ g(f) I{|f | ≤W}. By (6.63) it then
follows that x = ǧ0. Consequently,

x̂ = ˆ̌g0. (6.64)

Employing Theorem 6.2.13 (ii) we conclude that the RHS of (6.64) is equal to g0

outside a set of Lebesgue measure zero, so (6.64) implies that x̂ is indistinguishable
from g0. Since both x̂ and g0 are continuous for |f | > W, this implies that
x̂(f) = g0(f) for all frequencies |f | > W. Since, by its definition, g0(f) = 0
whenever |f | > W we can conclude that (6.62) holds.

Finally (c) ⇒ (b) follows directly from Theorem 6.2.13 (i).

From Proposition 6.4.10 (cf. (b) and (c)) we obtain:

Note 6.4.11. If x is an integrable signal that is bandlimited to W Hz, then it is
equal to the IFT of its FT.
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By Proposition 6.4.10 it also follows that if x is an integrable signal that is
bandlimited to W Hz, then (6.61) is satisfied. Since the integrand in (6.61) is
bounded (by ‖x‖1 ) it follows that the integrand is square integrable over the in-
terval [−W,W ]. Consequently, by Proposition 6.4.5, x must be an energy-limited
signal that is bandlimited to W Hz. We have thus proved:

Note 6.4.12. An integrable signal that is bandlimited to W Hz is also an energy-
limited signal that is bandlimited to W Hz.

The reverse statement is not true: the sinc(·) is an energy-limited signal that is
bandlimited to 1/2 Hz, but it is not integrable.

The definition of bandwidth for integrable signals is similar to Definition 6.4.3.10

Definition 6.4.13 (Bandwidth). The bandwidth of an integrable signal is the
smallest frequency W to which it is bandlimited.

6.5 Bandlimited Signals Through Stable Filters

In this section we discuss the result of feeding bandlimited signals to stable filters.
We begin with energy-limited signals. In Theorem 6.3.2 we saw that the convo-
lution of an integrable signal with an energy-limited signal is defined at all times
outside a set of Lebesgue measure zero. The next proposition shows that if the
energy-limited signal is bandlimited to W Hz, then the convolution is defined at
every time, and the result is an energy-limited signal that is bandlimited to W Hz.

Proposition 6.5.1. Let x be an energy-limited signal that is bandlimited to W Hz
and let h be integrable. Then x?h is defined for every t ∈ R; it is an energy-limited
signal that is bandlimited to W Hz; and it can be represented as

(
x ? h

)
(t) =

∫ W

−W

x̂(f) ĥ(f) ei2πft df, t ∈ R. (6.65)

Proof. Since x is an energy-limited signal that is bandlimited to W Hz, it follows
from Proposition 6.4.5 that

x(t) =
∫ W

−W

x̂(f) ei2πft df, t ∈ R, (6.66)

with the mapping f 7→ x̂(f) I{|f | ≤ W} being square integrable and hence, by
Proposition 3.4.3, also integrable. Thus the convolution x ? h is the convolution
between the IFT of the integrable mapping f 7→ x̂(f) I{|f | ≤W} and the integrable
function h. By Proposition 6.2.5 we thus obtain that the convolution x?h is defined
at every time t and has the representation (6.65). The proposition will now follow
from (6.65) and Proposition 6.4.5 once we demonstrate that∫ W

−W

∣∣x̂(f) ĥ(f)
∣∣2 df <∞.

10Again, we omit the proof that the infimum is a minimum.
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This can be proved by upper-bounding |ĥ(f)| by ‖h‖1 (Theorem 6.2.11) and by
then using Parseval’s Theorem.

We next turn to integrable signals passed through stable filters.

Proposition 6.5.2 (Integrable Bandlimited Signals through Stable Filters). Let x
be an integrable signal that is bandlimited to W Hz, and let h be integrable. Then
the convolution x ? h is defined for every t ∈ R; it is an integrable signal that is
bandlimited to W Hz; and it can be represented as

(
x ? h

)
(t) =

∫ W

−W

x̂(f) ĥ(f) ei2πft df, t ∈ R. (6.67)

Proof. Since every integrable signal that is bandlimited to W Hz is also an energy-
limited signal that is bandlimited to W Hz, it follows from Proposition 6.5.1 that the
convolution x?h is defined at every epoch and that it can be represented as (6.65).
Alternatively, one can derive this representation from (6.61) and Proposition 6.2.5.
It only remains to show that x ? h is integrable, but this follows because the
convolution of two integrable functions is integrable (5.9).

6.6 The Bandwidth of a Product of Two Signals

In this section we discuss the bandwidth of the product of two bandlimited signals.
The result is a straightforward consequence of the fact that the FT of a product
of two signals is the convolution of their FTs. We begin with the following result
on the FT of a product of signals.

Proposition 6.6.1 (The FT of a Product Is the Convolution of the FTs). If x1

and x2 are energy-limited signals, then their product

t 7→ x1(t)x2(t)

is an integrable function whose FT is the mapping

f 7→
(
x̂1 ? x̂2

)
(f).

Proof. Let x1 and x2 be energy-limited signals, and denote their product by y:

y(t) = x1(t)x2(t), t ∈ R.

Since both x1 and x2 are square integrable, it follows from the Cauchy-Schwarz
Inequality that their product y is integrable and that

‖y‖1 ≤ ‖x1‖2 ‖x2‖2 . (6.68)

Having established that the product is integrable, we next derive its FT and show
that

ŷ(f) = (x̂1 ? x̂2)(f), f ∈ R. (6.69)
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This is done by expressing ŷ(f) as an inner product between two finite-energy
functions and by then using Parseval’s Theorem:

ŷ(f) =
∫ ∞

−∞
y(t) e−i2πft dt

=
∫ ∞

−∞
x1(t)x2(t) e−i2πft dt

=
〈
t 7→ x1(t), t 7→ x∗2(t) e

i2πft
〉

=
〈
f̃ 7→ x̂1(f̃), f̃ 7→ x̂∗2(f − f̃)

〉
=
∫ ∞

−∞
x̂1(f̃) x̂2(f − f̃) df̃

= (x̂1 ? x̂2)(f), f ∈ R.

Proposition 6.6.2. Let x1 and x2 be energy-limited signals that are bandlimited to
W1 Hz and W2 Hz respectively. Then their product is an energy-limited signal that
is bandlimited to W1 + W2 Hz.

Proof. We will show that

x1(t)x2(t) =
∫ W1+W2

−(W1+W2)

g(f) ei2πft df, t ∈ R, (6.70)

where the function g(·) satisfies∫ W1+W2

−(W1+W2)

|g(f)|2 df <∞. (6.71)

The result will then follow from Proposition 6.4.5.

To establish (6.70) we begin by noting that since x1 is of finite energy and band-
limited to W1 Hz we have by Proposition 6.4.5

x1(t) =
∫ W1

−W1

x̂1(f1) ei2πf1t df1, t ∈ R.

Similarly,

x2(t) =
∫ W2

−W2

x̂2(f2) ei2πf2t df2, t ∈ R.

Consequently,

x1(t)x2(t) =
∫ W1

−W1

x̂1(f1) ei2πf1t df1
∫ W2

−W2

x̂2(f2) ei2πf2t df2

=
∫ W1

−W1

∫ W2

−W2

x̂1(f1) x̂2(f2) ei2π(f1+f2)t df1 df2

=
∫ ∞

−∞

∫ ∞

−∞
x̂1(f1) x̂2(f2) ei2π(f1+f2)t df1 df2
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=
∫ ∞

−∞

∫ ∞

−∞
x̂1(f̃) x̂2(f − f̃) ei2πft df̃ df

=
∫ ∞

−∞
ei2πft (x̂1 ? x̂2)(f) df

=
∫ ∞

−∞
ei2πft g(f) df, t ∈ R, (6.72)

where
g(f) =

∫ ∞

−∞
x̂1(f̃) x̂2(f − f̃) df̃ , f ∈ R. (6.73)

Here the second equality follows from Fubini’s Theorem;11 the third because x1

and x2 are bandlimited to W1 and W2 Hz respectively; and the fourth by intro-
ducing the variables f , f1 + f2 and f̃ , f1.

To establish (6.70) we now need to show that because x1 and x2 are bandlimited
to W1 and W2 Hz respectively, it follows that

g(f) = 0, |f | > W1 + W2. (6.74)

To prove this we note that because x1 and x2 are bandlimited to W1 Hz and W2

Hz respectively, we can rewrite (6.73) as

g(f) =
∫ ∞

−∞
x̂1(f̃) I

{
|f̃ | ≤W1

}
x̂2(f − f̃) I

{
|f − f̃ | ≤W2

}
df̃ , f ∈ R, (6.75)

and the product I
{
|f | ≤W1

}
I
{
|f−f̃ | ≤W2

}
is zero for all frequencies f̃ satisfying

|f̃ | > W1 + W2.

Having established (6.70) using (6.72) and (6.74), we now proceed to prove (6.71)
by showing that the integrand in (6.71) is bounded. We do so by noting that
the integrand in (6.71) is the convolution of two square-integrable functions (x̂1

and x̂2) so by (5.6b) (with the dummy variable now being f) we have

|g(f)| ≤ ‖x̂1‖2 ‖x̂2‖2 = ‖x1‖2 ‖x2‖2 <∞, f ∈ R.

6.7 Bernstein’s Inequality

Bernstein’s Inequality captures the engineering intuition that the rate at which
a bandlimited signal can change is proportional to its bandwidth. The way the
theorem is phrased makes it clear that it is applicable both to integrable signals
that are bandlimited to W Hz and to energy-limited signals that are bandlimited
to W Hz.

Theorem 6.7.1 (Bernstein’s Inequality). If x can be written as

x(t) =
∫ W

−W

g(f) ei2πft df, t ∈ R

11The fact that
∫W1
−W1

|x̂(f)| df is finite follows from the finiteness of
∫W1
−W1

|x̂(f)|2 df (which

follows from Parseval’s Theorem) and from Proposition 3.4.3. The same argument applies to x2.
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for some integrable function g, then∣∣∣∣ dx(t)
dt

∣∣∣∣ ≤ 4πW sup
τ∈R
|x(τ)|, t ∈ R. (6.76)

Proof. A proof of a slightly more general version of this theorem can be found in
(Pinsky, 2002, Chapter 2, Section 2.3.8).

6.8 Time-Limited and Bandlimited Signals

In this section we prove that no nonzero signal can be both time-limited and
bandlimited. We shall present two proofs. The first is based on Theorem 6.8.1,
which establishes a connection between bandlimited signals and entire functions.
The second is based on the Fourier Series.

We remind the reader that a function ξ : C → C is an entire function if it is
analytic throughout the complex plane.

Theorem 6.8.1. If x is an energy-limited signal that is bandlimited to W Hz, then
there exists an entire function ξ : C→ C that agrees with x on the real axis

ξ(t+ i0) = x(t), t ∈ R (6.77)

and that satisfies
|ξ(z)| ≤ γ e2πW|z|, z ∈ C, (6.78)

where γ is some constant that can be taken as
√

2W ‖x‖2 .

Proof. Let x be an energy-limited signal that is bandlimited to W Hz. By Propo-
sition 6.4.5 we can express x as

x(t) =
∫ W

−W

g(f) ei2πft df, t ∈ R (6.79)

for some square-integrable function g satisfying∫ W

−W

|g(f)|2 df = ‖x‖22 . (6.80)

Consider now the function ξ : C→ C defined by

ξ(z) =
∫ W

−W

g(f) ei2πfz df, z ∈ C. (6.81)

This function is well-defined for every z ∈ C because in the region of integration
the integrand can be bounded by∣∣g(f) ei2πfz

∣∣ = |g(f)| e−2πf Im(z)

≤ |g(f)| e2π|f | |Im(z)|

≤ |g(f)| e2πW |z|, |f | ≤W, (6.82)
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and the RHS of (6.82) is integrable over the interval [−W,W ] by (6.80) and Propo-
sition 3.4.3.

By (6.79) and (6.81) it follows that ξ is an extension of the function x in the sense
of (6.77). It is but a technical matter to prove that ξ is analytic. One approach is
to prove that it is differentiable at every z ∈ C by verifying that the swapping of
differentiation and integration, which leads to

dξ
dz

(z) =
∫ W

−W

g(f) (i2πf) ei2πfz df, z ∈ C

is justified. See (Rudin, 1974, Section 19.1) for a different approach.

To prove (6.78) we compute

|ξ(z)| =
∣∣∣∣∫ W

−W

g(f) ei2πfz df
∣∣∣∣

≤
∫ W

−W

∣∣g(f) ei2πfz
∣∣ df

≤ e2πW |z|
∫ W

−W

|g(f)|df

≤ e2πW|z|
√

2W

√∫ W

−W

|g(f)|2 df

=
√

2W ‖x‖2 e
2πW|z|,

where the inequality in the second line follows from Proposition 2.4.1; the inequality
in the third line from (6.82); the inequality in the fourth line from Proposition 3.4.3;
and the final equality from (6.80).

Using Theorem 6.8.1 we can now easily prove the main result of this section.

Theorem 6.8.2. Let W and T be fixed nonnegative real numbers. If x is an energy-
limited signal that is bandlimited to W Hz and that is time-limited in the sense that
it is zero for all t /∈ [−T/2, T/2], then x(t) = 0 for all t ∈ R.

By Note 6.4.12 this theorem also holds for integrable bandlimited signals.

Proof. By Theorem 6.8.1 x can be extended to an entire function ξ. Since x has
infinitely many zeros in a bounded interval (e.g., for all t ∈ [T, 2T ]) and since ξ
agrees with x on the real line, it follows that ξ also has infinitely many zeros
in a bounded set (e.g., whenever z ∈ {w ∈ C : Im(w) = 0, Re(w) ∈ [T, 2T] }).
Consequently, ξ is an entire function that has infinitely many zeros in a bounded
subset of the complex plane and is thus the all-zero function (Rudin, 1974, Theo-
rem 10.18). But since x and ξ agree on the real line, it follows that x is also the
all-zero function.
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Another proof can be based on the Fourier Series, which is discussed in the ap-
pendix. Starting from (6.79) we obtain that the time-η/(2W) sample of x(·) satisfies

1√
2W

x
( η

2W

)
=
∫ W

−W

g(f)
1√
2W

ei2πfη/(2W) df, η ∈ Z,

where we recognize the RHS of the above as the η-th Fourier Series Coefficient of
the function f 7→ g(f) I{|f | ≤W} with respect to the interval [−W,W) (Note A.3.5
on Page 693). But since x(t) = 0 whenever |t| > T/2, it follows that all but a finite
number of these samples can be nonzero, thus leading us to conclude that all but a
finite number of the Fourier Series Coefficients of g(·) are zero. By the uniqueness
theorem for the Fourier Series (Theorem A.2.3) it follows that g(·) is equal to a
trigonometric polynomial (except possibly on a set of measure zero). Thus,

g(f) =
n∑

η=−n
aη e

i2πηf/(2W), f ∈ [−W,W ] \ N , (6.83)

for some n ∈ N; for some 2n + 1 complex numbers a−n, . . . , an; and for some set
N ⊂ [−W,W ] of Lebesgue measure zero. Since the integral in (6.79) is insensitive
to the behavior of g on the set N , it follows from (6.79) and (6.83) that

x(t) =
∫ W

−W

ei2πft
n∑

η=−n
aη e

i2πηf/(2W) df

=
n∑

η=−n
aη

∫ ∞

−∞
ei2πf

(
t+ η

2W

)
I
{
|f | ≤W

}
df

= 2W

n∑
η=−n

aη sinc(2Wt+ η), t ∈ R,

i.e., that x is a linear combination of a finite number of time-shifted sinc(·) func-
tions. It now remains to show that no linear combination of a finite number of
time-shifted sinc(·) functions can be zero for all t ∈ [T, 2T ] unless it is zero for
all t ∈ R. This can be established by extending the sincs to entire functions so
that the linear combination of the time-shifted sinc(·) functions is also an entire
function and by then calling again on the theorem that an entire function that has
infinitely many zeros in a bounded subset of the complex plane must be the all-zero
function.

6.9 A Theorem by Paley and Wiener

The theorem of Paley and Wiener that we discuss next is important in the study
of bandlimited functions, but it will not be used in this book.

Theorem 6.8.1 showed that every energy-limited signal x that is bandlimited to W

Hz can be extended to an entire function ξ satisfying (6.78) for some constant γ
by defining ξ(z) as

ξ(z) =
∫ W

−W

x̂(f) ei2πfz df, z ∈ C. (6.84)
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The theorem of Paley and Wiener that we present next can be viewed as the
reverse statement. It demonstrates that if ξ : C → C is an entire function that
satisfies (6.78) and whose restriction to the real axis is square integrable, then its
restriction to the real axis is an energy-limited signal that is bandlimited to W Hz
and, moreover, if we denote this restriction by x so x(t) = ξ(t + i0) for all t ∈ R,
then ξ is given by (6.84). This theorem demonstrates the close connection between
entire functions satisfying (6.78)—functions that are called entire functions of
exponential type—and energy-limited signals that are bandlimited to W Hz.

Theorem 6.9.1 (Paley-Wiener). If for some positive constants W and γ the entire
function ξ : C→ C satisfies

|ξ(z)| ≤ γ e2πW|z|, z ∈ C (6.85)

and if ∫ ∞

−∞
|ξ(t+ i0)|2 dt <∞, (6.86)

then there exists an energy-limited function g : R→ C such that

ξ(z) =
∫ W

−W

g(f) ei2πfz df, z ∈ C. (6.87)

Proof. See for example, (Rudin, 1974, Theorem 19.3) or (Katznelson, 1976, Chap-
ter VI, Section 7) or (Dym and McKean, 1972, Section 3.3).

6.10 Picket Fences and Poisson Summation

Engineering textbooks often contain a useful expression for the FT of an infinite
series of equally-spaced Dirac’s Deltas. Very roughly, the result is that the FT of
the mapping

t 7→
∞∑

j=−∞
δ
(
t+ jTs

)
is the mapping

f 7→ 1
Ts

∞∑
η=−∞

δ
(
f +

η

Ts

)
,

where δ(·) denotes Dirac’s Delta. Needless to say, we are being extremely informal
because we said nothing about convergence. This result is sometimes called the
picket-fence miracle, because if we envision the plot of Dirac’s Delta as an
upward pointing bold arrow stemming from the origin, then the plot of a sum of
shifted Delta’s resembles a picket fence. The picket-fence miracle is that the FT
of a picket fence is yet another scaled picket fence; see (Oppenheim and Willsky,
1997, Chapter 4, Example 4.8 and also Chapter 7, Section 7.1.1.) or (Kwakernaak
and Sivan, 1991, Chapter 7, Example 7.4.19(c)).
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In the mathematical literature, this result is called “the Poisson summation for-
mula.” It states that under certain conditions on the function ψ ∈ L1 ,

∞∑
j=−∞

ψ
(
jTs

)
=

1
Ts

∞∑
η=−∞

ψ̂
( η

Ts

)
. (6.88)

To identify the roots of (6.88) define the mapping

φ(t) =
∞∑

j=−∞
ψ
(
t+ jTs

)
, (6.89)

and note that this function is periodic in the sense that φ(t+ Ts) = φ(t) for every
t ∈ R. Consequently, it is instructive to study its Fourier Series on the interval
[−Ts/2, Ts/2] (Note A.3.5 in the appendix). Its η-th Fourier Series Coefficient with
respect to the interval [−Ts/2, Ts/2] is given by∫ Ts/2

−Ts/2

φ(t)
1√
Ts

e−i2πηt/Ts dt =
1√
Ts

∫ Ts/2

−Ts/2

∞∑
j=−∞

ψ(t+ jTs) e−i2πηt/Ts dt

=
1√
Ts

∞∑
j=−∞

∫ Ts/2+jTs

−Ts/2+jTs

ψ(τ) e−i2πη(τ−jTs)/Ts dτ

=
1√
Ts

∞∑
j=−∞

∫ Ts/2+jTs

−Ts/2+jTs

ψ(τ) e−i2πητ/Ts dτ

=
1√
Ts

∫ ∞

−∞
ψ(τ) e−i2πητ/Ts dτ

=
1√
Ts

ψ̂
( η

Ts

)
, η ∈ Z,

where the first equality follows from the definition of φ(·) (6.89); the second by
swapping the summation and the integration and by defining τ , t+ jTs; the third
by the periodicity of the complex exponential; the fourth because summing the
integrals over disjoint intervals whose union is R is just the integral over R; and
the final equality from the definition of the FT.

We can thus interpret the RHS of (6.88) as the evaluation12 at t = 0 of the Fourier
Series of φ(·) and the LHS as the evaluation of φ(·) at t = 0. Having established
the origin of the Poisson summation formula, we can now readily state conditions
that guarantee that it holds. An example of a set of conditions that guarantees
(6.88) is the following:

1) The function ψ(·) is integrable.

2) The RHS of (6.89) converges at t = 0.

3) The Fourier Series of φ(·) converges at t = 0 to the value of φ(·) at t = 0.

12At t = 0 the complex exponentials are all equal to one, and the Fourier Series is thus just
the sum of the Fourier Series Coefficients.
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We draw the reader’s attention to the fact that it is not enough that both sides of
(6.88) converge absolutely and that both ψ(·) and ψ̂(·) be continuous; see (Katznel-
son, 1976, Chapter VI, Section 1, Exercise 15).

A setting where the above conditions are satisfied and where (6.88) thus holds is
given in the following proposition.

Proposition 6.10.1. Let ψ(·) be a continuous function satisfying

ψ(t) =

{
0 if |t| ≥ T,∫ t
−T
ξ(τ) dτ otherwise,

(6.90a)

where ∫ T

−T

|ξ(τ)|2 dτ <∞, (6.90b)

and where T > 0 is some constant. Then for any Ts > 0

∞∑
j=−∞

ψ
(
jTs

)
=

1
Ts

∞∑
η=−∞

ψ̂
(2πη

Ts

)
. (6.90c)

Proof. The integrability of ψ(·) follows because ψ(·) is continuous and zero outside
a finite interval. That the RHS of (6.89) converges at t = 0 follows because the
fact that ψ(·) is zero outside the interval [−T,+T ] implies that only a finite number
of terms contribute to the sum at t = 0. That the Fourier Series of φ(·) converges
at t = 0 to the value of φ(·) at t = 0 follows from (Katznelson, 1976, Chapter 1,
Section 6, Paragraph 6.2, Equation (6.2)) and from the corollary in (Katznelson,
1976, Chapter 1, Section 3, Paragraph 3.1).

6.11 Additional Reading

There are a number of excellent books on Fourier Analysis. We mention here
(Katznelson, 1976), (Dym and McKean, 1972), (Pinsky, 2002), and (Körner, 1988).
In particular, readers who would like to better understand how the FT is defined for
energy-limited functions that are not integrable may wish to consult (Katznelson,
1976, Section VI 3.1) or (Dym and McKean, 1972, Sections 2.3–2.5). Numerous
surprising applications of the FT can be found in (Körner, 1988).

Engineers often speak of the 2WT degrees of freedom that signals that are band-
limited and time-limited have. A good starting point for the literature on this is
(Slepian, 1976).

Bandlimited functions are intimately related to “entire functions of exponential
type.” For an accessible introduction to this concept see (Requicha, 1980); for a
more mathematical approach see (Boas, 1954).
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6.12 Exercises

Exercise 6.1 (Symmetries of the FT). Let x : R → C be integrable, and let x̂ be its FT.

(i) Show that if x is a real signal, then x̂ is conjugate symmetric, i.e., x̂(−f) = x̂∗(f),
for every f ∈ R.

(ii) Show that if x is purely imaginary (i.e., takes on only purely imaginary values),
then x̂ is conjugate antisymmetric, i.e., x̂(−f) = −x̂∗(f), for every f ∈ R.

(iii) Show that x̂ can be written uniquely as the sum of a conjugate-symmetric function
gcs and a conjugate-antisymmetric function gcas. Express gcs & gcas in terms of x̂.

Exercise 6.2 (Reconstructing a Function from Its IFT). Formulate and prove a result
analogous to Theorem 6.2.12 for the Inverse Fourier Transform.

Exercise 6.3 (Eigenfunctions of the FT). Show that if the energy-limited signal x satisfies
x̂ = λx for some λ ∈ C, then λ can only be ±1 or ±i. (The Hermite functions are such
signals.)

Exercise 6.4 (Existence of a Stable Filter (1)). Let W > 0 be given. Does there exist a
stable filter whose frequency response is zero for |f | ≤ W and is one for W < f ≤ 2W ?

Exercise 6.5 (Existence of a Stable Filter (2)). Let W > 0 be given. Does there exist a
stable filter whose frequency response is given by cos(f) for all |f | ≥ W ?

Exercise 6.6 (Existence of an Energy-Limited Signal). Argue that there exists an energy-
limited signal x whose FT is (the equivalence class of) the mapping f 7→ e−f I{f ≥ 0}.
What is the energy in x? What is the energy in the result of feeding x to an ideal unit-gain
lowpass filter of cutoff frequency Wc = 1?

Exercise 6.7 (Passive Filters). Let h be the impulse response of a stable filter. Show that
the condition that “for every x ∈ L2 the energy in x ?h does not exceed the energy in x”
is equivalent to the condition ∣∣ĥ(f)

∣∣ ≤ 1, f ∈ R.

Exercise 6.8 (Real and Imaginary Parts of Bandlimited Signals). Show that if x(·) is an
integrable signal that is bandlimited to W Hz, then its real and imaginary parts are also
integrable signals that are bandlimited to W Hz.

Exercise 6.9 (Inner Products and Filtering). Let x be an energy-limited signal that is
bandlimited to W Hz. Show that

〈x,y〉 =
〈
x,y ? LPFW

〉
, y ∈ L2 .

Exercise 6.10 (Squaring a Signal). Show that if x is an eneregy-limited signal that is
bandlimited to W Hz, then t 7→ x2(t) is an integrable signal that is bandlimited to 2W
Hz.

Exercise 6.11 (Squared sinc(·)). Find the FT and IFT of the mapping t 7→ sinc2(t).
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Exercise 6.12 (A Stable Filter). Show that the IFT of the function

g0 : f 7→


1 if |f | ≤ a
b−|f |
b−a if a < |f | < b

0 otherwise

is given by

ǧ0 : t 7→ 1

(πt)2
cos(2πat)− cos(2πbt)

2(b− a)

and that this signal is integrable. Here b > a > 0.

Exercise 6.13 (Multiplying Bandlimited Signals by a Carrier). Let x be an integrable
signal that is bandlimited to W Hz.

(i) Show that if fc > W, then∫ ∞

−∞
x(t) cos(2πfct) dt =

∫ ∞

−∞
x(t) sin(2πfct) dt = 0.

(ii) Show that if fc > W/2, then∫ ∞

−∞
x(t) cos2(2πfct) dt =

1

2

∫ ∞

−∞
x(t) dt.

Exercise 6.14 (An Identity). Prove that for every W ∈ R

sinc(2Wt) cos(2πWt) = sinc(4Wt), t ∈ R.

Illustrate the identity in the frequency domain.

Exercise 6.15 (Picket Fences). If you are familiar with Dirac’s Delta, explain how (6.88) is
related to the heuristic statement that the FT of

∑
j∈Z δ(t+jTs) is T−1

s

∑
η∈Z δ(f+η/Ts).

Exercise 6.16 (Bounding the Derivative). Show that if x is an energy-limited signal that
is bandlimited to W Hz, then its time-t derivative x′(t) satisfies

∣∣x′(t)∣∣ ≤√8

3
πW 3/2 ‖x‖2 , t ∈ R.

Hint: Use Proposition 6.4.5 and the Cauchy-Schwarz Inequality

Exercise 6.17 (Another Notion of Bandwidth). Let U denote the set of all energy-limited
signals u such that at least 90% of the energy of u is contained in the band [−W,W ].
Is U a linear subspace of L2?



Chapter 7

Passband Signals and Their Representation

7.1 Introduction

The signals encountered in wireless communications are typically real passband
signals. In this chapter we shall define such signals and define their bandwidth
around a carrier frequency. We shall then explain how such signals can be rep-
resented using their complex baseband representation. We shall emphasize two
relationships: that between the energy in the passband signal and in its baseband
representation, and that between the bandwidth of the passband signal around the
carrier frequency and the bandwidth of its baseband representation. We ask the
reader to pay special attention to the fact that only real passband signals have a
baseband representation.

Most of the chapter deals with the family of integrable passband signals. As we
shall see in Corollary 7.2.4, an integrable passband signal must have finite energy,
and this family is thus a subset of the family of energy-limited passband signals.
Restricting ourselves to integrable signals—while reducing the generality of some of
the results—simplifies the exposition because we can discuss the Fourier Transform
without having to resort to the L2 -Fourier Transform, which requires all statements
to be phrased in terms of equivalence classes. But most of the derived results will
also hold for the more general family of energy-limited passband signals with only
slight modifications. The required modifications are discussed in Section 7.7.

7.2 Baseband and Passband Signals

Integrable signals that are bandlimited to W Hz were defined in Definition 6.4.9. By
Proposition 6.4.10, an integrable signal x is bandlimited to W Hz if it is continuous
and if its FT is zero for all frequencies outside the band [−W,W ]. The bandwidth
of x is the smallest W to which it is bandlimited (Definition 6.4.13). As an example,
Figure 7.1 depicts the FT x̂ of a real signal x, which is bandlimited to W Hz.
Since the signal x in this example is real, its FT is conjugate-symmetric, (i.e.,
x̂(−f) = x̂∗(f) for all frequencies f ∈ R). Thus, the magnitude of x̂ is symmetric
(even), i.e., |x̂(f)| = |x̂(−f)|, but its phase is anti-symmetric (odd). In the figure
dashed lines indicate this conjugate symmetry.

101
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W

f

W−W

x̂(f)

Figure 7.1: The FT x̂ of a real bandwidth-W baseband signal x.

W

f
fc−fc fc + W

2
fc − W

2

ŷ(f)

Figure 7.2: The FT ŷ of a real passband signal y that is bandlimited to W Hz
around the carrier frequency fc.

Consider now the real signal y whose FT ŷ is depicted in Figure 7.2. Again, since
the signal is real, its FT is conjugate-symmetric, and hence the dashed lines. This
signal (if continuous) is bandlimited to fc +W/2 Hz. But note that ŷ(f) = 0 for all
frequencies f in the interval |f | < fc−W/2. Signals such as y are often encountered
in wireless communication, because in a wireless channel the very-low frequencies
often suffer severe attenuation and are therefore seldom used. Another reason
is the concurrent use of the wireless spectrum by many systems. If all systems
transmitted in the same frequency band, they would interfere with each other.
Consequently, different systems are often assigned different carrier frequencies so
that their transmitted signals will not overlap in frequency. This is why different
radio stations transmit around different carrier frequencies.

7.2.1 Definition and Characterization

To describe signals such as y we use the following definition for passband signals.
We ask the reader to recall the definition of the impulse response BPFW,fc(·) (see
(5.21)) and of the frequency response B̂PFW,fc(·) (see (6.41)) of the ideal unit-gain
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bandpass filter of bandwidth W around the carrier frequency fc.

Definition 7.2.1 (A Passband Signal). A signal xPB is said to be an integrable
passband signal that is bandlimited to W Hz around the carrier fre-
quency fc if it is integrable

xPB ∈ L1 ; (7.1a)

the carrier frequency fc satisfies

fc >
W

2
> 0; (7.1b)

and if xPB is unaltered when it is fed to an ideal unit-gain bandpass filter of band-
width W around the carrier frequency fc

xPB(t) =
(
xPB ? BPFW,fc

)
(t), t ∈ R. (7.1c)

An energy-limited passband signal that is bandlimited to W Hz around
the carrier frequency fc is analogously defined but with (7.1a) replaced by the
condition

xPB ∈ L2 . (7.1a’)

(That the convolution in (7.1c) is defined at every t ∈ R whenever xPB is integrable
can be shown using Proposition 6.2.5 because BPFW,fc is the Inverse Fourier Trans-
form of the integrable function f 7→ I

{∣∣|f | − fc∣∣ ≤W/2
}
. That the convolution is

defined at every t ∈ R also when xPB is of finite energy can be shown by noting
that BPFW,fc is of finite energy, and the convolution of two finite-energy signals is
defined at every time t ∈ R; see Section 5.5.)

In analogy to Proposition 6.4.10 we have the following characterization:

Proposition 7.2.2 (Characterizing Integrable Passband Signals). Let fc and W

satisfy fc > W/2 > 0. If xPB is an integrable signal, then each of the following
statements is equivalent to the statement that xPB is an integrable passband signal
that is bandlimited to W Hz around the carrier frequency fc.

(a) The signal xPB is unaltered when it is bandpass filtered:

xPB(t) =
(
xPB ? BPFW,fc

)
(t), t ∈ R. (7.2)

(b) The signal xPB can be expressed as

xPB(t) =
∫
||f |−fc|≤W/2

x̂PB(f) ei2πft df, t ∈ R. (7.3)

(c) The signal xPB is continuous and

x̂PB(f) = 0,
∣∣|f | − fc∣∣ > W

2
. (7.4)

(d) There exists an integrable function g such that

xPB(t) =
∫
||f |−fc|≤W/2

g(f) ei2πft df, t ∈ R. (7.5)

Proof. The proof is similar to the proof of Proposition 6.4.10 and is omitted.
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7.2.2 Important Properties

By comparing (7.4) with (6.62) we obtain:

Corollary 7.2.3 (Passband Signals Are Bandlimited). If xPB is an integrable pass-
band signal that is bandlimited to W Hz around the carrier frequency fc, then it is
an integrable signal that is bandlimited to fc + W/2 Hz.

Using Corollary 7.2.3 and Note 6.4.12 we obtain:

Corollary 7.2.4 (Integrable Passband Signals Are of Finite Energy). Any inte-
grable passband signal that is bandlimited to W Hz around the carrier frequency fc
is of finite energy.

Proposition 7.2.5 (Integrable Passband Signals through Stable Filters). If xPB

is an integrable passband signal that is bandlimited to W Hz around the carrier
frequency fc, and if h ∈ L1 is the impulse response of a stable filter, then the
convolution xPB ? h is defined at every epoch; it is an integrable passband signal
that is bandlimited to W Hz around the carrier frequency fc; and its FT is the
mapping f 7→ x̂PB(f) ĥ(f).

Proof. The proof is similar to the proof of the analogous result for bandlimited
signals (Proposition 6.5.2) and is omitted.

7.3 Bandwidth around a Carrier Frequency

Definition 7.3.1 (The Bandwidth around a Carrier Frequency). The bandwidth
around the carrier fc of an integrable or energy-limited passband signal xPB is
the smallest W for which both (7.1b) and (7.1c) hold.

Note 7.3.2 (The Carrier Frequency Is Critical). The bandwidth of xPB around
the carrier frequency fc is determined not only by the FT of xPB but also by fc.

For example, the real passband signal whose FT is depicted in Figure 7.3 is of
bandwidth W around the carrier frequency fc, but its bandwidth is smaller around
a slightly higher carrier frequency.

At first it may seem that the definition of bandwidth for passband signals is incon-
sistent with the definition for baseband signals. This, however, is not the case. A
good way to remember the definitions is to focus on real signals. For such signals
the bandwidth for both baseband and passband signals is defined as the length of
an interval of positive frequencies where the FT of the signal may be nonzero. For
baseband signals the bandwidth is the length of the smallest interval of positive
frequencies of the form [0,W] containing all positive frequencies where the FT may
be nonzero. For passband signals it is the length of the smallest interval of positive
frequencies that is symmetric around the carrier frequency fc and that contains
all positive frequencies where the signal may be nonzero. (For complex signals we
have to allow for the fact that the zeros of the FT may not be symmetric sets
around the origin.) See also Figures 6.2 and 6.3.
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WW

W−W
f

f

W

fc−fc fc + W
2

fc − W
2

Figure 7.3: The FT of a complex baseband signal of bandwidth W Hz (above)
and of a real passband signal of bandwidth W Hz around the carrier frequency fc
(below).

We draw the reader’s attention to an important consequence of our definition of
bandwidth:

Proposition 7.3.3 (Multiplication by a Carrier Doubles the Bandwidth). If x is
an integrable signal of bandwidth W Hz and if fc > W, then t 7→ x(t) cos(2πfct) is
an integrable passband signal of bandwidth 2W around the carrier frequency fc.

Proof. Define y : t 7→ x(t) cos(2πfct). The proposition is a straightforward conse-
quence of the definition of the bandwidth of x (Definition 6.4.13); the definition of
the bandwidth of y around the carrier frequency fc (Definition 7.3.1); and the fact
that if x is a continuous integrable signal of FT x̂, then y is a continuous integrable
signal of FT

ŷ(f) =
1
2
(
x̂(f − fc) + x̂(f + fc)

)
, f ∈ R, (7.6)

where (7.6) follows from the calculation

ŷ(f) =
∫ ∞

−∞
y(t) e−i2πft dt

=
∫ ∞

−∞
x(t) cos(2πfct) e−i2πft dt
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W

f

W−W

1

x̂(f)

Figure 7.4: The FT of a complex baseband bandwidth-W signal x.

2W

f
fc fc + Wfc −W

1
2

ŷ(f)

Figure 7.5: The FT of y : t 7→ x(t) cos (2πfct), where x̂ is as depicted in Figure 7.4.
Note that x is of bandwidth W and that y is of bandwidth 2W around the carrier
frequency fc.

=
∫ ∞

−∞
x(t)

ei2πfct + e−i2πfct

2
e−i2πft dt

=
1
2

∫ ∞

−∞
x(t) e−i2π(f−fc)t dt+

1
2

∫ ∞

−∞
x(t) e−i2π(f+fc)t dt

=
1
2
(
x̂(f − fc) + x̂(f + fc)

)
, f ∈ R.

As an illustration of the relation (7.6) note that if x is the complex bandwidth-W
signal whose FT is depicted in Figure 7.4, then the signal y : t 7→ x(t) cos(2πfct) is
the complex passband signal of bandwidth 2W around fc whose FT is depicted in
Figure 7.5.

Similarly, if x is the real baseband signal of bandwidth W whose FT is depicted
in Figure 7.6, then y : t 7→ x(t) cos(2πfct) is the real passband signal of bandwidth
2W around fc whose FT is depicted in Figure 7.7.

In wireless applications the bandwidth W of the signals around the carrier frequency
is typically much smaller than the carrier frequency fc, but for most of our results
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Figure 7.6: The FT of a real baseband bandwidth-W signal x.

2W

f
fc fc + Wfc −W

1
2

ŷ(f)

Figure 7.7: The FT of y : t 7→ x(t) cos (2πfct), where x̂ is as depicted in Figure 7.6.
Here x is of bandwidth W and y is of bandwidth 2W around the carrier frequency
fc.

it suffices that (7.1b) hold.

The notion of a passband signal is also applied somewhat loosely in instances where
the signals are not bandlimited. Engineers say that an energy-limited signal is a
passband signal around the carrier frequency fc if most of its energy is contained
in frequencies that are close to fc and −fc. Notice that in this “definition” we are
relying heavily on Parseval’s theorem. I.e., we think about the energy ‖x‖22 of x as
being computed in the frequency domain, i.e., by computing ‖x̂‖22 =

∫
|x̂(f)|2 df .

By “most of the energy is contained in frequencies that are close to fc and −fc”
we thus mean that most of the contributions to this integral come from small
frequency intervals around fc and −fc. In other words, we say that x is a passband
signal whose energy is mostly concentrated in a bandwidth W around the carrier
frequency fc if ∫ ∞

−∞
|x̂(f)|2 df ≈

∫
||f |−fc|≤W/2

|x̂(f)|2 df. (7.7)

Similarly, a signal is approximately a baseband signal that is bandlimited to W Hz
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if ∫ ∞

−∞
|x̂(f)|2 df ≈

∫ W

−W

|x̂(f)|2 df. (7.8)

7.4 Real Passband Signals

Before discussing the baseband representation of real passband signals we empha-
size the following.

(i) The passband signals transmitted and received in Digital Communications
are real.

(ii) Only real passband signals have a baseband representation.

(iii) The baseband representation of a real passband signal is typically a complex
signal.

(iv) While the FT of real signals is conjugate-symmetric (6.3), this does not imply
any symmetry with respect to the carrier frequency. Thus, the FT depicted
in Figure 7.2 and the one depicted in Figure 7.7 both correspond to real
passband signals. (The former is bandlimited to W Hz around fc and the
latter to 2W around fc.)

We also note that if x is a real integrable signal, then its FT must be conjugate-
symmetric. But if g ∈ L1 is such that its IFT ǧ is real, it does not follow that g
must be conjugate-symmetric. For example, the conjugate symmetry could be
broken on a set of frequencies of Lebesgue measure zero, a set that does not influ-
ence the IFT. As the next proposition shows, this is the only way the conjugate
symmetry can be broken.

Proposition 7.4.1. If x is a real signal and if x = ǧ for some integrable function
g : f 7→ g(f), then:

(i) The signal x can be represented as the IFT of a conjugate-symmetric inte-
grable function.

(ii) The function g and the conjugate-symmetric function f 7→
(
g(f)+g∗(−f)

)
/2

agree except on a set of frequencies of Lebesgue measure zero.

Proof. Since x is real and since x = ǧ it follows that

x(t) = Re
(
x(t)

)
=

1
2
x(t) +

1
2
x∗(t)

=
1
2

∫ ∞

−∞
g(f) ei2πft df +

1
2

(∫ ∞

−∞
g(f) ei2πft df

)∗
=

1
2

∫ ∞

−∞
g(f) ei2πft df +

1
2

∫ ∞

−∞
g∗(f) e−i2πft df
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=
1
2

∫ ∞

−∞
g(f) ei2πft df +

1
2

∫ ∞

−∞
g∗(−f̃) ei2πf̃t df̃

=
∫ ∞

−∞

g(f) + g∗(−f)
2

ei2πft df, t ∈ R,

where the first equality follows from the hypothesis that x is a real signal; the second
because for any z ∈ C we have Re(z) = (z + z∗)/2; the third by the hypothesis
that x = ǧ; the fourth because conjugating a complex integral is tantamount
to conjugating the integrand (Proposition 2.3.1 (ii)); the fifth by changing the
integration variable in the second integral to f̃ , −f ; and the sixth by combining
the integrals. Thus, x is the IFT of the conjugate-symmetric function defined by
f 7→

(
g(f) + g∗(−f)

)
/2, and (i) is established.

As to (ii), since x is the IFT of both g and f 7→
(
g(f)+ g∗(−f)

)
/2, it follows from

the IFT analog of Theorem 6.2.12 that the two agree outside a set of Lebesgue
measure zero.

7.5 The Analytic Signal

In this section we shall define the analytic representation of a real passband
signal. This is also sometimes called the analytic signal associated with the
signal. We shall use the two terms interchangeably. The analytic representation
will serve as a steppingstone to the baseband representation, which is extremely
important in Digital Communications. We emphasize that an analytic signal can
only be associated with a real passband signal. The analytic signal itself, however,
is complex-valued.

7.5.1 Definition and Characterization

Let xPB be a real integrable passband signal that is bandlimited to W Hz around
the carrier frequency fc. We would have liked to define its analytic representation
as the complex signal xA whose FT is the mapping

f 7→ x̂PB(f) I{f ≥ 0}, (7.9)

i.e., as the integrable signal whose FT is equal to zero at negative frequencies and to
x̂PB(f) at nonnegative frequencies. While this is often the way we think about xA,
there are two problems with this definition: an existence problem and a uniqueness
problem. It is not prima facie clear that there exists an integrable signal whose FT
is the mapping (7.9). (We shall soon see that there does.) And, since two signals
that differ on a set of Lebesgue measure zero have identical Fourier Transforms, the
above definition would not fully specify xA. This could be remedied by insisting
that xA be continuous, but this would further exacerbate the existence issue. (We
shall see that there does exist a unique integrable continuous signal whose FT is
the mapping (7.9), but this requires proof.) Our approach is to define xA as the
IFT of the mapping (7.9) and to then explore the properties of xA.
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Definition 7.5.1 (Analytic Representation of a Real Passband Signal). The an-
alytic representation of a real integrable passband signal xPB that is bandlimited
to W Hz around the carrier frequency fc is the complex signal xA defined by

xA(t) ,
∫ ∞

0

x̂PB(f) ei2πft df, t ∈ R. (7.10)

Note that, by Proposition 7.2.2, x̂PB(f) vanishes at frequencies f that satisfy∣∣|f | − fc∣∣ > W/2, so we can also write (7.10) as

xA(t) =
∫ fc+

W
2

fc−W
2

x̂PB(f) ei2πft df, t ∈ R. (7.11)

This latter expression has the advantage that it makes it clear that the integral
is well-defined for every t ∈ R, because the integrability of xPB implies that the
integrand is bounded, i.e., that x̂PB(f) ≤ ‖xPB‖1 for every f ∈ R (Theorem 6.2.11)
and hence that the mapping f 7→ x̂PB(f) I{|f − fc| ≤W/2} is integrable.

Also note that our definition of the analytic signal may be off by a factor of two
or
√

2 from the one used in some textbooks. (Some textbooks introduce a factor
of
√

2 in order to make the energy in the analytic signal equal that in the passband
signal. We do not do so and hence end up with a factor of two in (7.23) ahead.)

We next show that the analytic signal xA is a continuous and integrable signal and
that its FT is given by the mapping (7.9). In fact, we prove more.

Proposition 7.5.2 (Characterizations of the Analytic Signal). Let xPB be a real
integrable passband signal that is bandlimited to W Hz around the carrier fre-
quency fc. Then each of the following statements is equivalent to the statement
that the complex-valued signal xA is its analytic representation.

(a) The signal xA is given by

xA(t) =
∫ fc+

W
2

fc−W
2

x̂PB(f) ei2πft df, t ∈ R. (7.12)

(b) The signal xA is a continuous integrable signal satisfying

x̂A(f) =

{
x̂PB(f) if f ≥ 0,
0 otherwise.

(7.13)

(c) The signal xA is an integrable passband signal that is bandlimited to W Hz
around the carrier frequency fc and that satisfies (7.13).

(d) The signal xA is given by
xA = xPB ? ǧ (7.14a)

for every integrable mapping g : f 7→ g(f) satisfying

g(f) = 1,
∣∣f − fc∣∣ ≤ W

2
, (7.14b)
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and

g(f) = 0,
∣∣f + fc

∣∣ ≤ W

2
(7.14c)

(with g(f) unspecified at other frequencies).

Proof. That Condition (a) is equivalent to the statement that xA is the analytic
representation of xPB is just a restatement of Definition 7.5.1. It thus only remains
to show that Conditions (a), (b), (c), and (d) are equivalent. We shall do so by
establishing that (a) ⇔ (d); that (b) ⇔ (c); that (b) ⇒ (a); and that (d) ⇒ (c).

To establish (a)⇔ (d) we use the integrability of xPB and of g to compute xPB ? ǧ
using Proposition 6.2.5 as

(
xPB ? ǧ

)
(t) =

∫ ∞

−∞
x̂PB(f) g(f) ei2πft df

=
∫ ∞

0

x̂PB(f) g(f) ei2πft df

=
∫ fc+

W
2

fc−W
2

x̂PB(f) g(f) ei2πft df

=
∫ fc+

W
2

fc−W
2

x̂PB(f) ei2πft df, t ∈ R,

where the first equality follows from Proposition 6.2.5; the second because the
assumption that xPB is a passband signal implies, by Proposition 7.2.2 (cf. (c)),
that the only negative frequencies f < 0 where x̂PB(f) can be nonzero are those
satisfying |−f −fc| ≤W/2, and at those frequencies g is zero by (7.14c); the third
by Proposition 7.2.2 (cf. (c)); and the fourth equality by (7.14b). This establishes
that (a) ⇔ (d).

The equivalence (b)⇔ (c) is an immediate consequence of Proposition 7.2.2. That
(b) ⇒ (a) can be proved using Corollary 6.2.14 as follows. If (b) holds, then xA

is a continuous integrable signal whose FT is given by the integrable function on
the RHS of (7.13) and therefore, by Corollary 6.2.14, xA is the IFT of the RHS of
(7.13), thus establishing (a).

We now complete the proof by showing that (d)⇒ (c). To this end let g : f 7→ g(f)
be a continuous integrable function satisfying (7.14b) & (7.14c) and additionally
satisfying that its IFT ǧ is integrable. For example, g could be the function from R
to R that is defined by

g(f) =


1 if |f − fc| ≤W/2,
0 if |f − fc| ≥Wc/2,
Wc−2|f−fc|

Wc−W otherwise,
(7.15)

where Wc can be chosen arbitrarily in the range

W < Wc < 2fc. (7.16)
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This function is depicted in Figure 7.8. By direct calculation, it can be shown that
its IFT is given by1

ǧ(t) = ei2πfct
1

(πt)2
cos(πWt)− cos(πWct)

Wc −W
, t ∈ R, (7.17)

which is integrable. Define now h = ǧ and note that, by Corollary 6.2.14, ĥ = g.

If (d) holds, then

xA = xPB ? ǧ

= xPB ? h,

so xA is the result of feeding an integrable passband signal that is bandlimited
to W Hz around the carrier frequency fc (the signal xPB) through a stable filter
(of impulse response h). Consequently, by Proposition 7.2.5, xA is an integrable
passband signal that is bandlimited to W Hz around the carrier frequency fc and
its FT is given by f 7→ x̂PB(f)ĥ(f). Thus, as we next justify,

x̂A(f) = x̂PB(f) ĥ(f)
= x̂PB(f) g(f)
= x̂PB(f) g(f) I{f ≥ 0}
= x̂PB(f) I{f ≥ 0}, f ∈ R,

thus establishing (c). Here the third equality is justified by noting that the as-
sumption that xPB is a passband signal implies, by Proposition 7.2.2 (cf. (c)),
that the only negative frequencies f < 0 where x̂PB(f) can be nonzero are those
satisfying |−f − fc| ≤ W/2, and at those frequencies g is zero by (7.15), (7.16),
and (7.1b). The fourth equality follows by noting that the assumption that xPB

is a passband signal implies, by Proposition 7.2.2 (cf. (c)), that the only positive
frequencies f > 0 where x̂PB(f) can be nonzero are those satisfying |f −fc| ≤W/2
and at those frequencies g(f) = 1 by (7.15).

7.5.2 From xA back to xPB

Proposition 7.5.2 describes the analytic representation xA in terms of the real
passband signal xPB. This representation would have been useless if we had not
been able to recover xPB from xA. Fortunately, we can. The key is that, because
xPB is real, its FT is conjugate-symmetric

x̂PB(−f) = x̂∗PB(f), f ∈ R. (7.18)

Consequently, since the FT of xA is equal to that of xPB at the positive frequencies
and to zero at the negative frequencies (7.13), we can add to x̂A its conjugated
mirror-image to obtain x̂PB:

x̂PB(f) = x̂A(f) + x̂∗A(−f), f ∈ R; (7.19)

1At t = 0, the RHS of (7.17) should be interpreted as (W + Wc)/2.
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fc

1
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Figure 7.8: The function g of (7.15), which is used in the proof of Proposition 7.5.2.

see Figure 7.12 on Page 124. From here it is just a technicality to obtain the
time-domain relationship

xPB(t) = 2 Re
(
xA(t)

)
, t ∈ R. (7.20)

These results are summarized in the following proposition.

Proposition 7.5.3 (Recovering xPB from xA). Let xPB be a real integrable pass-
band signal that is bandlimited to W Hz around the carrier frequency fc, and let xA

be its analytic representation. Then,

x̂PB(f) = x̂A(f) + x̂∗A(−f), f ∈ R, (7.21a)

and
xPB(t) = 2 Re

(
xA(t)

)
, t ∈ R. (7.21b)

Proof. The frequency relation (7.21a) is just a restatement of (7.19), whose deriva-
tion was rigorous. To prove (7.21b) we note that, by Proposition 7.2.2 (cf. (b) &
(c)),

xPB(t) =
∫ ∞

−∞
x̂PB(f) ei2πft df

=
∫ ∞

0

x̂PB(f) ei2πft df +
∫ 0

−∞
x̂PB(f) ei2πft df

= xA(t) +
∫ 0

−∞
x̂PB(f) ei2πft df

= xA(t) +
∫ ∞

0

x̂PB(−f̃) e−i2πf̃t df̃

= xA(t) +
∫ ∞

0

x̂∗PB(f̃) e−i2πf̃t df̃

= xA(t) +
(∫ ∞

0

x̂PB(f̃) ei2πf̃t df̃
)∗

= xA(t) + x∗A(t)

= 2Re
(
xA(t)

)
, t ∈ R,
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where in the second equality we broke the integral into two; in the third we used
Definition 7.5.1; in the fourth we changed the integration variable to f̃ , −f ;
in the fifth we used the conjugate symmetry of x̂PB (7.18); in the sixth we used
the fact that conjugating the integrand results in the conjugation of the integral
(Proposition 2.3.1); in the seventh we used the definition of the analytic signal;
and in the last equality we used the fact that a complex number and its conjugate
add up to twice its real part.

7.5.3 Relating 〈xPB,yPB〉 to 〈xA,yA〉

We next relate the inner product between two real passband signals to the inner
product between their analytic representations.

Proposition 7.5.4 (〈xPB,yPB〉 and 〈xA,yA〉). Let xPB and yPB be real integrable
passband signals that are bandlimited to W Hz around the carrier frequency fc, and
let xA and yA be their analytic representations. Then

〈xPB,yPB〉 = 2Re
(
〈xA,yA〉

)
, (7.22)

and
‖xPB‖22 = 2 ‖xA‖22 . (7.23)

Note that in (7.22) the inner product appearing on the LHS is the inner product
between real signals whereas the one appearing on the RHS is between complex
signals.

Proof. We first note that the inner products and energies are well-defined because
integrable passband signals are also energy-limited (Corollary 7.2.4). Next, even
though (7.23) is a special case of (7.22), we first prove (7.23). The proof is a simple
application of Parseval’s Theorem. The intuition is as follows. Since xPB is real,
it follows that its FT is conjugate-symmetric (7.18) so the magnitude of x̂PB is
symmetric. Consequently, the positive frequencies and the negative frequencies
of x̂PB contribute an equal share to the total energy in x̂PB. And since the energy
in the analytic representation is equal to the share corresponding to the positive
frequencies only, its energy must be half the energy of xPB.

This can be argued more formally as follows. Because xPB is real-valued, its FT x̂PB

is conjugate-symmetric (7.18), so its magnitude is symmetric |x̂PB(f)| = |x̂PB(−f)|
for all f ∈ R and, a fortiori,∫ ∞

0

|x̂PB(f)|2 df =
∫ 0

−∞
|x̂PB(f)|2 df. (7.24)

Also, by Parseval’s Theorem (applied to xPB),∫ ∞

0

|x̂PB(f)|2 df +
∫ 0

−∞
|x̂PB(f)|2 df = ‖xPB‖22 . (7.25)

Consequently, by combining (7.24) and (7.25), we obtain∫ ∞

0

|x̂PB(f)|2 df =
1
2
‖xPB‖22 . (7.26)
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We can now establish (7.23) from (7.26) by using Parseval’s Theorem (applied
to xA) and (7.13) to obtain

‖xA‖22 = ‖x̂A‖22

=
∫ ∞

−∞
|x̂A(f)|2 df

=
∫ ∞

0

|x̂PB(f)|2 df

=
1
2
‖xPB‖22 ,

where the last equality follows from (7.26).

We next prove (7.22). We offer two proofs. The first is very similar to our proof
of (7.23): we use Parseval’s Theorem to express the inner products in the fre-
quency domain, and then argue that the contribution of the negative frequencies
to the inner product is the complex conjugate of the contribution of the positive
frequencies. The second proof uses a trick to relate inner products and energies.

We begin with the first proof. Using Proposition 7.5.3 we have

x̂PB(f) = x̂A(f) + x̂∗A(−f), f ∈ R,

ŷPB(f) = ŷA(f) + ŷ∗A(−f), f ∈ R.

Using Parseval’s Theorem we now have

〈xPB,yPB〉 = 〈x̂PB, ŷPB〉

=
∫ ∞

−∞
x̂PB(f)ŷ∗PB(f) df

=
∫ ∞

−∞

(
x̂A(f) + x̂∗A(−f)

)(
ŷA(f) + ŷ∗A(−f)

)∗
df

=
∫ ∞

−∞

(
x̂A(f) + x̂∗A(−f)

)(
ŷ∗A(f) + ŷA(−f)

)
df

=
∫ ∞

−∞
x̂A(f) ŷ∗A(f) df +

∫ ∞

−∞
x̂∗A(−f) ŷA(−f) df

=
∫ ∞

−∞
x̂A(f) ŷ∗A(f) df +

(∫ ∞

−∞
x̂A(−f) ŷ∗A(−f) df

)∗
=
∫ ∞

−∞
x̂A(f) ŷ∗A(f) df +

(∫ ∞

−∞
x̂A(f̃) ŷ∗A(f̃) df̃

)∗
= 〈x̂A, ŷA〉+ 〈x̂A, ŷA〉∗

= 2Re
(
〈x̂A, ŷA〉

)
= 2Re

(
〈xA,yA〉

)
,

where the fifth equality follows because at all frequencies f ∈ R the cross-terms
x̂A(f) ŷA(−f) and x̂∗A(−f) ŷ∗A(f) are zero, and where the last equality follows from
Parseval’s Theorem.
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The second proof is based on (7.23) and on the identity

2 Re
(
〈u,v〉

)
= ‖u + v‖22 − ‖u‖

2
2 − ‖v‖

2
2 , u,v ∈ L2 , (7.27)

which holds for both complex and real signals and which follows by expressing
‖u + v‖22 as

‖u + v‖22 = 〈u + v,u + v〉
= 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉

= ‖u‖22 + ‖v‖22 + 〈u,v〉+ 〈u,v〉∗

= ‖u‖22 + ‖v‖22 + 2 Re
(
〈u,v〉

)
.

From Identity (7.27) and from (7.23) we have for the real signals xPB and yPB

2〈xPB,yPB〉 = 2Re
(
〈xPB,yPB〉

)
= ‖xPB + yPB‖22 − ‖xPB‖22 − ‖yPB‖22
= 2
(
‖xA + yA‖22 − ‖xA‖22 − ‖yA‖22

)
= 4Re

(
〈xA,yA〉

)
,

where the first equality follows because the passband signals are real; the second
from Identity (7.27) applied to the passband signals xPB and yPB; the third from
the second part of Proposition 7.5.4 and because the analytic representation of
xPB + yPB is xA + yA; and the final equality from Identity (7.27) applied to the
analytic signals xA and yA.

7.6 Baseband Representation of Real Passband Signals

Strictly speaking, the baseband representation xBB of a real passband sig-
nal xPB is not a “representation” because one cannot recover xPB from xBB alone;
one also needs to know the carrier frequency fc. This may seem like a disadvantage,
but engineers view this as an advantage. Indeed, in some cases, it may illuminate
the fact that certain operations and results do not depend on the carrier frequency.
This decoupling of various operations from the carrier frequency is very useful in
hardware implementation of communication systems that need to work around
selectable carrier frequencies. It allows for some of the processing to be done us-
ing carrier-independent hardware and for only a small part of the communication
system to be tunable to the carrier frequency. Very loosely speaking, engineers
think of xBB as everything about xPB that is not carrier-dependent. Thus, one
does not usually expect the quantity fc to show up in a formula for the baseband
representation. Philosophical thoughts aside, the baseband representation has a
straightforward definition.

7.6.1 Definition and Characterization

Definition 7.6.1 (Baseband Representation). The baseband representation of
a real integrable passband signal xPB that is bandlimited to W Hz around the carrier
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frequency fc is the complex signal

xBB(t) , e−i2πfct xA(t), t ∈ R, (7.28)

where xA is the analytic representation of xPB.

Note that, by (7.28), the magnitudes of xA and xBB are identical∣∣xBB(t)
∣∣ = ∣∣xA(t)

∣∣, t ∈ R. (7.29)

Consequently, since xA is integrable we also have:

Proposition 7.6.2 (Integrability of xPB Implies Integrability of xBB). The base-
band representation of a real integrable passband signal that is bandlimited to W

Hz around the carrier frequency fc is integrable.

By (7.28) and (7.13) we obtain that if xPB is a real integrable passband signal that
is bandlimited to W Hz around the carrier frequency fc, then

x̂BB(f) = x̂A(f + fc) =

{
x̂PB(f + fc) if |f | ≤W/2,
0 otherwise.

(7.30)

Thus, the FT of xBB is the FT of xA but shifted to the left by the carrier fre-
quency fc. The relationship between the Fourier Transforms of xPB, xA, and xBB

is depicted in Figure 7.9.

We have defined the baseband representation of a passband signal in terms of its
analytic representation, but sometimes it is useful to define the baseband represen-
tation directly in terms of the passband signal. This is not very difficult. Rather
than taking the passband signal and passing it through a filter of frequency re-
sponse g satisfying (7.14) to obtain xA and then multiplying the result by e−i2πfct

to obtain xBB, we can multiply xPB by t 7→ e−i2πfct and then filter the result to
obtain the baseband representation. This procedure is depicted in the frequency
domain in Figure 7.10 and is made precise in the following proposition.

Proposition 7.6.3 (From xPB to xBB Directly). If xPB is a real integrable passband
signal that is bandlimited to W Hz around the carrier frequency fc, then its baseband
representation xBB is given by

xBB =
(
t 7→ e−i2πfct xPB(t)

)
? ǧ0, (7.31a)

where g0 : f 7→ g0(f) is any integrable function satisfying

g0(f) = 1, |f | ≤ W

2
, (7.31b)

and

g0(f) = 0, |f + 2fc| ≤
W

2
. (7.31c)
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x̂PB(f)

f
fc−fc

x̂A(f)

f
fc

x̂BB(f)

f

Figure 7.9: The Fourier Transforms of the analytic signal xA and of the baseband
representation xBB of a real passband signal xPB.

Proof. The proof is all in Figure 7.10. For the pedantic reader we provide more
details. By Definition 7.6.1 and by Proposition 7.5.2 (cf. (d)) we have for any
integrable function g : f 7→ g(f) satisfying (7.14b) & (7.14c)

xBB(t) = e−i2πfct
(
xPB ? ǧ

)
(t)

= e−i2πfct

∫ ∞

−∞
x̂PB(f) g(f) ei2πft df

=
∫ ∞

−∞
x̂PB(f) g(f) ei2π(f−fc)t df

=
∫ ∞

−∞
x̂PB(f̃ + fc) g(f̃ + fc) ei2πf̃t df̃

=
∫ ∞

−∞
x̂PB(f̃ + fc) g0(f̃) ei2πf̃t df̃
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x̂PB(f)

x̂PB(f + fc)

g0(f)

x̂BB(f)

W

fc−fc

−fc−2fc
W
2

W
2

−W
2

−W
2

1

Wc−Wc

f

f

f

f

Figure 7.10: A frequency-domain description of the process for deriving xBB di-
rectly from xPB. From top to bottom: x̂PB; the FT of t 7→ e−i2πfct xPB(t); a
function g0 satisfying (7.31b) & (7.31c); and x̂BB.
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=
((
t 7→ e−i2πfct xPB(t)

)
? ǧ0

)
(t),

where we defined
g0(f) = g(f + fc), f ∈ R, (7.32)

and where we use the following justification. The second equality follows from
Proposition 6.2.5; the third by pulling the complex exponential into the integral;
the fourth by the defining f̃ , f − fc; the fifth by defining the function g0 as in
(7.32); and the final equality by Proposition 6.2.5 using the fact that

the FT of t 7→ e−i2πfct xPB(t) is f 7→ x̂PB(f + fc). (7.33)

The proposition now follows by noting that g satisfies (7.14b) & (7.14c) if, and
only if, the mapping g0 defined in (7.32) satisfies (7.31b) & (7.31c).

Corollary 7.6.4. If xPB is a real integrable passband signal that is bandlimited to W

Hz around the carrier frequency fc, then its baseband representation xBB is given
by

xBB =
(
t 7→ e−i2πfct xPB(t)

)
? LPFWc , (7.34a)

where the cutoff frequency Wc can be chosen arbitrarily in the range

W

2
≤Wc ≤ 2fc −

W

2
. (7.34b)

Proof. Let Wc satisfy (7.34b) and define g0 as follows: if Wc is strictly smaller
than 2fc−W/2, define g0(f) = I{|f | ≤Wc}; otherwise define g0(f) = I{|f | < Wc}.
In both cases g0 satisfies (7.31b) & (7.31c) and

ǧ0 = LPFWc . (7.35)

The result now follows by applying Proposition 7.6.3 with this choice of g0.

In analogy to Proposition 7.5.2, we can characterize the baseband representation
of passband signals as follows.

Proposition 7.6.5 (Characterizing the Baseband Representation). Let xPB be
a real integrable passband signal that is bandlimited to W Hz around the carrier
frequency fc. Then each of the following statements is equivalent to the statement
that the complex signal xBB is its baseband representation.

(a) The signal xBB is given by

xBB(t) =
∫ W/2

−W/2

x̂PB(f + fc) ei2πft df, t ∈ R. (7.36)
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(b) The signal xBB is a continuous integrable signal satisfying

x̂BB(f) = x̂PB(f + fc) I
{
|f | ≤ W

2

}
, f ∈ R. (7.37)

(c) The signal xBB is an integrable signal that is bandlimited to W/2 Hz and that
satisfies (7.37).

(d) The signal xBB is given by (7.31a) for any g0 : f 7→ g0(f) satisfying (7.31b)
& (7.31c).

Proof. Parts (a), (b), and (c) can be easily deduced from their counterparts in
Proposition 7.5.2 using Definition 7.6.1 and the fact that (7.29) implies that the
integrability of xBB is equivalent to the integrability of xA. Part (d) is a restatement
of Proposition 7.6.3.

7.6.2 The In-Phase and Quadrature Components

The convolution in (7.34a) is a convolution between a complex signal (the signal
t 7→ e−i2πfct xPB(t)) and a real signal (the signal LPFWc). This should not alarm
you. The convolution of two complex signals evaluated at time t is expressed as an
integral (5.2), and in the case of complex signals this is an integral (over the real
line) of a complex-valued integrand. Such integrals were addressed in Section 2.3.
It should, however, be noted that since the definition of the convolution of two sig-
nals involves their products, the real part of the convolution of two complex-valued
signals is, in general, not equal to the convolution of their real parts. However, as
we next show, if one of the signals is real—as is the case in (7.34a)—then things
become simpler: if x is a complex-valued function of time and if h is a real-valued
function of time, then

Re
(
x ? h

)
= Re(x) ? h and Im

(
x ? h

)
= Im(x) ? h, h is real-valued. (7.38)

This follows from the definition of the convolution,

(x ? h)(t) =
∫ ∞

−∞
x(τ)h(t− τ) dτ

and from the basic properties of complex integrals (Proposition 2.3.1) by noting
that if h(·) is real-valued, then for all t, τ ∈ R,

Re
(
x(τ)h(t− τ)

)
= Re

(
x(τ)

)
h(t− τ),

Im
(
x(τ)h(t− τ)

)
= Im

(
x(τ)

)
h(t− τ).

We next use (7.38) to express the convolution in (7.31a) using real-number oper-
ations. To that end we first note that since xPB is real, it follows from Euler’s
Identity

eiθ = cos θ + i sin θ, θ ∈ R (7.39)
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that

Re
(
xPB(t) e−i2πfct

)
= xPB(t) cos(2πfct), t ∈ R, (7.40a)

Im
(
xPB(t) e−i2πfct

)
= −xPB(t) sin(2πfct), t ∈ R, (7.40b)

so by (7.34a), (7.38), and (7.40)

Re(xBB) =
(
t 7→ xPB(t) cos(2πfct)

)
? LPFWc/2, (7.41a)

Im(xBB) = −
(
t 7→ xPB(t) sin(2πfct)

)
? LPFWc/2 . (7.41b)

It is common in the engineering literature to refer to the real part of xBB as
the in-phase component of xPB and to the imaginary part as the quadrature
component of xPB.

Definition 7.6.6 (In-Phase and Quadrature Components). The in-phase com-
ponent of a real integrable passband signal xPB that is bandlimited to W Hz around
the carrier frequency fc is the real part of its baseband representation, i.e.,

Re(xBB) =
(
t 7→ xPB(t) cos(2πfct)

)
? LPFWc . (In-Phase)

The quadrature component is the imaginary part of its baseband representation,
i.e.,

Im(xBB) = −
(
t 7→ xPB(t) sin(2πfct)

)
? LPFWc . (Quadrature)

Here Wc is any cutoff frequency in the range W/2 ≤Wc ≤ 2fc −W/2.

Figure 7.11 depicts a block diagram of a circuit that produces the baseband rep-
resentation of a real passband signal. This circuit will play an important role
in Chapter 9 when we discuss the Sampling Theorem for passband signals and
complex sampling.

7.6.3 Bandwidth Considerations

The following is a simple but exceedingly important observation regarding band-
width. Recall that the bandwidth of xPB around the carrier frequency fc is defined
in Definition 7.3.1 and that the bandwidth of the baseband signal xBB is defined
in Definition 6.4.13.

Proposition 7.6.7 (xPB, xBB, and Bandwidth). If the real integrable passband
signal xPB is of bandwidth W Hz around the carrier frequency fc, then its baseband
representation xBB is an integrable signal of bandwidth W/2 Hz.

Proof. This can be seen graphically from Figure 7.9 or from Figure 7.10. It can
be deduced analytically from (7.30).
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cos(2πfct)

90◦

×

×

xPB(t)

xPB(t) cos(2πfc)

−xPB(t) sin(2πfct)

LPFWc

LPFWc

W
2
≤ Wc ≤ 2fc − W

2

Re
(
xBB(t)

)

Im
(
xBB(t)

)

Figure 7.11: Obtaining the baseband representation of a real passband signal.

7.6.4 Recovering xPB from xBB

Recovering a real passband signal xPB from its baseband representation xBB is
conceptually simple. We can recover the analytic representation via (7.28) and
then use Proposition 7.5.3 to recover xPB:

Proposition 7.6.8 (From xBB to xPB). Let xPB be a real integrable passband
signal that is bandlimited to W Hz around the carrier frequency fc, and let xBB be
its baseband representation. Then,

x̂PB(f) = x̂BB(f − fc) + x̂∗BB(−f − fc), f ∈ R, (7.42a)

and
xPB(t) = 2 Re

(
xBB(t) ei2πfct

)
, t ∈ R. (7.42b)

The process of recovering xPB from xBB is depicted in the frequency domain in
Figure 7.12. It can, of course, also be carried out using real-number operations
only by rewriting (7.42b) as

xPB(t) = 2 Re
(
xBB(t)

)
cos(2πfct)− 2 Im

(
xBB(t)

)
sin(2πfct), t ∈ R. (7.43)

It should be emphasized that (7.42b) does not characterize the baseband represen-
tation of xPB; it is possible that xPB(t) = 2 Re

(
z(t) ei2πfct

)
hold at every time t and

that z not be the baseband representation of xPB. However, as the next proposition
shows, this cannot happen if z is bandlimited to W/2 Hz.

Proposition 7.6.9. Let xPB be a real integrable passband signal that is bandlimited
to W Hz around the carrier frequency fc. If the complex signal z satisfies

xPB(t) = 2 Re
(
z(t) ei2πfct

)
, t ∈ R, (7.44)
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x̂BB(f)

x̂BB(f − fc)

x̂∗BB(−f)

x̂∗BB(−f − fc)

x̂PB(f) = x̂BB(f − fc) + x̂∗BB(−f − fc)

fc

−fc

−fc −fc

f

f

f

f

f

Figure 7.12: Recovering a passband signal from its baseband representation. Top
plot of x̂BB is the transform of xBB; next is the transform of t 7→ xBB(t) ei2πfct; the
transform of x∗BB(t); the transform of t 7→ x∗BB(t) e−i2πfct; and finally the transform
of t 7→ xBB(t) ei2πfct +x∗BB(t) e−i2πfct = 2Re

(
xBB(t) ei2πfct

)
= xPB(t).
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and is an integrable signal that is bandlimited to W/2 Hz, then z is the baseband
representation of xPB.

Proof. Since z is bandlimited to W/2 Hz, it follows from Proposition 6.4.10 (cf. (c))
that z must be continuous and that its FT must vanish for |f | > W/2. Conse-
quently, by Proposition 7.6.5 (cf. (b)), all that remains to show in order to establish
that z is the baseband representation of xPB is that

ẑ(f) = x̂PB(f + fc), |f | ≤W/2, (7.45)

and this is what we proceed to do. By taking the FT of both sides of (7.44) we
obtain that

x̂PB(f) = ẑ(f − fc) + ẑ∗(−f − fc), f ∈ R, (7.46)

or, upon defining f̃ , f − fc,

x̂PB(f̃ + fc) = ẑ(f̃) + ẑ∗(−f̃ − 2fc), f̃ ∈ R. (7.47)

By recalling that fc > W/2 and that ẑ is zero for frequencies f satisfying |f | > W/2,
we obtain that ẑ∗(−f̃ − 2fc) is zero whenever |f̃ | ≤W/2 so

ẑ(f̃) + ẑ∗(−f̃ − 2fc) = ẑ(f̃), |f̃ | ≤W/2. (7.48)

Combining (7.47) and (7.48) we obtain

x̂PB(f̃ + fc) = ẑ(f̃), |f̃ | ≤W/2,

thus establishing (7.45) and hence completing the proof.

Proposition 7.6.9 is more useful than its appearance may suggest. It provides an
alternative way of computing the baseband representation of a signal. It demon-
strates that if we can use algebra to express xPB in the form (7.44) for some signal z,
and if we can verify that z is bandlimited to W/2 Hz, then z must be the baseband
representation of xPB.

Note that the proof would also work if we replaced the assumption that z is an
integrable signal that is bandlimited to W/2 Hz with the assumption that z is an
integrable signal that is bandlimited to fc Hz.

7.6.5 Relating 〈xPB,yPB〉 to 〈xBB,yBB〉

If xPB and yPB are integrable real passband signals that are bandlimited to W Hz
around the carrier frequency fc, and if xA, xBB , yA, and yBB are their corre-
sponding analytic and baseband representations, then, by (7.28),

〈xBB,yBB〉 = 〈xA,yA〉, (7.49)
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because

〈xBB,yBB〉 =
∫ ∞

−∞
xBB(t) y∗BB(t) dt

=
∫ ∞

−∞
e−i2πfct xA(t)

(
e−i2πfct yA(t)

)∗ dt

=
∫ ∞

−∞
e−i2πfct xA(t) ei2πfct y∗A(t) dt

= 〈xA,yA〉 .

Combining (7.49) with Proposition 7.5.4 we obtain the following relationship be-
tween the inner product between two real passband signals and the inner product
between their corresponding complex baseband representations.

Theorem 7.6.10 (〈xPB,yPB〉 and 〈xBB,yBB〉). Let xPB and yPB be two real inte-
grable passband signals that are bandlimited to W Hz around the carrier frequency
fc, and let xBB and yBB be their corresponding baseband representations. Then

〈xPB,yPB〉 = 2 Re
(
〈xBB,yBB〉

)
, (7.50)

and

‖xPB‖22 = 2 ‖xBB‖22 . (7.51)

An extremely important corollary provides a necessary and sufficient condition for
the inner product between two real passband signals to be zero, i.e., for two real
passband signals to be orthogonal.

Corollary 7.6.11 (Characterizing Orthogonal Real Passband Signals). Two in-
tegrable real passband signals xPB,yPB that are bandlimited to W Hz around the
carrier frequency fc are orthogonal if, and only if, the inner product between their
baseband representations is purely imaginary (i.e., of zero real part).

Thus, for two such bandpass signals to be orthogonal their baseband represen-
tations need not be orthogonal. It suffices that their inner product be purely
imaginary.

7.6.6 The Baseband Representation of xPB ? yPB

Proposition 7.6.12 (The Baseband Representation of xPB ? yPB Is xBB ? yBB).
Let xPB and yPB be real integrable passband signals that are bandlimited to W Hz
around the carrier frequency fc, and let xBB and yBB be their baseband repre-
sentations. Then the convolution xPB ? yPB is a real integrable passband signal
that is bandlimited to W Hz around the carrier frequency fc and whose baseband
representation is xBB ? yBB.
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x̂BB(f)
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Figure 7.13: The convolution of two real passband signals and its baseband rep-
resentation.
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Proof. The proof is illustrated in Figure 7.13 on Page 127. All that remains is to
add some technical details. We begin by defining

z = xPB ? yPB

and by noting that, by Proposition 7.2.5, z is an integrable real passband signal
that is bandlimited to W Hz around the carrier frequency fc and that its FT is
given by

ẑ(f) = x̂PB(f) ŷPB(f), f ∈ R. (7.52)

Thus, it is at least meaningful to discuss the baseband representation of xPB ?yPB.

We next note that, by Proposition 7.6.5, both xBB and yBB are integrable signals
that are bandlimited to W/2 Hz. Consequently, by Proposition 6.5.2, the convolu-
tion u = xBB ?yBB is defined at every epoch t and is also an integrable signal that
is bandlimited to W/2 Hz. Its FT is

û(f) = x̂BB(f) ŷBB(f), f ∈ R. (7.53)

From Proposition 7.6.5 we infer that to prove that u is the baseband representation
of z it only remains to verify that û is the mapping f 7→ ẑ(f + fc) I{|f | ≤ W/2},
which, in view of (7.52) and (7.53), is equivalent to showing that

x̂BB(f) ŷBB(f) = x̂PB(f + fc) ŷPB(f + fc) I{|f | ≤W/2}, f ∈ R. (7.54)

But this follows because the fact that xBB and yBB are the baseband representa-
tions of xPB and yPB implies that

x̂BB(f) = x̂PB(f + fc) I{|f | ≤W/2}, f ∈ R,
ŷBB(f) = ŷPB(f + fc) I{|f | ≤W/2}, f ∈ R,

from which (7.54) follows.

7.6.7 The Baseband Representation of xPB ? h

We next study the result of passing a real integrable passband signal xPB that is
bandlimited to W Hz around the carrier frequency fc through a real stable filter
of impulse response h. Our focus is on the baseband representation of the result.

Proposition 7.6.13 (Baseband Representation of xPB?h). Let xPB be a real inte-
grable passband signal that is bandlimited to W Hz around the carrier frequency fc,
and let h be a real integrable signal. Then xPB ?h is defined at every time instant;
it is a real integrable passband signal that is bandlimited to W Hz around the carrier
frequency fc; and its baseband representation is of FT

f 7→ x̂BB(f) ĥ(f + fc), f ∈ R, (7.55)

where xBB is the baseband representation of xPB.
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Proof. That the convolution xPB ? h is defined at every time instant follows from
Proposition 7.2.5. Defining y = xPB ?h we have by the same proposition that y is
a real integrable passband signal that is bandlimited to W Hz around the carrier
frequency fc and that its FT is given by

ŷ(f) = x̂PB(f) ĥ(f), f ∈ R. (7.56)

Applying Proposition 7.6.5 (cf. (b)) to the signal y we obtain that the baseband
representation of y is of FT

f 7→ x̂PB(f + fc) ĥ(f + fc) I{|f | ≤W/2}, f ∈ R. (7.57)

To conclude the proof it thus remains to establish that the mappings (7.57) and
(7.55) are identical. But this follows because, by Proposition 7.6.5 (cf. (b)) applied
to the signal xPB,

x̂BB(f) = x̂PB(f + fc) I
{
|f | ≤ W

2

}
, f ∈ R.

Motivated by Proposition 7.6.13 we put forth the following definition.

Definition 7.6.14 (Frequency Response with Respect to a Band). For a stable
real filter of impulse response h we define the frequency response with respect
to the bandwidth W around the carrier frequency fc (satisfying fc > W/2)
as the mapping

f 7→ ĥ(f + fc) I
{
|f | ≤ W

2

}
. (7.58)

Figure 7.14 illustrates the relationship between the frequency response of a real
filter and its response with respect to the carrier frequency fc and bandwidth W.
Heuristically, we can think of the frequency response with respect to the band-
width W around the carrier frequency fc of a filter of real impulse response h as
the FT of the baseband representation of h ? BPFW,fc .

2

With the aid of Definition 7.6.14 we can restate Proposition 7.6.13 as stating that
the baseband representation of the result of passing a real integrable passband
signal that is bandlimited to W Hz around the carrier frequency fc through a
stable real filter is the product of the FT of the baseband representation of the
signal by the frequency response with respect to the bandwidth W around the
carrier frequency fc of the filter. This relationship is illustrated in Figures 7.15
and 7.16. The former depicts the product of the FT of a real passband signal xPB

and the frequency response of a real filter h. The latter depicts the product of the
baseband representation xBB of xPB by the frequency response of h with respect
to the bandwidth W around the carrier frequency fc.

The relationship between some of the properties of xPB, xA, and xBB are summa-
rized in Table 7.1 on Page 142.

2This is mathematically somewhat problematic because h?BPFW,fc need not be an integrable
signal. But this can be remedied because h ? BPFW,fc is an energy-limited passband signal
that is bandlimited to W Hz around the carrier frequency, and, as such, also has a baseband
representation; see Section 7.7.
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Figure 7.14: A real filter’s frequency response (top) and its frequency response
with respect to the bandwidth W around the carrier frequency fc (bottom).

7.7 Energy-Limited Passband Signals

We next repeat the results of this chapter under the weaker assumption that the
passband signal is energy-limited and not necessarily integrable. The key results
require only minor adjustments, and most of the derivations are almost identical
and are therefore omitted. The reader is encouraged to focus on the results and to
read the proofs only if needed.

7.7.1 Characterization of Energy-Limited Passband Signals

Recall that energy-limited passband signals were defined in Definition 7.2.1 as
energy-limited signals that are unaltered by bandpass filtering. In this subsec-
tion we shall describe alternative characterizations. Aiding us in the character-
ization is the following lemma, which can be viewed as the passband analog of
Lemma 6.4.4 (i).

Lemma 7.7.1. Let x be an energy-limited signal, and let fc > W/2 > 0 be given.
Then the signal x ? BPFW,fc can be expressed as

(
x ? BPFW,fc

)
(t) =

∫
||f |−fc|≤W/2

x̂(f) ei2πft df, t ∈ R; (7.59)

it is of finite energy; and its L2 -Fourier Transform is (the equivalence class of) the
mapping f 7→ x̂(f) I

{∣∣|f | − fc∣∣ ≤W/2
}
.
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ĥ(f)

x̂PB(f) ĥ(f)

Figure 7.15: The FT of a passband signal (top); the frequency response of a real
filter (middle); and their product (bottom).

Proof. The lemma follows from Lemma 6.4.4 (ii) by substituting for g the mapping
f 7→ I

{∣∣|f | − fc∣∣ ≤W/2
}
, whose IFT is BPFW,fc .

In analogy to Proposition 6.4.5 we can characterize energy-limited passband signals
as follows.

Proposition 7.7.2 (Characterizations of Passband Signals in L2 ).

(i) If x is an energy-limited passband signal that is bandlimited to W Hz around
the carrier frequency fc, then it can be expressed in the form

x(t) =
∫
||f |−fc|≤W/2

g(f) ei2πft df, t ∈ R, (7.60)
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the carrier frequency fc of the filter of Figure 7.15 (middle); and their product
(bottom).
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for some mapping g : f 7→ g(f) satisfying∫
||f |−fc|≤W/2

|g(f)|2 df <∞ (7.61)

that can be taken as (any function in the equivalence class of) x̂.

(ii) If a signal x can be expressed as in (7.60) for some function g satisfying
(7.61), then x is an energy-limited passband signal that is bandlimited to W

Hz around the carrier frequency fc and its FT x̂ is (the equivalence class of)
the mapping f 7→ g(f) I

{∣∣|f | − fc∣∣ ≤W/2
}
.

Proof. The proof of Part (i) follows from Definition 7.2.1 and from Lemma 7.7.1 in
very much the same way as Part (i) of Proposition 6.4.5 follows from Definition 6.4.1
and Lemma 6.4.4 (i).

The proof of Part (ii) is analogous to the proof of Part (ii) of Proposition 6.4.5.

As a corollary we obtain the analog of Corollary 7.2.3:

Corollary 7.7.3 (Passband Signals Are Bandlimited). If xPB is an energy-limited
passband signal that is bandlimited to W Hz around the carrier frequency fc, then
it is an energy-limited signal that is bandlimited to fc + W/2 Hz.

Proof. If xPB is an energy-limited passband signal that is bandlimited to W Hz
around the carrier frequency fc, then, by Proposition 7.7.2 (i), there exists a func-
tion g : f 7→ g(f) satisfying (7.61) such that xPB is given by (7.60). But this implies
that the function f 7→ g(f) I

{∣∣|f | − fc∣∣ ≤W/2
}

is an energy-limited function such
that

xPB(t) =
∫ fc+W/2

−fc−W/2

g(f) I
{∣∣|f | − fc∣∣ ≤W/2

}
ei2πft df, t ∈ R, (7.62)

so, by Proposition 6.4.5 (ii), xPB is an energy-limited signal that is bandlimited to
fc + W/2 Hz.

The following is the analog of Proposition 6.4.6.

Proposition 7.7.4.

(i) If xPB is an energy-limited passband signal that is bandlimited to W Hz
around the carrier frequency fc, then xPB is a continuous function and all
its energy is contained in the frequencies f satisfying

∣∣|f | − fc∣∣ ≤W/2 in the
sense that ∫ ∞

−∞
|x̂PB(f)|2 df =

∫
||f |−fc|≤W/2

|x̂PB(f)|2 df. (7.63)

(ii) If xPB ∈ L2 satisfies (7.63), then xPB is indistinguishable from the signal
xPB?BPFW,fc , which is an energy-limited passband signal that is bandlimited
to W Hz around fc. If in addition to satisfying (7.63) the signal xPB is
continuous, then xPB is an energy-limited passband signal that is bandlimited
to W Hz around the carrier frequency fc.
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Proof. This proposition’s claims are a subset of those of Proposition 7.7.5, which
summarizes some of the results related to bandpass filtering.

Proposition 7.7.5. Let y = x?BPFW,fc be the result of feeding the signal x ∈ L2 to
an ideal unit-gain bandpass filter of bandwidth W around the carrier frequency fc.
Assume fc > W/2. Then:

(i) y is energy-limited with
‖y‖2 ≤ ‖x‖2 . (7.64)

(ii) y is an energy-limited passband signal that is bandlimited to W Hz around
the carrier frequency fc.

(iii) The L2 -Fourier Transform of y is (the equivalence class of) the mapping
f 7→ x̂(f) I

{∣∣|f | − fc∣∣ ≤W/2
}
.

(iv) All the energy in y is concentrated in the frequencies
{
f :
∣∣|f | − fc∣∣ ≤W/2

}
in the sense that ∫ ∞

−∞
|ŷ(f)|2 df =

∫
||f |−fc|≤W/2

|ŷ(f)|2 df.

(v) y can be represented as

y(t) =
∫ ∞

−∞
ŷ(f) ei2πft df (7.65)

=
∫
||f |−fc|≤W/2

x̂(f) ei2πft df, t ∈ R. (7.66)

(vi) y is uniformly continuous.

(vii) If all the energy of x is concentrated in the frequencies
{
f :
∣∣|f |−fc∣∣ ≤W/2

}
in the sense that ∫ ∞

−∞
|x̂(f)|2 df =

∫
||f |−fc|≤W/2

|x̂(f)|2 df, (7.67)

then x is indistinguishable from the passband signal x ? BPFW,fc .

(viii) z is an energy-limited passband signal that is bandlimited to W Hz around
the carrier frequency fc if, and only if, it satisfies all three of the following
conditions: it is in L2 ; it is continuous; and all its energy is concentrated in
the passband frequencies

{
f :
∣∣|f | − fc∣∣ ≤W/2

}
.

Proof. The proof is very similar to the proof of Proposition 6.4.7 and is thus
omitted.
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7.7.2 The Analytic Representation

If xPB is a real energy-limited passband signal that is bandlimited to W Hz around
the carrier frequency fc, then we define its analytic representation via (7.11). (Since
xPB ∈ L2 , it follows from Parseval’s Theorem that x̂PB is energy-limited so, by
Proposition 3.4.3, the mapping f 7→ x̂PB(f) I{|f − fc| ≤ W/2} is integrable and
the integral (7.11) is defined for every t ∈ R. Also, the integral does not depend
on which element of the equivalence class consisting of the L2 -Fourier Transform
of xPB it is applied to.)

In analogy to Proposition 7.5.2 we can characterize the analytic representation as
follows.

Proposition 7.7.6 (Characterizing the Analytic Representation of xPB ∈ L2 ).
Let xPB be a real energy-limited passband signal that is bandlimited to W Hz around
the carrier frequency fc. Then each of the following statements is equivalent to the
statement that the complex signal xA is the analytic representation of xPB:

(a) The signal xA is given by

xA(t) =
∫ fc+

W
2

fc−W
2

x̂PB(f) ei2πft df, t ∈ R. (7.68)

(b) The signal xA is a continuous energy-limited signal whose L2 -Fourier Trans-
form x̂A is (the equivalence class of) the mapping

f 7→ x̂PB(f) I{f ≥ 0}. (7.69)

(c) The signal xA is an energy-limited passband signal that is bandlimited to W

Hz around the carrier frequency fc and whose L2 -Fourier Transform is (the
equivalence class of) the mapping in (7.69).

(d) The signal xA is given by
xA = xPB ? ǧ (7.70)

where g : f 7→ g(f) is any function in L1 ∩ L2 satisfying

g(f) = 1,
∣∣f − fc∣∣ ≤W/2, (7.71a)

and
g(f) = 0,

∣∣f + fc
∣∣ ≤W/2. (7.71b)

Proof. The proof is not very difficult and is omitted.

We note that the reconstruction formula (7.21b) continues to hold also when xPB

is an energy-limited signal that is bandlimited to W Hz around the carrier fre-
quency fc.
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7.7.3 The Baseband Representation of xPB ∈ L2

Having defined the analytic representation, we now use (7.28) to define the base-
band representation.

As in Proposition 7.6.3, we can also describe a procedure for obtaining the base-
band representation of a passband signal without having to go via the analytic
representation.

Proposition 7.7.7 (From xPB ∈ L2 to xBB Directly). If xPB is a real energy-
limited passband signal that is bandlimited to W Hz around the carrier frequency fc,
then its baseband representation xBB is given by

xBB =
(
t 7→ e−i2πfct xPB(t)

)
? ǧ0, (7.72)

where g0 : f 7→ g0(f) is any function in L1 ∩ L2 satisfying

g0(f) = 1, |f | ≤W/2, (7.73a)

and
g0(f) = 0, |f + 2fc| ≤W/2. (7.73b)

Proof. The proof is very similar to the proof of Proposition 7.6.3 and is omitted.

The following proposition, which is the analog of Proposition 7.6.5 characterizes
the baseband representation of energy-limited passband signals.

Proposition 7.7.8 (Characterizing the Baseband Representation of xPB ∈ L2 ).
Let xPB be a real energy-limited passband signal that is bandlimited to W Hz around
the carrier frequency fc. Then each of the following statements is equivalent to the
statement that the complex signal xBB is the baseband representation of xPB.

(a) The signal xBB is given by

xBB(t) =
∫ W

2

−W
2

x̂PB(f + fc) ei2πft df, t ∈ R. (7.74)

(b) The signal xBB is a continuous energy-limited signal whose L2 -Fourier Trans-
form is (the equivalence class of) the mapping

f 7→ x̂PB(f + fc) I{|f | ≤W/2}. (7.75)

(c) The signal xBB is an energy-limited signal that is bandlimited to W/2 Hz
and whose L2 -Fourier Transform is (the equivalence class of) the mapping
(7.75).

(d) The signal xBB is given by (7.72) for any mapping g0 : f 7→ g0(f) satisfying
(7.73).



7.7 Energy-Limited Passband Signals 137

The in-phase component and the quadrature component of an energy-limited
passband signal are defined, as in the integrable case, as the real and imaginary
parts of its baseband representation.

Proposition 7.6.7, which asserts that the bandwidth of xBB is half the bandwidth
of xPB continues to hold, as does the reconstruction formula (7.42b). Proposi-
tion 7.6.9 also extends to energy-limited signals. We repeat it (in a slightly more
general way) for future reference.

Proposition 7.7.9.

(i) If z is an energy-limited signal that is bandlimited to W/2 Hz, and if the
signal x is given by

x(t) = 2 Re
(
z(t) ei2πfct

)
, t ∈ R, (7.76)

where fc > W/2, then x is a real energy-limited passband signal that is band-
limited to W Hz around fc, and z is its baseband representation.

(ii) If x is an energy-limited passband signal that is bandlimited to W Hz around
the carrier frequency fc and if (7.76) holds for some energy-limited signal z
that is bandlimited to fc Hz, then z is the baseband representation of x and
is, in fact, bandlimited to W/2 Hz.

Proof. Omitted.

Identity (7.50) relating the inner products 〈xPB,yPB〉 and 〈xBB,yBB〉 continues to
hold for energy-limited passband signals that are not necessarily integrable.

Proposition 7.6.12 does not hold for energy-limited signals, because the convolution
of two energy-limited signals need not be energy-limited. But if we assume that at
least one of the signals is also integrable, then things sail through. Consequently,
using Corollary 7.2.4 we obtain:

Proposition 7.7.10 (The Baseband Representation of xPB ? yPB Is xBB ? yBB).
Let xPB be a real integrable passband signal that is bandlimited to W Hz around
the carrier frequency fc, and let yPB be a real energy-limited passband signal that
is bandlimited to W Hz around the carrier frequency fc. Let xBB and yBB be their
corresponding baseband representations. Then xPB ? yPB is a real energy-limited
signal that is bandlimited to W Hz around the carrier frequency fc and whose
baseband representation is xBB ? yBB.

Proposition 7.6.13 too requires only a slight modification to address energy-limited
signals.

Proposition 7.7.11 (Baseband Representation of xPB ? h). Let xPB be a real
energy-limited passband signal that is bandlimited to W Hz around the carrier fre-
quency fc, and let h be a real integrable signal. Then xPB ? h is defined at every
time instant; it is a real energy-limited passband signal that is bandlimited to W

Hz around the carrier frequency fc; and its baseband representation is given by(
h ? xPB

)
BB

= h′BB ? xBB, (7.77)
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where h′BB is the baseband representation of the energy-limited signal h?BPFW,fc .
The L2 -Fourier Transform of the baseband representation of xPB ?h is (the equiv-
alence class of) the mapping

f 7→ x̂BB(f) ĥ(f + fc), f ∈ R, (7.78)

where xBB is the baseband representation of xPB.

The following theorem summarizes some of the properties of the baseband repre-
sentation of energy-limited passband signals.

Theorem 7.7.12 (Properties of the Baseband Representation).

(i) The mapping xPB 7→ xBB that maps every real energy-limited passband signal
that is bandlimited to W Hz around the carrier frequency fc to its baseband
representation is a one-to-one mapping onto the space of complex energy-
limited signals that are bandlimited to W/2 Hz.

(ii) The mapping xPB 7→ xBB is linear in the sense that if xPB and yPB are
real energy-limited passband signals that are bandlimited to W Hz around
the carrier frequency fc, and if xBB and yBB are their corresponding base-
band representations, then for every α, β ∈ R, the baseband representation of
αxPB + βyPB is αxBB + βyBB:(

αxPB + βyPB

)
BB

= αxBB + βyBB, α, β ∈ R. (7.79)

(iii) The mapping xPB 7→ xBB is—to within a factor of two—energy preserving
in the sense that

‖xPB‖22 = 2 ‖xBB‖22 . (7.80)

(iv) Inner products are related via

〈xPB,yPB〉 = 2Re
(
〈xBB,yBB〉

)
, (7.81)

for xPB and yPB as above.

(v) The (baseband) bandwidth of xBB is half the bandwidth of xPB around the
carrier frequency fc.

(vi) The baseband representation xBB can be expressed in terms of xPB as

xBB =
(
t 7→ e−i2πfct xPB(t)

)
? LPFWc (7.82a)

where Wc is any cutoff frequency satisfying

W/2 ≤Wc ≤ 2fc −W/2. (7.82b)

(vii) The real passband signal xPB can be expressed in terms of its baseband rep-
resentation xBB as

xPB(t) = 2 Re
(
xBB(t) ei2πfct

)
, t ∈ R. (7.83)
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(viii) If h is a real integrable signal, and if xPB is as above, then h ? xPB is a real
energy-limited passband signal that is bandlimited to W Hz around the carrier
frequency fc, and its baseband representation is given by(

h ? xPB

)
BB

= h′BB ? xBB, (7.84)

where h′BB is the baseband representation of the energy-limited real signal
h ? BPFW,fc .

7.8 Shifting to Passband and Convolving

The following result is almost trivial if you think about its interpretation in the
frequency domain. To that end, it is good to focus on the case where the signal x
is a bandlimited baseband signal and where fc is positive and large. In this case
we can interpret the LHS of (7.85) as the result of taking the baseband signal x,
up-converting it to passband by forming the signal τ 7→ x(τ) ei2πfcτ , and then
convolving the result with h. The RHS corresponds to down-converting h to form
the signal τ 7→ e−i2πfcτ h(τ), then convolving this signal with x, and then up-
converting the final result.

Proposition 7.8.1. Suppose that fc ∈ R and that (at least) one of the following
conditions holds:

1) The signal x is a measurable bounded signal and h ∈ L1 .

2) Both x and h are in L2 .

Then, at every epoch t ∈ R,((
τ 7→ x(τ) ei2πfcτ

)
? h
)
(t) = ei2πfct

(
x ?
(
τ 7→ e−i2πfcτ h(τ)

))
(t). (7.85)

Proof. We evaluate the LHS of (7.85) using the definition of the convolution:((
τ 7→ x(τ) ei2πfcτ

)
? h
)
(t) =

∫ ∞

−∞
x(τ) ei2πfcτ h(t− τ) dτ

= ei2πfct e−i2πfct

∫ ∞

−∞
x(τ) ei2πfcτ h(t− τ) dτ

= ei2πfct
∫ ∞

−∞
x(τ) e−i2πfc(t−τ) h(t− τ) dτ

= ei2πfct
(
x ?
(
τ 7→ e−i2πfcτ h(τ)

))
(t).

7.9 Mathematical Comments

The analytic representation is related to the Hilbert Transform; see, for example,
(Pinsky, 2002, Section 3.4). In our proof that xA is integrable whenever xPB is
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integrable we implicitly exploited the fact that the strict inequality fc > W/2
implies that for the class of integrable passband signals that are bandlimited to W

Hz around the carrier frequency fc there exist Hilbert Transform kernels that are
integrable. See, for example, (Logan, 1978, Section 2.5).

7.10 Exercises

Exercise 7.1 (Purely Real and Purely Imaginary Baseband Representations). Let xPB

be a real integrable passband signal that is bandlimited to W Hz around the carrier
frequency fc, and let xBB be its baseband representation.

(i) Show that xBB is real if, and only if, x̂PB satisfies

x̂PB(fc − δ) = x̂∗PB(fc + δ), |δ| ≤ W

2
.

(ii) Show that xBB is imaginary if, and only if,

x̂PB(fc − δ) = −x̂∗PB(fc + δ), |δ| ≤ W

2
.

Exercise 7.2 (Symmetry around the Carrier Frequency). Let xPB be a real integrable
passband signal that is bandlimited to W Hz around the carrier frequency fc.

(i) Show that xPB can be written in the form

xPB(t) = w(t) cos(2πfct)

where w(·) is a real integrable signal that is bandlimited to W/2 Hz if, and only if,

x̂PB(fc + δ) = x̂∗PB(fc − δ), |δ| ≤ W

2
.

(ii) Show that xPB can be written in the form

xPB(t) = w(t) sin(2πfct), t ∈ R

for w(·) as above if, and only if,

x̂PB(fc + δ) = −x̂∗PB(fc − δ), |δ| ≤ W

2
.

Exercise 7.3 (Viewing a Baseband Signal as a Passband Signal). Let x be a real integrable
signal that is bandlimited to W Hz. Show that if we had informally allowed equality in
(7.1b) and if we had allowed equality between fc and W/2 in (5.21), then we could have
viewed x also as a real integrable passband signal that is bandlimited to W Hz around
the carrier frequency fc = W/2. Viewed as such, what would have been its complex
baseband representation?

Exercise 7.4 (Bandwidth of the Product of Two Signals). Let x be a real energy-limited
signal that is bandlimited to Wx Hz. Let y be a real energy-limited passband signal that
is bandlimited to Wy Hz around the carrier frequency fc. Show that if fc > Wx+Wy/2,
then the signal t 7→ x(t) y(t) is a real integrable passband signal that is bandlimited to
2Wx + Wy Hz around the carrier frequency fc.
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Exercise 7.5 (Phase Shift). Let x be a real integrable signal that is bandlimited to W Hz.
Let fc be larger than W.

(i) Express the baseband representation of the real passband signal

zPB(t) = x(t) sin(2πfct+ φ), t ∈ R

in terms of x(·) and φ.

(ii) Compute the Fourier Transform of zPB.

Exercise 7.6 (Energy of a Passband Signal). Let x ∈ L2 be of energy ‖x‖22 .

(i) What is the approximate energy in t 7→ x(t) cos(2πfct) if fc is very large?

(ii) Is your answer exact if x(·) is an energy-limited signal that is bandlimited to W Hz,
where W < fc?

Hint: In Part (i) approximate x as being constant over the periods of t 7→ cos (2πfct).
For Part (ii) see also Problem 6.13.

Exercise 7.7 (Differences in Passband). Let xPB and yPB be real energy-limited passband
signals that are bandlimited to W Hz around the carrier frequency fc. Let xBB and yBB

be their baseband representations. Find the relationship between∫ ∞

−∞

(
xPB(t)− yPB(t)

)2
dt and

∫ ∞

−∞

∣∣xBB(t)− yBB(t)
∣∣2 dt.

Exercise 7.8 (Reflection of Passband Signal). Let xPB and yPB be real integrable pass-
band signals that are bandlimited to W Hz around the carrier frequency fc. Let xBB

and yBB be their baseband representations.

(i) Express the baseband representation of ~xPB in terms of xBB.

(ii) Express 〈xPB, ~yPB〉 in terms of xBB and yBB.

Exercise 7.9 (Deducing xBB). Let xPB be a real integrable passband signal that is band-
limited to W Hz around the carrier frequency fc. Show that it is possible that xPB(t) be
given at every epoch t ∈ R by 2Re

(
z(t)ei2πfct

)
for some complex signal z(t) and that z

not be the baseband representation of xPB. Does this contradict Proposition 7.6.9?
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Chapter 8

Complete Orthonormal Systems and the
Sampling Theorem

8.1 Introduction

Like Chapter 4, this chapter deals with the geometry of the space L2 of energy-
limited signals. Here, however, our focus is on infinite-dimensional linear subspaces
of L2 and on the notion of a complete orthonormal system (CONS). As an
application of this geometric picture, we shall present the Sampling Theorem as
an orthonormal expansion with respect to a CONS for the space of energy-limited
signals that are bandlimited to W Hz.

8.2 Complete Orthonormal System

Recall that we denote by L2 the space of all measurable signals u : R→ C satisfying∫ ∞

−∞
|u(t)|2 dt <∞.

Also recall from Section 4.3 that a subset U of L2 is said to be a linear subspace of
L2 if U is nonempty and if the signal αu1 + βu2 is in U whenever u1,u2 ∈ U and
α, β ∈ C. A linear subspace is said to be finite-dimensional if there exists a finite
number of signals that span it; otherwise, it is said to be infinite-dimensional. The
following are some examples of infinite-dimensional linear subspaces of L2 .

(i) The set of all functions of the form t 7→ p(t) e−|t|, where p(t) is any polynomial
(of arbitrary degree).

(ii) The set of all energy-limited signals that vanish outside the interval [−1, 1]
(i.e., that map every t outside this interval to zero).

(iii) The set of all energy-limited signals that vanish outside some unspecified
finite interval (i.e., the set containing all signals u for which there exists
some a, b ∈ R (depending on u) such that u(t) = 0 whenever t /∈ [a, b]).
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(iv) The set of all energy-limited signals that are bandlimited to W Hz.

While a basis for an infinite-dimensional subspace can be defined,1 this notion does
not turn out to be very useful for our purposes. Much more useful to us is the
notion of a complete orthonormal system, which we shall define shortly.2

To motivate the definition, consider a bi-infinite sequence . . . ,φ−1,φ0,φ1,φ2, . . .
in L2 satisfying the orthonormality condition

〈φ`,φ`′〉 = I{` = `′}, `, `′ ∈ Z, (8.1)

and let u be an arbitrary element of L2 . Define the signals

uL ,
L∑

`=−L

〈u,φ`〉φ` L = 1, 2, . . . (8.2)

By Note 4.6.7, uL is the projection of the vector u onto the subspace spanned
by (φ−L, . . . ,φL). By the orthonormality (8.1), the tuple (φ−L, . . . ,φL) is an
orthonormal basis for this subspace. Consequently, by Proposition 4.6.9,

‖u‖22 ≥
L∑

`=−L

∣∣〈u,φ`〉∣∣2, L = 1, 2, . . . , (8.3)

with equality if, and only if, u is indistinguishable from some linear combination
of
(
φ−L, . . . ,φL

)
. This motivates us to explore the situation where (8.3) holds

with equality when L → ∞ and to hope that it corresponds to u being—in some
sense that needs to be made precise—indistinguishable from a limit of finite linear
combinations of . . . ,φ−1,φ0,φ1, . . .

Definition 8.2.1 (Complete Orthonormal System). A bi-infinite sequence of sig-
nals . . . ,φ−1,φ0,φ1, . . . is said to form a complete orthonormal system or a
CONS for the linear subspace U of L2 if all three of the following conditions hold:

1) Each element of the sequence is in U

φ` ∈ U , ` ∈ Z. (8.4)

2) The sequence satisfies the orthonormality condition

〈φ`,φ`′〉 = I{` = `′}, `, `′ ∈ Z. (8.5)

3) For every u ∈ U we have

‖u‖22 =
∞∑

`=−∞

∣∣〈u,φ`〉∣∣2, u ∈ U . (8.6)

1A basis for a subspace is defined as a collection of functions such that any function in
the subspace can be represented as a linear combination of a finite number of elements in the
collection. More useful to us will be the notion of a complete orthonormal system. From a
complete orthonormal system we only require that each function can be approximated by a linear
combination of a finite number of functions in the system.

2Mathematicians usually define a CONS only for closed subspaces. Such subspaces are
discussed in Section 8.5.
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The following proposition considers equivalent definitions of a CONS and demon-
strates that if {φ`} is a CONS for U , then, indeed, every element of U can be
approximated by a finite linear combination of the functions {φ`}.

Proposition 8.2.2. Let U be a subspace of L2 and let the bi-infinite sequence
. . . ,φ−2,φ−1,φ0,φ1, . . . satisfy (8.4) & (8.5). Then each of the following con-
ditions on {φ`} is equivalent to the condition that {φ`} forms a CONS for U :

(a) For every u ∈ U and every ε > 0 there exists some positive integer L(ε) and
coefficients α−L(ε), . . . , αL(ε) ∈ C such that

∥∥∥∥u− L(ε)∑
`=−L(ε)

α`φ`

∥∥∥∥
2

< ε. (8.7)

(b) For every u ∈ U

lim
L→∞

∥∥∥∥u− L∑
`=−L

〈u,φ`〉φ`
∥∥∥∥
2

= 0. (8.8)

(c) For every u ∈ U

‖u‖22 =
∞∑

`=−∞

∣∣〈u,φ`〉∣∣2. (8.9)

(d) For every u,v ∈ U

〈u,v〉 =
∞∑

`=−∞

〈u,φ`〉 〈v,φ`〉∗ . (8.10)

Proof. Since (8.4) & (8.5) hold (by hypothesis), it follows that the additional
condition (c) is, by Definition 8.2.1, equivalent to {φ`} being a CONS. It thus only
remains to show that the four conditions are equivalent. We shall prove this by
showing that (a) ⇔ (b); that (b) ⇔ (c); and that (c) ⇔ (d).

That (b) implies (a) is obvious because nothing precludes us from choosing α` in
(8.7) to be 〈u,φ`〉. That (a) implies (b) follows because, by Note 4.6.7, the signal

L∑
`=−L

〈u,φ`〉φ`,

which we denoted in (8.2) by uL, is the projection of u onto the linear subspace
spanned by (φ−L, . . . ,φL) and as such, by Proposition 4.6.8, best approximates u
among all the signals in that subspace. Consequently, replacing α` by 〈u,φ`〉 can
only reduce the LHS of (8.7).

To prove (b)⇒ (c) we first note that by letting L tend to infinity in (8.3) it follows
that

‖u‖22 ≥
∞∑

`=−∞

∣∣〈u,φ`〉∣∣2, u ∈ L2 , (8.11)
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so to establish (c) we only need to show that if u is in U then ‖u‖22 is also upper-
bounded by the RHS of (8.11). To that end we first upper-bound ‖u‖2 as

‖u‖2 =
∥∥∥∥(u−

L∑
`=−L

〈u,φ`〉φ`
)

+
L∑

`=−L

〈u,φ`〉φ`
∥∥∥∥
2

≤
∥∥∥∥u− L∑

`=−L

〈u,φ`〉φ`
∥∥∥∥
2

+
∥∥∥∥ L∑
`=−L

〈u,φ`〉φ`
∥∥∥∥
2

=
∥∥∥∥u− L∑

`=−L

〈u,φ`〉φ`
∥∥∥∥
2

+
( L∑
`=−L

∣∣〈u,φ`〉∣∣2)1/2

, u ∈ L2 , (8.12)

where the first equality follows by adding and subtracting a term; the subsequent in-
equality by the Triangle Inequality (Proposition 3.4.1); and the final equality by the
orthonormality assumption (8.5) and the Pythagorean Theorem (Theorem 4.5.2).
If Condition (b) holds and if u is in U , then the RHS of (8.12) converges to the
square root of the infinite sum

∑
`∈Z|〈u,φ`〉|2 and thus gives us the desired upper

bound on ‖u‖2 .

We next prove (c) ⇒ (b). We assume that (c) holds and that u is in U and set out
to prove (8.8). To that end we first note that by the basic properties of the inner
product (3.6)–(3.10) and by the orthonormality (8.1) it follows that〈

u−
L∑

`=−L

〈u,φ`〉φ`︸ ︷︷ ︸
u′

,φ`′

〉
= 〈u,φ`′〉 I{|`′| > L},

(
`′ ∈ Z, u ∈ L2

)
.

Consequently, if we apply (c) to the under-braced signal u′ (which for u ∈ U is
also in U) we obtain that (c) implies∥∥∥∥u− L∑

`=−L

〈u,φ`〉φ`
∥∥∥∥2

2

=
∑
|`|>L

∣∣〈u,φ`〉∣∣2, u ∈ U .

But by applying (c) to u we infer that the RHS of the above tends to zero as L

tends to infinity, thus establishing (8.8) and hence (b).

We next prove (c) ⇔ (d). The implication (d) ⇒ (c) is obvious because we can
always choose v to be equal to u. We consequently focus on proving (c) ⇒ (d).
We do so by assuming that u,v ∈ U and calculating for every β ∈ C

|β|2 ‖u‖22 + 2 Re
(
β〈u,v〉

)
+ ‖v‖22

= ‖βu + v‖22

=
∞∑

`=−∞

∣∣〈βu + v,φ`〉
∣∣2

=
∞∑

`=−∞

∣∣β〈u,φ`〉+ 〈v,φ`〉∣∣2
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= |β|2
∞∑

`=−∞

∣∣〈u,φ`〉∣∣2 + 2 Re
(
β

∞∑
`=−∞

〈u,φ`〉〈v,φ`〉∗
)

+
∞∑

`=−∞

∣∣〈v,φ`〉∣∣2, (
u,v ∈ U , β ∈ C

)
, (8.13)

where the first equality follows by writing ‖βu + v‖22 as 〈βu + v, βu + v〉 and using
the basic properties of the inner product (3.6)–(3.10); the second by applying (c)
to βu + v (which for u,v ∈ U is also in U); the third by the basic properties of
the inner product; and the final equality by writing the squared magnitude of a
complex number as its product by its conjugate. By applying (c) to u and by
applying (c) to v we now obtain from (8.13) that

2 Re
(
β〈u,v〉

)
= 2Re

(
β

∞∑
`=−∞

〈u,φ`〉〈v,φ`〉∗
)
,
(
u,v ∈ U , β ∈ C

)
,

which can only hold for all β ∈ C (and in particular for both β = 1 and β = i) if

〈u,v〉 =
∞∑

`=−∞

〈u,φ`〉〈v,φ`〉∗, u,v ∈ U ,

thus establishing (d).

We next describe the two complete orthonormal systems that will be of most in-
terest to us.

8.3 The Fourier Series

A CONS that you have probably already encountered is the one underlying the
Fourier Series representation. You may have encountered the Fourier Series in the
context of periodic functions, but we shall focus on a slightly different view.

Proposition 8.3.1. For every T > 0, the functions {φ`} defined for every integer `
by

φ` : t 7→
1√
2T
eiπ`t/T I{|t| ≤ T} (8.14)

form a CONS for the subspace{
u ∈ L2 : u(t) = 0 whenever |t| > T

}
of energy-limited signals that vanish outside the interval [−T, T ].

Proof. Follows from Theorem A.3.3 in the appendix by substituting 2T for S.

Notice that in this case

〈u,φ`〉 =
1√
2T

∫ T

−T

u(t) e−iπ`t/T dt (8.15)
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is the `-th Fourier Series Coefficient of u; see Note A.3.5 in the appendix with 2T

substituted for S.
Note 8.3.2. The dummy argument t is immaterial in Proposition 8.3.1. Indeed, if
we define for W > 0 the linear subspace

V =
{
g ∈ L2 : g(f) = 0 whenever |f | > W

}
, (8.16)

then the functions defined for every integer ` by

f 7→ 1√
2W

eiπ`f/W I{|f | ≤W} (8.17)

form a CONS for this subspace.

This note will be crucial when we next discuss a CONS for the space of energy-
limited signals that are bandlimited to W Hz.

8.4 The Sampling Theorem

We next provide a CONS for the space of energy-limited signals that are band-
limited to W Hz. Recall that if x is an energy-limited signal that is bandlimited
to W Hz, then there exists a measurable function3 g : f 7→ g(f) satisfying

g(f) = 0, |f | > W (8.18)

and ∫ W

−W

|g(f)|2 df <∞, (8.19)

such that

x(t) =
∫ W

−W

g(f) ei2πft df, t ∈ R. (8.20)

Conversely, if g is any function satisfying (8.18) & (8.19), and if we define x via
(8.20) as the Inverse Fourier Transform of g, then x is an energy-limited signal that
is bandlimited to W Hz and its L2 -Fourier Transform x̂ is equal to (the equivalence
class of) g.

Thus, if, as in (8.16), we denote by V the set of all functions (of frequency) satisfying
(8.18) & (8.19), then the set of all energy-limited signals that are bandlimited to W

Hz is just the image of V under the IFT, i.e., it is the set V̌, where

V̌ ,
{
ǧ : g ∈ V

}
. (8.21)

By the Mini Parseval Theorem (Proposition 6.2.6 (i)), if x1 and x2 are given by
ǧ1 and ǧ2, where g1,g2 are in V, then

〈x1,x2〉 = 〈g1,g2〉 , (8.22)

3Loosely speaking, this function is the Fourier Transform of x. But since x is not necessarily
integrable, its FT x̂ is an equivalence class of signals. Thus, more precisely, the equivalence class
of g is the L2 -Fourier Transform of x. Or, stated differently, g can be any one of the signals in
the equivalence class of x̂ that is zero outside the interval [−W,W ].
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i.e.,
〈ǧ1, ǧ2〉 = 〈g1,g2〉 , g1,g2 ∈ V. (8.23)

The following lemma is a simple but very useful consequence of (8.23).

Lemma 8.4.1. If {ψ`} is a CONS for the subspace V, which is defined in (8.16),
then {ψ̌`} is a CONS for the subspace V̌, which is defined in (8.21).

Proof. Let {ψ`} be a CONS for the subspace V. By (8.23),〈
ψ̌`, ψ̌`′

〉
= 〈ψ`,ψ`′〉 , `, `′ ∈ Z,

so our assumption that {ψ`} is a CONS for V (and hence that, a fortiori, it satisfies
〈ψ`,ψ`′〉 = I{` = `′} for all `, `′ ∈ Z) implies that〈

ψ̌`, ψ̌`′
〉

= I{` = `′}, `, `′ ∈ Z.

It remains to verify that for every x ∈ V̌
∞∑

`=−∞

∣∣〈x, ψ̌`〉∣∣2 = ‖x‖22 .

Equivalently, since every x ∈ V̌ can be written as ǧ for some g ∈ V, we need to
show that

∞∑
`=−∞

∣∣〈ǧ, ψ̌`〉∣∣2 = ‖ǧ‖22 , g ∈ V.

This follows from (8.23) and from our assumption that {ψ`} is a CONS for V
because

∞∑
`=−∞

∣∣〈ǧ, ψ̌`〉∣∣2 =
∞∑

`=−∞

∣∣〈g,ψ`〉∣∣2
= ‖g‖22
= ‖ǧ‖22 , g ∈ V,

where the first equality follows from (8.23) (by substituting g for g1 and by sub-
stituting ψ` for g2); the second from the assumption that {ψ`} is a CONS for V;
and the final equality from (8.23) (by substituting g for g1 and for g2).

Using this lemma and Note 8.3.2 we now derive a CONS for the subspace V̌ of
energy-limited signals that are bandlimited to W Hz.

Proposition 8.4.2 (A CONS for the Subspace of Energy-Limited Signals that
Are Bandlimited to W Hz).

(i) The sequence of signals that are defined for every integer ` by

t 7→
√

2W sinc(2Wt+ `) (8.24)

forms a CONS for the space of energy-limited signals that are bandlimited
to W Hz.
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(ii) If x is an energy-limited signal that is bandlimited to W Hz, then its inner
product with the `-th signal is given by its scaled sample at time −`/(2W):〈

x, t 7→
√

2W sinc(2Wt+ `)
〉

=
1√
2W

x
(
− `

2W

)
, ` ∈ Z. (8.25)

Proof. To prove Part (i) we recall that, by Note 8.3.2, the functions defined for
every ` ∈ Z by

ψ` : f 7→
1√
2W

eiπ`f/W I{|f | ≤W} (8.26)

form a CONS for the subspace V. Consequently, by Lemma 8.4.1, their Inverse
Fourier Transforms {ψ̌`} form a CONS for V̌. It just remains to evaluate ψ̌`
explicitly in order to verify that it is a scaled shifted sinc(·):

ψ̌`(t) =
∫ ∞

−∞
ψ`(f) ei2πft df

=
∫ W

−W

1√
2W

eiπ`f/W ei2πft df (8.27)

=
√

2W sinc(2Wt+ `), (8.28)

where the last calculation can be verified by direct computation as in (6.35).

We next prove Part (ii). Since x is an energy-limited signal that is bandlimited
to W Hz, it follows that there exists some g ∈ V such that

x = ǧ, (8.29)

i.e.,

x(t) =
∫ W

−W

g(f) ei2πft df, t ∈ R. (8.30)

Consequently,〈
x, t 7→

√
2W sinc(2Wt+ `)

〉
=
〈
x, ψ̌`

〉
=
〈
ǧ, ψ̌`

〉
= 〈g,ψ`〉

=
∫ W

−W

g(f)
( 1√

2W
eiπ`f/W

)∗
df

=
1√
2W

∫ W

−W

g(f) e−iπ`f/W df

=
1√
2W

x
(
− `

2W

)
, ` ∈ Z,

where the first equality follows from (8.28); the second by (8.29); the third by (8.23)
(with the substitution of g for g1 and ψ` for g2); the fourth by the definition of
the inner product and by (8.26); the fifth by conjugating the complex exponential;
and the final equality by substituting −`/(2W) for t in (8.30).
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Using Proposition 8.4.2 and Proposition 8.2.2 we obtain the following L2 version
of the Sampling Theorem.

Theorem 8.4.3 (L2 -Sampling Theorem). Let x be an energy-limited signal that
is bandlimited to W Hz, where W > 0, and let

T =
1

2W
. (8.31)

(i) The signal x can be reconstructed from the sequence . . . , x(−T), x(0), x(T), . . .
of its values at integer multiples of T in the sense that

lim
L→∞

∫ ∞

−∞

∣∣∣∣x(t)− L∑
`=−L

x(−`T) sinc
( t

T
+ `
)∣∣∣∣2 dt = 0.

(ii) The signal’s energy can be reconstructed from its samples via the relation∫ ∞

−∞
|x(t)|2 dt = T

∞∑
`=−∞

|x(`T)|2.

(iii) If y is another energy-limited signal that is bandlimited to W Hz, then

〈x,y〉 = T

∞∑
`=−∞

x(`T) y∗(`T).

Note 8.4.4. If T ≤ 1/(2W), then any energy-limited signal x that is bandlimited
to W Hz is also bandlimited to 1/(2T) Hz. Consequently, Theorem 8.4.3 continues
to hold if we replace (8.31) with the condition

0 < T ≤ 1
2W

. (8.32)

Table 8.1 highlights the duality between the Sampling Theorem and the Fourier
Series.

We also mention here without proof a version of the Sampling Theorem that allows
one to reconstruct the signal pointwise, i.e., at every epoch t. Thus, while Theo-
rem 8.4.3 guarantees that, as more and more terms in the sum of the shifted sinc
functions are added, the energy in the error function tends to zero, the following
theorem demonstrates that at every fixed time t the error tends to zero.

Theorem 8.4.5 (Pointwise Sampling Theorem). If the signal x can be represented
as

x(t) =
∫ W

−W

g(f) ei2πft df, t ∈ R (8.33)

for some function g satisfying ∫ W

−W

|g(f)|df <∞, (8.34)
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and if 0 < T ≤ 1/(2W), then for every t ∈ R

x(t) = lim
L→∞

L∑
`=−L

x(−`T) sinc
(
t

T
+ `

)
. (8.35)

Proof. See (Pinsky, 2002, Chapter 4, Section 4.2.3, Theorem 4.2.13).

The Sampling Theorem goes by various names. It is sometimes attributed to
Claude Elwood Shannon (1916–2001), the founder of Information Theory. But
it also appears in the works of Vladimir Aleksandrovich Kotelnikov (1908–2005),
Harry Nyquist (1889–1976), and Edmund Taylor Whittaker (1873–1956). For fur-
ther references regarding the history of this result and for a survey of many related
results, see (Unser, 2000).

8.5 Closed Subspaces of L2

Our definition of a CONS for a subspace U is not quite standard, because we only
assumed that U is a linear subspace; we did not assume that U is closed. In this
section we shall define closed linear subspaces and derive a condition for a sequence
{φ`} to form a CONS for a closed subspace U . (The set of energy-limited signals
that vanish outside the interval [−T, T ] is closed, as is the class of energy-limited
signals that are bandlimited to W Hz.)

Before proceeding to define closed linear subspaces, we pause here to recall that
the space L2 is complete.4

Theorem 8.5.1 (L2 Is Complete). If the sequence u1,u2, . . . of signals in L2 is
such that for any ε > 0 there exists a positive integer L(ε) such that

‖un − um‖2 < ε, n,m > L(ε),

then there exists some function u ∈ L2 such that

lim
n→∞

‖u− un‖2 = 0.

Proof. See, for example, (Rudin, 1974, Chapter 3, Theorem 3.11).

Definition 8.5.2 (Closed Subspace). A linear subspace U of L2 is said to be
closed if for any sequence of signals u1,u2, . . . in U and any u ∈ L2 , the condition
‖u− un‖2 → 0 implies that u is indistinguishable from some element of U .

Before stating the next theorem we remind the reader that a bi-infinite sequence
of complex numbers . . . , α−1, α0, α1, . . . is said to be square summable if

∞∑
`=−∞

∣∣α`∣∣2 <∞.
4This property is usually stated about L2 but we prefer to work with L2 .
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Theorem 8.5.3 (Riesz-Fischer). Let U be a closed linear subspace of L2 , and let
the bi-infinite sequence . . . ,φ−1,φ0,φ1, . . . satisfy (8.4) & (8.5). Let the bi-infinite
sequence of complex numbers . . . , α−1, α0, α1, . . . be square summable. Then there
exists an element u in U satisfying

lim
L→∞

∥∥∥∥u− L∑
`=−L

α`φ`

∥∥∥∥
2

= 0; (8.36a)

〈u,φ`〉 = α`, ` ∈ Z; (8.36b)

and

‖u‖22 =
∞∑

`=−∞

∣∣α`∣∣2. (8.36c)

Proof. Define for every positive integer L

uL =
L∑

`=−L

α`φ`, L ∈ N. (8.37)

Since, by hypothesis, U is a linear subspace and the signals {φ`} are all in U , it fol-
lows that uL ∈ U . By the orthonormality assumption (8.5) and by the Pythagorean
Theorem (Theorem 4.5.2), it follows that

‖un − um‖22 =
∑

min{m,n}<|`|≤max{m,n}

∣∣α`∣∣2
≤

∑
min{m,n}<|`|<∞

∣∣α`∣∣2, n,m ∈ N.

From this and from the square summability of {α`}, it follows that for any ε > 0
we have that ‖un − um‖2 is smaller than ε whenever both n and m are sufficiently
large. By the completeness of L2 it thus follows that there exists some u′ ∈ L2

such that
lim

L→∞
‖u′ − uL‖2 = 0. (8.38)

Since U is closed, and since uL is in U for every L ∈ N, it follows from (8.38) that u′

is indistinguishable from some element u of U :

‖u− u′‖2 = 0. (8.39)

It now follows from (8.38) and (8.39) that

lim
L→∞

‖u− uL‖2 = 0, (8.40)

as can be verified using (4.14) (with the substitution (u′ − uL) for x and (u− u′)
for y). Combining (8.40) with (8.37) establishes (8.36a).
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To establish (8.36b) we use (8.40) and the continuity of the inner product (Propo-
sition 3.4.2) to calculate 〈u,φ`〉 for every fixed ` ∈ Z as follows:

〈u,φ`〉 = lim
L→∞

〈uL,φ`〉

= lim
L→∞

〈 L∑
`′=−L

α`′φ`′ ,φ`

〉
= lim

L→∞
α` I{|`| ≤ L}

= α`, ` ∈ Z,

where the first equality follows from (8.40) and from the continuity of the inner
product (Proposition 3.4.2); the second by (8.37); the third by the orthonormality
(8.5); and the final equality because α` I{|`| ≤ L} is equal to α`, whenever L is
large enough (i.e., exceeds |`|).
It remains to prove (8.36c). By the orthonormality of {φ`} and the Pythagorean
Theorem (Theorem 4.5.2)

‖uL‖22 =
L∑

`=−L

∣∣α`∣∣2, L ∈ N. (8.41)

Also, by (4.14) (with the substitution of u for x and of (uL − u) for y) we obtain

‖u‖2 − ‖u− uL‖2 ≤ ‖uL‖2 ≤ ‖u‖2 + ‖u− uL‖2 . (8.42)

It now follows from (8.42), (8.40), and the Sandwich Theorem5 that

lim
L→∞

‖uL‖2 = ‖u‖2 , (8.43)

which combines with (8.41) to prove (8.36c).

By applying Theorem 8.5.3 to the space of energy-limited signals that are band-
limited to W Hz and to the CONS that we derived for that space in Proposi-
tion 8.4.2 we obtain:

Proposition 8.5.4. Any square-summable bi-infinite sequence of complex numbers
corresponds to the samples at integer multiples of T of an energy-limited signal that
is bandlimited to 1/(2T) Hz. Here T > 0 is arbitrary.

Proof. Let . . . , β−1, β0, β1, . . . be a square-summable bi-infinite sequence of com-
plex numbers, and let W = 1/(2T). We seek a signal u that is an energy-limited
signal that is bandlimited to W Hz and whose samples are given by u(`T) = β`,
for every integer `. Since the set of all energy-limited signals that are bandlimited
to W Hz is a closed linear subspace of L2 , and since the sequence {ψ̌`} (given ex-
plicitly in (8.28) as ψ̌` : t 7→

√
2W sinc(2Wt+`)) is an orthonormal sequence in that

5The Sandwich Theorem states that if the sequences of real number {an}, {bn} and {cn} are
such that bn ≤ an ≤ cn for every n, and if the sequences {bn} and {cn} converge to the same
limit, then {an} also converges to that limit.
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subspace, it follows from Theorem 8.5.3 (with the substitution of ψ̌` for φ` and of
β−`/

√
2W for α`) that there exists an energy-limited signal u that is bandlimited

to W Hz and for which 〈
u, ψ̌`

〉
=

1√
2W

β−`, ` ∈ Z. (8.44)

By Proposition 8.4.2,

〈
u, ψ̌`

〉
=

1√
2W

u(−`T), ` ∈ Z, (8.45)

so by (8.44) and (8.45)
u(−`T) = β−`, ` ∈ Z.

We now give an alternative characterization of a CONS for a closed subspace of L2 .
This result will not be used later in the book.

Proposition 8.5.5 (Characterization of a CONS for a Closed Subspace).

(i) If the bi-infinite sequence {φ`} is a CONS for the linear subspace U ⊆ L2 ,
then an element of U whose inner product with φ` is zero for every integer `
must have zero energy:(

〈u,φ`〉 = 0, ` ∈ Z
)
⇒
(
‖u‖2 = 0

)
, u ∈ U . (8.46)

(ii) If U is a closed subspace of L2 and if the bi-infinite sequence {φ`} satisfies
(8.4) & (8.5), then Condition (8.46) is equivalent to the condition that {φ`}
forms a CONS for U .

Proof. We begin by proving Part (i). By definition, if {φ`} is a CONS for U , then
(8.6) must hold for every every u ∈ U . Consequently, if for some u ∈ U we have
that 〈u,φ`〉 is zero for all ` ∈ Z, then the RHS of (8.6) is zero and hence the LHS
must also be zero, thus showing that u must be of zero energy.

We next turn to Part (ii) and assume that U is closed and that the bi-infinite
sequence {φ`} satisfies (8.4) & (8.5). That the condition that {φ`} is a CONS
implies Condition (8.46) follows from Part (i). It thus remains to show that if
Condition (8.46) holds, then {φ`} is a CONS. To prove this we now assume that U
is a closed subspace; that {φ`} satisfies (8.4) & (8.5); and that (8.46) holds and
set out to prove that

‖u‖22 =
∞∑

`=−∞

∣∣〈u,φ`〉∣∣2, u ∈ U . (8.47)

To establish (8.47) fix some arbitrary u ∈ U . Since U ⊆ L2 , the fact that u is
in U implies that it is of finite energy, which combines with (8.3) to imply that the
bi-infinite sequence . . . , 〈u,φ−1〉 , 〈u,φ0〉 , 〈u,φ1〉 , . . . is square summable. Since,
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by hypothesis, U is closed, this implies, by Theorem 8.5.3 (with the substitution
of 〈u,φ`〉 for α`), that there exists some element ũ ∈ U such that

lim
L→∞

∥∥∥ũ− L∑
`=−L

〈u,φ`〉φ`
∥∥∥
2

= 0; (8.48a)

〈ũ,φ`〉 = 〈u,φ`〉, ` ∈ Z; (8.48b)

and

‖ũ‖22 =
∞∑

`=−∞

∣∣〈u,φ`〉∣∣2. (8.48c)

By (8.48b) it follows that the element u− ũ of U satisfies

〈u− ũ,φ`〉 = 0, ` ∈ Z,

and hence, by Condition (8.46), is of zero energy

‖u− ũ‖2 = 0, (8.49)

so u and ũ are indistinguishable and hence

‖u‖2 = ‖ũ‖2 .

This combines with (8.48c) to prove (8.47).

8.6 An Isomorphism

In this section we collect the results of Theorem 8.4.3 and Proposition 8.5.4 into a
single theorem about the isomorphism between the space of energy-limited signals
that are bandlimited to W Hz and the space of square-summable sequences. This
theorem is at the heart of quantization schemes for bandlimited signals. It demon-
strates that to describe a bandlimited signal one can use discrete-time processing to
quantize its samples and one can then map the quantized samples to a bandlimited
signal. The energy in the error signal corresponding to the difference between the
original signal and its description is then proportional to the sum of the squared
differences between the samples of the original signal and the quantized version.

Theorem 8.6.1 (Bandlimited Signals and Square-Summable Sequences). Let
T = 1/(2W), where W > 0.

(i) If u is an energy-limited signal that is bandlimited to W Hz, then the bi-
infinite sequence

. . . , u(−T), u(0), u(T), u(2T), . . .

consisting of its samples taken at integer multiples of T is square summable
and

T

∞∑
`=−∞

∣∣u(`T)∣∣2 = ‖u‖22 .
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(ii) More generally, if u and v are energy-limited signals that are bandlimited
to W Hz, then

T

∞∑
`=−∞

u(`T) v∗(`T) = 〈u,v〉 .

(iii) If {α`} is a bi-infinite square-summable sequence, then there exists an energy-
limited signal u that is bandlimited to W Hz such that its samples are given
by

u(`T) = α`, ` ∈ Z.

(iv) The mapping that maps every energy-limited signal that is bandlimited to W

Hz to the square-summable sequence consisting of its samples is linear.

8.7 Prolate Spheroidal Wave Functions

The following result, which is due to Slepian and Pollak, will not be used in this
book; it is included for its sheer beauty.

Theorem 8.7.1. Let the positive constants T > 0 and W > 0 be given. Then
there exists a sequence of real functions φ1,φ2, . . . and a corresponding sequence
of positive numbers λ1 > λ2 > · · · such that:

(i) The sequence φ1,φ2, . . . forms a CONS for the space of energy-limited signals
that are bandlimited to W Hz, so, a fortiori,∫ ∞

−∞
φ`(t)φ`′(t) dt = I{` = `′}, `, `′ ∈ N. (8.50a)

(ii) The sequence of scaled and time-windowed functions φ̃1,w, φ̃2,w, . . . defined at
every t ∈ R by

φ̃`,w(t) =
1√
λ`
φ`(t) I

{
|t| ≤ T

2

}
, ` ∈ N (8.50b)

forms a CONS for the subspace of L2 consisting of all energy-limited signals
that vanish outside the interval [−T/2, T/2], so, a fortiori,∫ T/2

−T/2

φ`(t)φ`′(t) dt = λ` I{` = `′}, `, `′ ∈ N. (8.50c)

(iii) For every t ∈ R,∫ T/2

−T/2

LPFW(t− τ)φ`(τ) dτ = λ` φ`(t), ` ∈ N. (8.50d)

The above functions φ1,φ2, . . . are related to Prolate Spheroidal Wave Functions.
For a discussion of this connection, a proof of this theorem, and numerous appli-
cations see (Slepian and Pollak, 1961) and (Slepian, 1976).
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8.8 Exercises

Exercise 8.1 (Expansion of a Function). Expand the function t 7→ sinc2(t/2) as an or-
thonormal expansion in the functions

. . . , t 7→ sinc(t+ 2), t 7→ sinc(t+ 1), t 7→ sinc(t), t 7→ sinc(t− 1), t 7→ sinc(t− 2), . . .

Exercise 8.2 (Inner Product with a Bandlimited Signal). Show that if x is an energy-
limited signal that is bandlimited to W Hz, and if y ∈ L2 , then

〈x,y〉 = Ts

∞∑
`=−∞

x(`Ts) y
∗
LPF(`Ts),

where yLPF is the result of passing y through an ideal unit-gain lowpass filter of bandwidth
W Hz, and where Ts = 1/(2W).

Exercise 8.3 (Approximating a Sinc by Sincs). Find the coefficients {α`} that minimize
the integral ∫ ∞

−∞

(
sinc(3t/2)−

∞∑
`=−∞

α` sinc(t− `)
)2

dt.

What is the value of this integral when the coefficients are chosen as you suggest?

Exercise 8.4 (Integrability and Summability). Show that if x is an integrable signal that
is bandlimited to W Hz and if Ts = 1/(2W), then

∞∑
`=−∞

∣∣x(`Ts)
∣∣ <∞.

Hint: Let h be the IFT of the mapping in (7.15) when we substitute 0 for fc; 2W for W;
and 2W + ∆ for Wc, where ∆ > 0. Express x(`Ts) as

(
x ? h

)
(`Ts); upper-bound the

convolution integral using Proposition 2.4.1; and use Fubini’s Theorem to swap the order
of summation and integration.

Exercise 8.5 (Approximating an Integral by a Sum). One often approximates an integral
by a sum, e.g., ∫ ∞

−∞
x(t) dt ≈ δ

∞∑
`=−∞

x(`δ).

(i) Show that if u is an energy-limited signal that is bandlimited to W Hz, then, for
every 0 < δ ≤ 1/(2W), the above approximation is exact when we substitute |u(t)|2
for x(t), that is, ∫ ∞

−∞
|u(t)|2 dt = δ

∞∑
`=−∞

|u(`δ)|2.

(ii) Show that if x is an integrable signal that is bandlimited to W Hz, then, for every
0 < δ ≤ 1/(2W), ∫ ∞

−∞
x(t) dt = δ

∞∑
`=−∞

x(`δ).
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(iii) Consider the signal u : t 7→ sinc(t). Compute ‖u‖22 using Parseval’s Theorem and
use the result and Part (i) to show that

∞∑
m=0

1

(2m+ 1)2
=
π2

8
.

Exercise 8.6 (On the Pointwise Sampling Theorem).

(i) Let the functions g,g0,g1, . . . be elements of L2 that are zero outside the interval
[−W,W ]. Show that if ‖g − gn‖2 → 0, then for every t ∈ R

lim
n→∞

∫ ∞

−∞
gn(f) ei2πft df =

∫ ∞

−∞
g(f) ei2πft df.

(ii) Use Part (i) to prove the Pointwise Sampling Theorem for energy-limited signals.

Exercise 8.7 (Reconstructing from a Finite Number of Samples). Show that there does
not exist a universal positive integer L such that at t = T/2∣∣∣∣x(t)− L∑

`=−L

x(−`T) sinc
( t

T
+ `
)∣∣∣∣ < 0.1

for all energy-limited signals x that are bandlimited to 1/(2T) Hz.

Exercise 8.8 (Inner Product between Passband Signals). Let xPB and yPB be energy-
limited passband signals that are bandlimited to W Hz around the carrier frequency fc.
Let xBB and yBB be their corresponding baseband representations. Let T = 1/W. Show
that

〈xPB,yPB〉 = 2T Re

( ∞∑
`=−∞

xBB(`T) y∗BB(`T)

)
.

Exercise 8.9 (Closed Subspaces). Let U denote the set of energy-limited signals that
vanish outside some interval. Thus, u is in U if, and only if, there exist a, b ∈ R (that may
depend on u) such that u(t) is zero whenever t /∈ [a, b]. Show that U is a linear subspace
of L2 , but that it is not closed.

Exercise 8.10 (Projection onto an Infinite-Dimensional Subspace).

(i) Let U ⊂ L2 be the set of all elements of L2 that are zero outside the interval
[−1,+1]. Given v ∈ L2 , let w be the signal w : t 7→ v(t) I{|t| ≤ 1}. Show that w is
in U and that v −w is orthogonal to every signal in U .

(ii) Let U be the subspace of energy-limited signals that are bandlimited to W Hz.
Given v ∈ L2 , define w = v ? LPFW. Show that w is in U and that v − w is
orthogonal to every signal in U .

Exercise 8.11 (A Maximization Problem). Of all unit-energy real signals that are band-
limited to W Hz, which one has the largest value at t = 0? What is its value at t = 0?
Repeat for t = 17.
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Chapter 9

Sampling Real Passband Signals

9.1 Introduction

In this chapter we present a procedure for representing a real energy-limited pass-
band signal that is bandlimited to W Hz around a carrier frequency fc using com-
plex numbers that we accumulate at a rate of W complex numbers per second.
Alternatively, since we can represent every complex number as a pair of real num-
bers (its real and imaginary parts), we can view our procedure as allowing us to
represent the signal using real numbers that we accumulate at a rate of 2W real
numbers per second. Thus we propose to accumulate

2W real samples per second,

or

W complex samples per second.

Note that the carrier frequency fc plays no role here (provided, of course, that
fc > W/2): the rate at which we accumulate real numbers to describe the passband
signal does not depend on fc.1

For real baseband signals this feat is easily accomplished using the Sampling The-
orem as follows. A real energy-limited baseband signal that is bandlimited to W

Hz can be reconstructed from its (real) samples that are taken 1/(2W) seconds
apart (Theorem 8.4.3), so the signal can be reconstructed from real numbers (its
samples) that are being accumulated at the rate of 2W real samples per second.

For passband signals we cannot achieve this feat by invoking the Sampling Theorem
directly. Even though, by Corollary 7.7.3, every energy-limited passband signal xPB

that is bandlimited to W Hz around the center frequency fc is also an energy-limited
bandlimited (baseband) signal, we are only guaranteed that xPB be bandlimited

1But the carrier frequency fc does play a role in the reconstruction.

161
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to fc +W/2 Hz. Consequently, if we were to apply the Sampling Theorem directly
to xPB we would have to sample xPB every 1/(2fc + W) seconds, i.e., we would
have to accumulate 2fc + W real numbers per second, which can be much higher
than 2W, especially in wireless communications where fc �W.

Instead of applying the Sampling Theorem directly to xPB, the idea is to apply it to
xPB’s baseband representation xBB. Suppose that xPB is a real energy-limited pass-
band signal that is bandlimited to W Hz around the carrier frequency fc. By Theo-
rem 7.7.12 (vii), it can be represented using its baseband representation xBB, which
is a complex baseband signal that is bandlimited to W/2 Hz (Theorem 7.7.12 (v)).
Consequently, by the L2 -Sampling Theorem (Theorem 8.4.3), xBB can be described
by sampling it at a rate of W samples per second. Since the baseband signal is
complex, its samples are also, in general, complex. Thus, in sampling xBB every
1/W seconds we are accumulating one complex sample every 1/W seconds. Since
we can recover xPB from xBB and fc, it follows that, as we wanted, we have found
a way to describe xPB using complex numbers that are accumulated at a rate of W

complex numbers per second.

9.2 Complex Sampling

Recall from Section 7.7.3 (Theorem 7.7.12) that a real energy-limited passband
signal xPB that is bandlimited to W Hz around a carrier frequency fc can be
represented using its baseband representation xBB as

xPB(t) = 2 Re
(
ei2πfct xBB(t)

)
, t ∈ R, (9.1)

where xBB is given by

xBB =
(
t 7→ e−i2πfct xPB(t)

)
? LPFWc , (9.2)

and where the cutoff frequency Wc can be chosen arbitrarily in the range

W

2
≤Wc ≤ 2fc −

W

2
. (9.3)

The signal xBB is an energy-limited complex baseband signal that is bandlimited
to W/2 Hz. Being bandlimited to W/2 Hz, it follows from the L2 -Sampling The-
orem that xBB can be reconstructed from its samples taken 1/(2 (W/2)) = 1/W
seconds apart. We denote these samples by

xBB

( `
W

)
, ` ∈ Z (9.4)

so, by (9.2),

xBB

( `
W

)
=
((
t 7→ e−i2πfct xPB(t)

)
? LPFWc

)( `
W

)
, ` ∈ Z. (9.5)

These samples are, in general, complex. Their real part corresponds to the samples
of the in-phase component Re(xBB), which, by (7.41a), is given by

Re(xBB) =
(
t 7→ xPB(t) cos(2πfct)

)
? LPFWc (9.6)
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cos(2πfct)

90◦

×

×

xPB(t)

xPB(t) cos(2πfct)

−xPB(t) sin(2πfct)

LPFWc

LPFWc

W
2
≤ Wc ≤ 2fc − W

2

Re
(
xBB(t)

)

Im
(
xBB(t)

)

Re
(
xBB(`/W)

)

Im
(
xBB(`/W)

)

`/W

`/W

Figure 9.1: Sampling of a real passband signal xPB.

(for Wc satisfying (9.3)) and their imaginary part corresponds to the samples of
the quadrature-component Im(xBB), which, by (7.41b), is given by

Im(xBB) = −
(
t 7→ xPB(t) sin(2πfct)

)
? LPFWc . (9.7)

Thus,

xBB

( `
W

)
=
((
t 7→ xPB(t) cos(2πfct)

)
? LPFWc

)( `
W

)
− i
((
t 7→ xPB(t) sin(2πfct)

)
? LPFWc

)( `
W

)
, ` ∈ Z. (9.8)

The procedure of taking a real passband signal xPB and sampling its baseband
representation to obtain the samples (9.8) is called complex sampling. It is
depicted in Figure 9.1. The passband signal xPB is first separately multiplied
by t 7→ cos(2πfct) and by t 7→ − sin(2πfct), which are generated using a local
oscillator and a 90◦-phase shifter. Each result is fed to a lowpass filter with cutoff
frequency Wc to produce the in-phase and quadrature component respectively.
Each component is then sampled at a rate of W real samples per second.

9.3 Reconstructing xPB from its Complex Samples

By the Pointwise Sampling Theorem (Theorem 8.4.5) applied to the energy-limited
signal xBB (which is bandlimited to W/2 Hz) we obtain

xBB(t) =
∞∑

`=−∞

xBB

( `
W

)
sinc(Wt− `), t ∈ R. (9.9)
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Consequently, by (9.1), xPB can be reconstructed from its complex samples as

xPB(t) = 2 Re
(
ei2πfct

∞∑
`=−∞

xBB

( `
W

)
sinc(Wt− `)

)
, t ∈ R. (9.10a)

Since the sinc (·) function is real, this can also be written as

xPB(t) = 2
∞∑

`=−∞

Re
(
ei2πfct xBB

( `
W

))
sinc(Wt− `), t ∈ R, (9.10b)

or, using real operations, as

xPB(t) = 2
∞∑

`=−∞

Re
(
xBB

( `
W

))
sinc(Wt− `) cos(2πfct)

− 2
∞∑

`=−∞

Im
(
xBB

( `
W

))
sinc(Wt− `) sin(2πfct), t ∈ R. (9.10c)

As we next show, we can obtain another form of convergence using the L2 -Sampling
Theorem (Theorem 8.4.3). We first note that by that theorem

lim
L→∞

∥∥∥∥t 7→ xBB(t)−
L∑

`=−L

xBB

( `
W

)
sinc(Wt− `)

∥∥∥∥2

2

= 0. (9.11)

We next note that xBB is the baseband representation of xPB and that—as can be
verified directly or by using Proposition 7.7.9—the mapping

t 7→ xBB(`/W) sinc(Wt− `)

is the baseband representation of the real passband signal

t 7→ 2 Re
(
ei2πfct xBB

( `
W

)
sinc(Wt− `)

)
.

Consequently, by linearity (Theorem 7.7.12 (ii)), the mapping

t 7→ xBB(t)−
L∑

`=−L

xBB

( `
W

)
sinc(Wt− `)

is the baseband representation of the real passband signal

t 7→ xPB(t)− 2 Re
(
ei2πfct

L∑
`=−L

xBB

( `
W

)
sinc(Wt− `)

)
and hence, by Theorem 7.7.12 (iii),∥∥∥∥t 7→ xPB(t)− 2 Re

(
ei2πfct

L∑
`=−L

xBB

( `
W

)
sinc(Wt− `)

)∥∥∥∥2

2

= 2
∥∥∥∥t 7→ xBB(t)−

L∑
`=−L

xBB

( `
W

)
sinc(Wt− `)

∥∥∥∥2

2

. (9.12)
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Combining (9.11) with (9.12) yields the L2 convergence

lim
L→∞

∥∥∥∥∥t 7→ xPB(t)− 2 Re
(
ei2πfct

L∑
`=−L

xBB

( `
W

)
sinc(Wt− `)

)∥∥∥∥∥
2

= 0. (9.13)

We summarize how a passband signal can be reconstructed from the samples of its
baseband representation in the following theorem.

Theorem 9.3.1 (The Sampling Theorem for Passband Signals). Let xPB be a
real energy-limited passband signal that is bandlimited to W Hz around the carrier
frequency fc. For every integer `, let xBB(`/W) denote the time-`/W sample of the
baseband representation xBB of xPB; see (9.5) and (9.8).

(i) xPB can be pointwise reconstructed from the samples using the relation

xPB(t) = 2 Re
(
ei2πfct

∞∑
`=−∞

xBB

( `
W

)
sinc(Wt− `)

)
, t ∈ R.

(ii) xPB can also be reconstructed from the samples in the L2 sense

lim
L→∞

∫ ∞

−∞

(
xPB(t)− 2 Re

(
ei2πfct

L∑
`=−L

xBB

( `
W

)
sinc(Wt− `)

))2

dt = 0.

(iii) The energy in xPB can be reconstructed from the sum of the squared magni-
tudes of the samples via

‖xPB‖22 =
2
W

∞∑
`=−∞

∣∣∣xBB

( `
W

)∣∣∣2.
(iv) If yPB is another real energy-limited passband signal that is bandlimited to

W Hz around fc, and if {yBB(`/W)} are the samples of its baseband repre-
sentation, then

〈xPB,yPB〉 =
2
W

Re
( ∞∑
`=−∞

xBB

( `
W

)
y∗BB

( `
W

))
.

Proof. Part (i) is just a restatement of (9.10b). Part (ii) is a restatement of (9.13).
Part (iii) is a special case of Part (iv) corresponding to yPB being equal to xPB. It
thus only remains to prove Part (iv). This is done by noting that if xBB and yBB

are the baseband representations of xPB and yPB, then, by Theorem 7.7.12 (iv),

〈xPB,yPB〉 = 2Re
(
〈xBB,yBB〉

)
=

2
W

Re
( ∞∑
`=−∞

xBB

( `
W

)
y∗BB

( `
W

))
,

where the second equality follows from Theorem 8.4.3 (iii).
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Using the isomorphism between the family of complex square-summable sequences
and the family of energy-limited signals that are bandlimited to W Hz (Theo-
rem 8.6.1), and using the relationship between real energy-limited passband signals
and their baseband representation (Theorem 7.7.12), we can readily establish the
following isomorphism between the family of complex square-summable sequences
and the family of real energy-limited passband signals.

Theorem 9.3.2 (Real Passband Signals and Square-Summable Sequences). Let
fc, W, and T be constants satisfying

fc > W/2 > 0, T = 1/W.

(i) If xPB is a real energy-limited passband signal that is bandlimited to W Hz
around fc, and if xBB is its baseband representation, then the bi-infinite se-
quence consisting of the samples of xBB at integer multiples of T

. . . , xBB(−T), xBB(0), xBB(T), xBB(2T), . . .

is a square-summable sequence of complex numbers and

2T

∞∑
`=−∞

∣∣xBB(`T)
∣∣2 = ‖xPB‖22 .

(ii) More generally, if xPB and yPB are real energy-limited passband signals that
are bandlimited to W Hz around the carrier frequency fc, and if xBB and
yBB are their baseband representations, then

2T Re
( ∞∑
`=−∞

xBB(`T) y∗BB(`T)
)

= 〈xPB,yPB〉 .

(iii) If . . . , α−1, α0, α1, . . . is a square-summable bi-infinite sequence of complex
numbers, then there exists a real energy-limited passband signal xPB that is
bandlimited to W Hz around the carrier frequency fc such that the samples
of its baseband representation xBB are given by

xBB(`T) = α`, ` ∈ Z.

(iv) The mapping of every real energy-limited passband signal that is bandlimited
to W Hz around fc to the square-summable sequence consisting of the samples
of its baseband representation is linear (over R).

9.4 Exercises

Exercise 9.1 (A Specific Signal). Let x be a real energy-limited passband signal that
is bandlimited to W Hz around the carrier frequency fc. Suppose that all its complex
samples are zero except for its zero-th complex sample, which is given by 1 + i. What
is x?
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Exercise 9.2 (Real Passband Signals whose Complex Samples Are Real). Characterize
the Fourier Transforms of real energy-limited passband signals that are bandlimited to W
Hz around the carrier frequency fc and whose complex samples are real.

Exercise 9.3 (Multiplying by a Carrier). Let x be a real energy-limited signal that is
bandlimited to W/2 Hz, and let fc be larger than W/2. Express the complex samples of
t 7→ x(t) cos(2πfct) in terms of x. Repeat for t 7→ x(t) sin(2πfct).

Exercise 9.4 (Naively Sampling a Passband Signal).

(i) Consider the signal x : t 7→ m(t) sin(2πfct), where m(·) is an integrable signal that
is bandlimited to 100 Hz and where fc = 100 MHz. Can x be recovered from its
samples . . . , x(−T), x(0), x(T), . . . when 1/T = 100 MHz?

(ii) Consider now the general case where x is an integrable real passband signal that is
bandlimited to W Hz around the carrier frequency fc. Find conditions guaranteeing
that x be reconstructible from its samples . . . , x(−T), x(0), x(T), . . .

Exercise 9.5 (Orthogonal Passband Signals). Let xPB and yPB be real energy-limited
passband signals that are bandlimited to W Hz around the carrier frequency fc. Under
what conditions on their complex samples are they orthogonal?

Exercise 9.6 (Sampling a Baseband Signal As Though It Were a Passband Signal). Recall
that, ignoring some technicalities, a real baseband signal x of bandwidth W Hz can be
viewed as a real passband signal of bandwidth W around the carrier frequency fc, where
fc = W/2 (Problem 7.3). Compare the reconstruction formula for x from its samples to
the reconstruction formula for x from its complex samples.

Exercise 9.7 (Multiplying the Complex Samples). Let x be a real energy-limited passband
signal that is bandlimited to W Hz around the carrier frequency fc. Let . . . , x−1, x0, x1, . . .
denote its complex samples taken 1/W second apart. Let y be a real energy-limited
passband signal that is bandlimited to W Hz around the carrier frequency fc and whose
complex samples are like those of x but multiplied by i. Relate the FT of y to the FT
of x.

Exercise 9.8 (Delayed Complex Sampling). Let x and y be real energy-limited passband
signals that are bandlimited to W Hz around the carrier frequency fc. Suppose that the
complex samples of y are the same as those of x, but delayed by one:

yBB

( `

W

)
= xBB

( `− 1

W

)
, ` ∈ Z.

How are x̂ and ŷ related? Is y a delayed version of x?

Exercise 9.9 (On the Family of Real Passband Signals). Is the set of all real energy-
limited passband signals that are bandlimited to W Hz around the carrier frequency fc
a linear subspace of the set of all complex energy-limited signals?

Exercise 9.10 (Complex Sampling and Inner Products). Show that the `-th complex
sample xBB(`/W) of any real energy-limited passband signal that is bandlimited to W
Hz around the carrier frequency fc can be expressed as an inner product

xBB

( `

W

)
= 〈x,φ`〉 , ` ∈ Z,

where . . . ,φ−1,φ0,φ1, . . . are orthogonal equi-energy complex signals. Is φ` in general
a delayed version of φ0?
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Exercise 9.11 (Absolute Summability of the Complex Samples). Show that the complex
samples of a real integrable passband signal that is bandlimited to W Hz around the
carrier frequency fc must be absolutely summable.

Hint: See Exercise 8.4.

Exercise 9.12 (The Convolution Revisited). Let x and y be real integrable passband
signals that are bandlimited to W Hz around the carrier frequency fc. Express the
complex samples of x ? y in terms of those of x and y.

Exercise 9.13 (Complex Sampling and Filtering). Let x be a real integrable passband
signal that is bandlimited to W Hz around the carrier frequency fc, and let h be the
impulse response of a real stable filter. Relate the complex samples of x ?h to those of x
and h ? BPFW,fc .



Chapter 10

Mapping Bits to Waveforms

10.1 What Is Modulation?

Data bits are mathematical entities that have no physical attributes. To send them
over a channel, one needs to first map them into some physical signal, which is
then “fed” into a channel to produce a physical signal at the channel’s output. For
example, when we send data over a telephone line, the data bits are first converted
to an electrical signal, which then influences the voltage measured at the other
end of the line. (We use the term “influences” because the signal measured at the
other end of the line is usually not identical to the channel input: it is typically
attenuated and also corrupted by thermal noise and other distortions introduced
by various conversions in the telephone exchange system.) Similarly, in a wireless
system, the data bits are mapped to an electromagnetic wave that then influences
the electromagnetic field measured at the receiver antenna. In magnetic recording,
data bits are written onto a magnetic medium by a mapping that maps them to
a magnetization pattern, which is then measured (with some distortion and some
noise) by the magnetic head at some later time when the data are read.

In the first example the bits are mapped to continuous-time waveforms correspond-
ing to the voltage across an impedance, whereas in the last example the bits are
mapped to a spatial waveform corresponding to different magnetizations at dif-
ferent locations across the magnetic medium. While some of the theory we shall
develop holds for both cases, we shall focus here mainly on channels of the former
type, where the channel input signal is some function of time rather than space.

We shall further focus on cases where the channel input corresponds to a time-
varying voltage across a resistor, a time-varying current through a resistor, or a
time-varying electric field, so the energy required to transmit the signal is propor-
tional to the time integral of its square. Thus, if x(t) denotes the channel input at
time t, then we shall refer to

∫ t+∆

t
x2(τ) dτ as the transmitted energy during the

time interval beginning at time t and ending at time t+ ∆.

There are many mappings of bits to waveforms, and our goal is to find “good” ones.
We will, of course, have to define some figures of merit to compare the quality of
different mappings. We shall refer to the mapping of bits to a physical waveform
as modulation and to the part of the system that performs the modulation as the

169
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modulator.

Without going into too much detail, we can list a few qualitative requirements of a
modulator. The modulation should be robust with respect to channel impairments,
so that the receiver at the other end of the channel can reliably decode the data bits
from the channel output. Also, the modulator should have reasonable complexity.
Finally, in many applications we require that the transmitted signal be of limited
power so as to preserve the battery. In wireless applications the transmitted signal
may also be subject to spectral restrictions so as to not interfere with other systems.

10.2 Modulating One Bit

One does not typically expect to design a communication system in order to convey
only one data bit. The purpose of the modulator is typically to map an entire bit
stream to a waveform that extends over the entire life of the communication system.
Nevertheless, for pedagogic reasons, it is good to first consider the simplest scenario
of modulating a single bit. In this case the modulator is fully characterized by two
functions x0(·) and x1(·) with the understanding that if the data bit D is equal
to zero, then the modulator produces the waveform x0(·) and that otherwise it
produces x1(·). Thus, the signal produced by the modulator is given by

X(t) =

{
x0(t) if D = 0,
x1(t) if D = 1,

t ∈ R. (10.1)

For example, we could choose

x0(t) =

{
A e−t/T if t/T ≥ 0,
0 otherwise,

, t ∈ R,

and

x1(t) =

{
A if 0 ≤ t/T ≤ 1,
0 otherwise,

, t ∈ R,

where T = 1 sec and where A is a constant such that A2 has units of power.

This may seem like an odd way of writing these waveforms, but we have our
reasons: we typically think of t as having units of time, and we try to avoid
applying transcendental functions (such as the exponential function) to quantities
with units. Also, we think of the squared transmitted waveform as having units
of power, whereas we think of the transcendental functions as returning unit-less
arguments. Hence the introduction of the constant A with the understanding that
A2 has units of power.

We denoted the bit to be sent by an uppercase letter (D) because we like to de-
note random quantities (such as random variables, random vectors, and stochastic
processes) by uppercase letters, and we think of the transmitted bit as a random
quantity. Indeed, if the transmitted bit were deterministic, there would be no
need to transmit it! This may seem like a statement made in jest, but it is ac-
tually very important. In the first half of the twentieth century, engineers often
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analyzed the performance of (analog) communication systems by analyzing their
performance in transmitting some particular signal, e.g., a sine wave. Nobody, of
course, transmitted such “boring” signals, because those could always be produced
at the receiver using a local oscillator. In the second half of the twentieth century,
especially following the work of Claude Shannon, engineers realized that it is only
meaningful to view the data to be transmitted as random, i.e., as quantities that
are unknown at the receiver and also unknown to the system designer prior to the
system’s deployment. We thus view the bit to be sent D as a random variable.
Often we will assume that it takes on the values 0 and 1 equiprobably. This is a
good assumption if prior to transmission a data compression algorithm is used.

By the same token, we view the transmitted signal as a random quantity, and
hence the uppercase X. In fact, if we employ the above signaling scheme, then at
every time instant t′ ∈ R the value X(t′) of the transmitted waveform is a random
variable. For example, at time T/2 the value of the transmitted waveform isX(T/2),
which is a random variable that takes on the values A e−1/2 and A equiprobably.
Similarly, at time 2T the value of the transmitted waveform is X(2T), which is a
random variable taking on the values e−2 and 0 equiprobably. Mathematicians call
such a waveform a random process or a stochastic process (SP). This will be
defined formally in Section 12.2.

It is useful to think about a random process as a function of two arguments: time
and “luck” or, more precisely, as a function of time and the result of all the random
experiments in the system. For a fixed instant of time t ∈ R, we have that X(t)
is a random variable, i.e., a real-valued function of the randomness in the system
(in this case the realization of D). Alternatively, for a fixed realization of the
randomness in the system, the random process is a deterministic function of time.
These two views will be used interchangeably in this book.

10.3 From Bits to Real Numbers

Many of the popular modulation schemes can be viewed as operating in two stages.
In the first stage the data bits are mapped to real numbers, and in the second stage
the real numbers are mapped to a continuous-time waveform. If we denote by k the
number of data bits that will be transmitted by the system during its lifetime (or
from the moment it is turned on until it is turned off), and if we denote the data
bits by D1, D2, . . . , Dk, then the first stage can be described as the application of
a mapping ϕ(·) that maps length-k sequences of bits to length-n sequences of real
numbers:

ϕ : {0, 1}k → Rn

(d1, . . . , dk) 7→ (x1, . . . , xn).

From an engineering point of view, it makes little sense to allow for the encoding
function to map two different binary k-tuples to the same real n-tuple, because
this would result in the transmitted waveforms corresponding to the two k-tuples
being identical. This may cause errors even in the absence of noise. We shall
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therefore assume throughout that the mapping ϕ(·) is one-to-one (injective) so
no two distinct data k-tuples are mapped to the same n-tuple of real numbers.

An example of a mapping that maps bits to real numbers is the mapping that maps
each data bit Dj to the real number Xj according to the rule

Xj =

{
+1 if Dj = 0,
−1 if Dj = 1,

j = 1, . . . , k. (10.2)

In this example one real symbol Xj is produced for every data bit, so n = k. For
this reason we say that this mapping has the rate of one bit per real symbol.

As another example consider the case where k is even and the data bits {Dj} are
broken into pairs

(D1, D2), (D3, D4), . . . , (Dk−1, Dk)

and each pair of data bits is then mapped to a single real number according to the
rule

(D2j−1, D2j) 7→


+3 if D2j−1 = D2j = 0,
+1 if D2j−1 = 0 and D2j = 1,
−3 if D2j−1 = D2j = 1,
−1 if D2j−1 = 1 and D2j = 0,

j = 1, . . . , k/2. (10.3)

In this case n = k/2, and we say that the mapping has the rate of two bits per real
symbol.

Note that the rate of the mapping could also be a fraction. Indeed, if each data
bit Dj produces two real numbers according to the repetition law

Dj 7→

{
(+1,+1) if Dj = 0,
(−1,−1) if Dj = 1,

j = 1, . . . , k, (10.4)

then n = 2k, and we say that the mapping is of rate half a bit per real symbol.

Since there is a natural correspondence between R2 and C, i.e., between pairs of real
numbers and complex numbers (where a pair of real numbers (x, y) corresponds
to the complex number x + iy), the rate of the above mapping (10.4) can also be
stated as one bit per complex symbol. This may seem like an odd way of stating the
rate, but it has some advantages that will become apparent later when we discuss
the mapping of real (or complex) numbers to waveforms and the Nyquist Criterion.

10.4 Block-Mode Mapping of Bits to Real Numbers

The examples we gave in Section 10.3 of mappings ϕ : {0, 1}k → Rn have something
in common. In each of those examples the mapping can be described as follows: the
data bits D1, . . . , Dk are first grouped into binary K-tuples; each K-tuple is then
mapped to a real N-tuple by applying some mapping enc : {0, 1}K → RN; and the
so-produced real N-tuples are then concatenated to form the sequence X1, . . . , Xn,
where n = (k/K)N.
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D1, D2, . . . , DK,

enc(·)

X1, X2, . . . , XN,

enc(D1, . . . , DK)

DK+1, . . . , D2K,

enc(·)

XN+1, . . . , X2N,

enc(DK+1, . . . , D2K)

, Dk−K+1, . . . , Dk

enc(·)

, Xn−N+1, . . . , Xn

enc(Dk−K+1, . . . , Dk)

Figure 10.1: Block-mode encoding.

In the first example K = N = 1 and the mapping of K-tuples to N-tuples is the
mapping (10.2). In the second example K = 2 and N = 1 with the mapping (10.3).
And in the third example K = 1 and N = 2 with the repetition mapping (10.4).

To describe such mappings ϕ : {0, 1}k → Rn more formally we need the notion of
a binary-to-reals block encoder, which we define next.

Definition 10.4.1 ((K,N) Binary-to-Reals Block Encoder). A (K,N) binary-to-
reals block encoder is a one-to-one mapping from the set of binary K-tuples to
the set of real N-tuples, where K and N are positive integers. The rate of a (K,N)
binary-to-reals block encoder is defined as

K

N

[
bit

real symbol

]
.

Note that we shall sometimes omit the phrase “binary-to-reals” and refer to such
an encoder as a (K,N) block encoder. Also note that “one-to-one” means that
no two distinct binary K-tuples may be mapped to the same real N-tuple.

We say that an encoder ϕ : {0, 1}k → Rn operates in block-mode using the
(K,N) binary-to-reals block encoder enc(·) if

1) k is divisible by K;

2) n is given by (k/K) N; and

3) ϕ(·) maps the binary sequence D1, . . . , Dk to the sequence X1, . . . , Xn by
parsing the sequence D1, . . . , Dk into consecutive length-K binary tuples and
by then concatenating the results of applying enc(·) to each such K-tuple as
in Figure 10.1.

If k is not divisible by K, we often introduce zero padding. In this case we
choose k′ to be the smallest integer that is no smaller than k and that is divisible
by K, i.e.,

k′ =
⌈
k

K

⌉
K,

(where for every ξ ∈ R we use dξe to denote the smallest integer that is no smaller
than ξ, e.g., d1.24e = 2) and map D1, . . . , Dk to the sequence X1, . . . , Xn′ where

n′ =
k′

K
N



174 Mapping Bits to Waveforms

D1, D2, . . . , DK,

enc(·)

X1, X2, . . . , XN,

enc(D1, . . . , DK)

DK+1, . . . , D2K,

enc(·)

XN+1, . . . , X2N,

enc(DK+1, . . . , D2K)

, Dk′−K+1, . . . , Dk, 0, . . . , 0

enc(·)

, Xn′−N+1, . . . , Xn′

enc(Dk−K+1, . . . , Dk, 0, . . . , 0)

Figure 10.2: Block-mode encoding with zero padding.

by applying the (K,N) encoder in block-mode to the k′-length zero-padded binary
tuple

D1, . . . , Dk, 0, . . . , 0︸ ︷︷ ︸
k′ − k zeros

(10.5)

as in Figure 10.2.

10.5 From Real Numbers to Waveforms with Linear Modulation

There are numerous ways to map a sequence of real numbers X1, . . . , Xn to a real-
valued signal. Here we shall focus on mappings that have a linear structure. This
additional structure simplifies the implementation of the modulator and demodu-
lator. It will be described next.

Suppose we wish to modulate the k data bits D1, . . . , Dk, and suppose that we
have mapped these bits to the n real numbers X1, . . . , Xn. Here n can be smaller,
equal, or greater than k. The transmitted waveform X(·) in a linear modulation
scheme is then given by

X(t) = A

n∑
`=1

X` g`(t), t ∈ R, (10.6)

where the deterministic real waveforms g1, . . . ,gn are specified in advance, and
where A ≥ 0 is a scaling factor. The waveform X(·) can be thus viewed as a scaled-
by-A linear combination of the tuple

(
g1, . . . ,gn

)
with the coefficients X1, . . . , Xn:

X = A

n∑
`=1

X` g`. (10.7)

The transmitted energy is a random variable that is given by

‖X‖22 =
∫ ∞

−∞
X2(t) dt

=
∫ ∞

−∞

(
A

n∑
`=1

X` g`(t)
)2

dt



10.6 Recovering the Signal Coefficients with a Matched Filter 175

= A2
n∑
`=1

n∑
`′=1

X`X`′

∫ ∞

−∞
g`(t) g`′(t) dt

= A2
n∑
`=1

n∑
`′=1

X`X`′ 〈g`,g`′〉 .

The transmitted energy takes on a particularly simple form if the waveforms g`(·)
are orthonormal, i.e., if

〈g`,g`′〉 = I{` = `′}, `, `′ ∈ {1, . . . , n}, (10.8)

in which case the energy is given by

‖X‖22 = A2
n∑
`=1

X2
` , {g`} orthonormal. (10.9)

As an exercise, the reader is encouraged to verify that there is no loss in generality
in assuming that the waveforms {g`} are orthonormal. More precisely:

Theorem 10.5.1. Suppose that the waveform X(·) is generated from the binary
k-tuple D1, . . . , Dk by applying the mapping ϕ : {0, 1}k → Rn and by then linearly
modulating the resulting n-tuple ϕ(D1, . . . , Dk) using the waveforms {g`}n`=1 as in
(10.6).

Then there exist an integer 1 ≤ n′ ≤ n; a mapping ϕ′ : {0, 1}k → Rn′ ; and n′

orthonormal signals {φ`}n
′

`=1 such that if X ′(·) is generated from D1, . . . , Dk by
applying linear modulation to ϕ′(D1, . . . , Dk) using the orthonormal waveforms
{φ`}n

′

`=1, then X ′(·) and X(·) are indistinguishable for every k-tuple D1, . . . , Dk.

Proof. The proof of this theorem is left as an exercise.

Motivated by this theorem, we shall focus on linear modulation with orthonormal
functions. But please note that even if the transmitted waveform satisfies (10.8),
the received waveform might not. For example, the channel might consist of a
linear filter that could destroy the orthogonality.

10.6 Recovering the Signal Coefficients with a Matched Filter

Suppose now that the binary k-tuple (D1, . . . , Dk) is mapped to the real n-tuple
(X1, . . . , Xn) using the mapping

ϕ : {0, 1}k → Rn (10.10)

and that the n-tuple (X1, . . . , Xn) is then mapped to the waveform

X(t) = A

n∑
`=1

X` φ`(t), t ∈ R, (10.11)
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where φ1, . . . ,φn are orthonormal:

〈φ`,φ`′〉 = I{` = `′}, `, `′ ∈ {1, . . . , n}. (10.12)

How can we recover the k-tuple D1, . . . , Dk from X(·)? The decoder’s problem
is, of course, harder, because the decoder usually does not have access to the
transmitted waveform X(·) but only to the received waveform, which may be a
noisy and distorted version of X(·). Nevertheless, it is instructive to consider the
noiseless and distortionless problem first.

If we are able to recover the real numbers {X`}n`=1 from the received signal X(·),
and if the mapping ϕ : {0, 1}k → Rn is one-to-one (as we assume), then the data
bits {Dj}kj=1 can be reconstructed from X(·). Thus, the question is how to recover
{X`}n`=1 from X(·). But this is easy if the functions {φ`}n`=1 are orthonormal,
because in this case, by Proposition 4.6.4 (i), X` is given by the scaled inner
product between X and φ`:

X` =
1
A
〈X,φ`〉 , ` = 1, . . . , n. (10.13)

Consequently, we can compute X` by feeding X to a matched filter for φ` and
scaling the time-0 output by 1/A (Section 5.8). To recover {X`}n`=1 we thus need n
matched filters, one matched to each of the waveforms {φ`}.
The implementation becomes much simpler if the functions {φ`} have an additional
structure, namely, if they are all time shifts of some function φ(·):

φ`(t) = φ(t− `Ts),
(
` ∈ {1, . . . , n}, t ∈ R

)
. (10.14)

In this case it follows from Corollary 5.8.3 that we can compute all the inner
products {〈X,φ`〉} using one matched filter of impulse response ~φ by feeding X
to the filter and sampling its output at the appropriate times:

X` =
1
A

∫ ∞

−∞
X(τ)φ`(τ) dτ

=
1
A

∫ ∞

−∞
X(τ)φ(τ − `Ts) dτ

=
1
A

∫ ∞

−∞
X(τ) ~φ(`Ts − τ) dτ

=
1
A

(
X ? ~φ

)
(`Ts), ` = 1, . . . , n. (10.15)

Figure 10.3 demonstrates how the symbols {X`} can be recovered from X(·) using
a single matched filter if the pulses {φ`} satisfy (10.14).

10.7 Pulse Amplitude Modulation

Under Assumption (10.14), the transmitted signal X(·) in (10.11) is given by

X(t) = A

n∑
`=1

X` φ(t− `Ts), t ∈ R, (10.16)
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X(·) AX`~φ
`Ts

Figure 10.3: Recovering the symbols from the transmitted waveform using a
matched filter when (10.14) is satisfied.

which is a special case of Pulse Amplitude Modulation (PAM), which we
describe next.

In PAM, the data bits D1, . . . , Dk are mapped to real numbers X1, . . . , Xn, which
are then mapped to the waveform

X(t) = A

n∑
`=1

X` g(t− `Ts), t ∈ R, (10.17)

for some scaling factor A ≥ 0, some function g : R→ R, and some constant Ts > 0.
The function g (always assumed Borel measurable) is called the pulse shape; the
constant Ts is called the baud period; and its reciprocal 1/Ts is called the baud
rate.1 The units of Ts are seconds, and one often refers to the units of 1/Ts as real
symbols per second. PAM can thus be viewed as a special case of linear modulation
(10.6) with g` being given for every ` ∈ {1, . . . , n} by the mapping t 7→ g(t− `Ts).
The signal (10.16) can be viewed as a PAM signal where the pulse shape φ satisfies
the orthonormality condition (10.14).

In this book we shall typically denote the PAM pulse shape by g. But we shall
use φ if we assume an additional orthonormality condition such as (10.12). In this
case we shall refer to 1/Ts as having units of real dimensions per second :

1
Ts

[
real dimension

sec

]
, φ satisfies (10.12). (10.18)

Note that according to Theorem 10.5.1 there is no loss in generality in assuming
that the pulses {φ`} are orthonormal. There is, however, a loss in generality in
assuming that they satisfy (10.14).

10.8 Constellations

Recall that in PAM the data bits D1, . . . , Dk are first mapped to the real n-tuple
X1, . . . , Xn using a one-to-one mapping ϕ : {0, 1}k → Rn, and that these real
numbers are then mapped to the waveform X(·) via (10.17). Since there are only
2k different binary k-tuples, it follows that each symbol X` can take on at most
2k different values. The set of values that X` can take on may, in general, depend
on `. The union of all these sets (over ` ∈ {1, . . . , n}) is called the constellation of

1These terms honor the French engineer J.M.E. Baudot (1845–1903) who invented a telegraph
printing system.
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the mapping ϕ(·). Denoting the constellation of ϕ(·) by X , we thus have that a real
number x is in X if, and only if, for some choice of the binary k-tuple (d1, . . . , dk)
and for some ` ∈ {1, . . . , n} the `-th component of ϕ

(
(d1, . . . , dk)

)
is equal to x.

For example, the constellation corresponding to the mapping (10.2) is the set
{−1,+1}; the constellation corresponding to (10.3) is the set {−3,−1,+1,+3};
and the constellation corresponding to (10.4) is the set {−1,+1}. In all these
examples, the constellation can be viewed as a special case of the constellation
with 2ν symbols{

−(2ν − 1), . . . ,−5,−3,−1,+1,+3,+5, . . . ,+(2ν − 1)
}

(10.19)

for some positive integer ν. A less prevalent constellation is the constellation

{−2,−1,+1,+2}. (10.20)

The number of points in the constellation X is just #X , i.e., the number of
elements (cardinality) of the set X .

The minimum distance δ of a constellation is the Euclidean distance between
the closest distinct elements in the constellation:

δ , min
x,x′∈X
x6=x′

|x− x′|. (10.21)

The scaling of the constellation is arbitrary because of the scaling factor A in the
signal’s description. Thus, the signal A

∑
`X` g(t − `Ts), where X` takes value in

the set {±1} is of constellation {−1,+1}, but it can also be expressed in the form
A′∑

`X
′
` g(t − `Ts), where A′ = 2A and X ′

` takes value in the set {−1/2,+1/2},
i.e., as a PAM signal of constellation {−1/2,+1/2}.
Different authors choose to normalize the constellation in different ways. One
common normalization is to express the elements of the constellation as multiples
of the minimum distance. Thus, we would represent the constellation {−1,+1} as{

−1
2
δ , +

1
2
δ

}
,

and the constellation {−3,−1,+1,+3} as{
−3

2
δ , −1

2
δ , +

1
2
δ , +

3
2
δ

}
.

The normalized version of the constellation (10.19) is{
±2ν − 1

2
δ, . . . ,±5

2
δ, ±3

2
δ, ±1

2
δ

}
. (10.22)

The second moment of a constellation X is defined as

1
#X

∑
x∈X

x2. (10.23)
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The second moment of the constellation in (10.22) is given by

1
#X

∑
x∈X

x2 =
1
2ν

2
ν∑
η=1

(2η − 1)2
δ2

4

=
1
3
(
M2 − 1

) δ2
4
, (10.24a)

where
M = 2ν (10.24b)

is the number of points in the constellation, and where (10.24a)–(10.24b) can be
verified using the identity

ν∑
η=1

(2η − 1)2 =
1
3
ν(4ν2 − 1), ν = 1, 2, . . . (10.25)

10.9 Design Considerations

Designing a communication system employing PAM with a block encoder entails
making choices. We need to choose the PAM parameters A, Ts, and g, and we
need to choose a (K,N) block encoder enc(·). These choices greatly influence the
overall system characteristics such as the transmitted power, bandwidth, and the
performance of the system in the presence of noise. To design a system well, we
must understand the effect of the design choices on the overall system at three
levels. At the first level we must understand which design parameters influence
which overall system characteristics. At the second level we must understand
how the design parameters influence the system. And at the third level we must
understand how to choose the design parameters so as to optimize the system
characteristics subject to the given constraints.

In this book we focus on the first two levels. The third requires tools from Infor-
mation Theory and from Coding Theory that are beyond the scope of this book.
Here we offer a preview of the first level. We thus briefly and informally explain
which design choices influence which overall system properties.

To simplify the preview, we shall assume in this section that the time shifts of the
pulse shape by integer multiples of the baud period are orthonormal. Consequently,
we shall denote the pulse shape by φ and assume that (10.12) holds. We shall also
assume that k and n tend to infinity as in the bi-infinite block mode discussed in
Section 14.5.2. Roughly speaking this assumption is tantamount to the assumption
that the system has been running since time −∞ and that it will continue running
until time +∞.

Our discussion is extremely informal, and we apologize to the reader for discussing
concepts that we have not yet defined. Readers who are aggravated by this practice
may choose to skip this section; the issues will be revisited in Chapter 29 after
everything has been defined and all the claims proved.

The key observation we wish to highlight is that, to a great extent,
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the choice of the block encoder enc(·) can be decoupled from the
choice of the pulse shape. The bandwidth and power spectral
density depend hardly at all on enc(·) and very much on the pulse
shape, whereas the probability of error on the white Gaussian noise
channel depends very much on enc(·) and not at all on the pulse
shape φ.

This observation greatly simplifies the design problem because it means that, rather
than optimizing over φ and enc(·) jointly, we can choose each of them separately.

We next briefly discuss the different overall system characteristics and which design
choices influence them.

Data Rate: The data rate Rb that the system supports is determined by the baud
period Ts and by the rate K/N of the encoder. It is given by

Rb =
1
Ts

K

N

[
bit
sec

]
.

Power: The transmitted power does not depend on the pulse shape φ (Theo-
rem 14.5.2). It is determined by the amplitude A, the baud period Ts, and by
the block encoder enc(·). In fact, if the block encoder enc(·) is such that when it
is fed the data bits it produces zero-mean symbols that are uniformly distributed
over the constellation, then the transmitted power is determined by A, Ts, and the
second moment of the constellation only.

Power Spectral Density: If the block encoder enc(·) is such that when it is fed
the data bits it produces zero-mean and uncorrelated symbols of equal variance,
then the power spectral density is determined by A, Ts, and φ only; it is unaffected
by enc(·) (Section 15.4).

Bandwidth: The bandwidth of the transmitted waveform is equal to the band-
width of the pulse shape φ (Theorem 15.4.1). We will see in Chapter 11 that
for the orthonormality (10.12) to hold, the bandwidth W of the pulse shape must
satisfy

W ≥ 1
2Ts

.

In Chapter 11 we shall also see how to design φ so as to satisfy (10.12) and so as
to have its bandwidth as close as we wish to 1/(2Ts).2

Probability of Error: It is a remarkable fact that the pulse shape φ does not affect
the performance of the system on the additive white Gaussian noise channel. Per-
formance is determined only by A, Ts, and the block encoder enc(·) (Section 26.5.2).

2Information-theoretic considerations suggest that this is a good approach.



10.10 Some Implementation Considerations 181

The preceding discussion focused on PAM, but many of the results also hold for
Quadrature Amplitude Modulation, which is discussed in Chapters 16, 18, and 28.

10.10 Some Implementation Considerations

It is instructive to consider some of the issues related to the generation of a PAM
signal

X(t) = A

n∑
`=1

X` g(t− `Ts), t ∈ R. (10.26)

Here we focus on delay, causality, and digital implementation.

10.10.1 Delay

To illustrate the delay issue in PAM, suppose that the pulse shape g(·) is strictly
positive. In this case we note that, irrespective of which epoch t′ ∈ R we consider,
the calculation of X(t′) requires knowledge of the entire n-tuple X1, . . . , Xn. Since
the sequence X1, . . . , Xn cannot typically be determined in its entirety unless the
entire sequence D1, . . . , Dk is determined first, it follows that, when g(·) is strictly
positive, the modulator cannot produce X(t′) before observing the entire data
sequence D1, . . . , Dk. And this is true for any t′ ∈ R! Since in the back of our
minds we think about D1, . . . , Dk as the data bits that will be sent during the
entire life of the system or, at least, from the moment it is turned on until it is
shut off, it is unrealistic to expect the modulator to observe the entire sequence
D1, . . . , Dk before producing any input to the channel.

The engineering solution to this problem is to find some positive integer L such
that, for all practical purposes, g(t) is zero whenever |t| > LTs, i.e.,

g(t) ≈ 0, |t| > LTs. (10.27)

In this case we have that, irrespective of t′ ∈ R, only 2L+1 terms (approximately)
determine X(t′). Indeed, if κ is an integer such that

κTs ≤ t′ < (κ+ 1)Ts, (10.28)

then

X(t′) ≈ A

κ+L∑
`=max{1,κ−L}

X` g(t− `Ts), κTs ≤ t′ < (κ+ 1)Ts, (10.29)

where the sum is assumed to be zero if κ+ L < 1.

Thus, if (10.27) holds, then the approximate calculation of X(t′) can be performed
without knowledge of the entire sequence X1, . . . , Xn and the modulator can start
producing the waveform X(·) as soon as it knows X1, . . . , XL.
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10.10.2 Causality

The reader may object to the fact that, even if (10.27) holds, the signal X(·) may
be nonzero at negative times. It might therefore seem as though the transmitter
needs to transmit a signal before the system has been turned on and that, worse
still, this signal depends on the data bits that will be fed to the system in the
future when the system is turned on. But this is not really an issue. It all has
to do with how we define the epoch t = 0, i.e., to what physical time instant
does t = 0 correspond. We never said it corresponded to the instant when the
system was turned on and, in fact, there is no reason to set the time origin at
that time instant or at the “Big Bang.” For example, we can set the time origin
at LTs seconds-past-system-turn-on, and the problem disappears. Similarly, if the
transmitted waveform depends on X1, . . . , XL, and if these real numbers can only
be computed once the data bits D1, . . . , Dκ have been fed to the encoder, then it
would make sense to set the time origin to the moment at which the last of these κ
data bits has been fed to the encoder.

Some problems in Digital Communications that appear like tough causality prob-
lems end up being easily solved by time delays and the redefinition of the time
origin. Others can be much harder. It is sometimes difficult for the novice to de-
termine which causality problem is of the former type and which of the latter. As
a rule of thumb, you should be extra cautious when the system contains feedback
loops.

10.10.3 Digital Implementation

Even when all the symbols among X1, . . . , Xn that are relevant for the calculation
of X(t′) are known, the actual computation may be tricky, particularly if the
formula describing the pulse shape is difficult to implement in hardware. In such
cases one may opt for a digital implementation using look-up tables. The idea is
to compute only samples of X(·) and to then interpolate using a digital-to-analog
(D/A) converter and an anti-aliasing filter. The samples must be computed at a
rate determined by the Sampling Theorem, i.e., at least once every 1/(2W) seconds,
where W is the bandwidth of the pulse shape.

The computation of the values of X(·) at its samples can be done by choosing L

sufficiently large so that (10.27) holds and by then approximating the sum (10.26)
for t′ satisfying (10.28) by the sum (10.29). The samples of this latter sum can be
computed with a digital computer or—as is more common if the symbols take on a
finite (and small) number of values—using a pre-programmed look-up table. The
size of the look-up table thus depends on two parameters: the number of samples
one needs to compute every Ts seconds (determined via the bandwidth of g(·) and
the Sampling Theorem), and the number of addresses needed (as determined by L

and by the constellation size).
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10.11 Exercises

Exercise 10.1 (Exploiting Orthogonality). Let the energy-limited real signals φ1 and φ2

be orthogonal, and let A(1) and A(2) be positive constants. Let the waveform X be given
by

X =
(
A(1)X(1) + A(2)X(2)

)
φ1 +

(
A(1)X(1) −A(2)X(2)

)
φ2,

where X(1) and X(2) are unknown real numbers. How can you recover X(1) and X(2)

from X?

Exercise 10.2 (More Orthogonality). Extend Exercise 10.1 to the case where φ1, . . .φη
are orthonormal;

X =
(
a(1,1)A(1)X(1) + · · ·+ a(η,1)A(η)X(η)

)
φ1 + · · ·

+
(
a(1,η)A(1)X(1) + · · ·+ a(η,η)A(η)X(η)

)
φη;

and where the real numbers a(ι,ν) for ι, ν ∈ {1, . . . , η} satisfy the orthogonality condition

η∑
ν=1

a(ι,ν)a(ι′,ν) =

{
η if ι = ι′,

0 if ι 6= ι′,
ι, ι′ ∈ {1, . . . , η}.

Exercise 10.3 (A Constellation and its Second Moment). What is the constellation cor-
responding to the (1, 3) binary-to-reals block encoder that maps 0 to (+1,+2,+2) and
maps 1 to (−1,−2,−2)? What is its second moment? Let the real symbols

(
X`, ` ∈ Z

)
be generated from IID random bits

(
Dj , j ∈ Z

)
in block mode using this block encoder.

Compute

lim
L→∞

1

2L + 1

L∑
`=−L

E
[
X2
`

]
.

Exercise 10.4 (Orthonormal Signal Representation). Prove Theorem 10.5.1.

Hint: Recall the Gram-Schmidt procedure.

Exercise 10.5 (Unbounded PAM Signal). Consider the formal expression

X(t) =

∞∑
`=−∞

X` sinc
( t

Ts
− `
)
, t ∈ R.

(i) Show that even if the X`’s can only take on the values ±1, the value of X(Ts/2)
can be arbitrarily high. That is, find a sequence {x`}∞−∞ such that x` ∈ {+1,−1}
for every ` ∈ Z and

lim
L→∞

L∑
`=−L

sinc
(1

2
− `
)

= ∞.

(ii) Suppose now that g : R → R satisfies

∣∣g(t)∣∣ ≤ β

1 + |t/Ts|1+α
, t ∈ R
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for some α, β > 0. Show that if for some γ > 0 we have |x`| ≤ γ for all ` ∈ Z, then
the sum

∞∑
`=−∞

x` g(t− `Ts)

converges at every t and is a bounded function of t.

Exercise 10.6 (Etymology). Let g be an integrable real signal. Express the frequency
response of the matched filter for g in terms of the FT of g. Repeat when g is a complex
signal. Can you guess the origin of the term “Matched Filter”?

Hint: Recall the notion of a “matched impedance.”

Exercise 10.7 (Recovering the Symbols from a Filtered PAM Signal). Let X(·) be the
PAM signal (10.17), where A > 0, and where g(t) is zero for |t| ≥ Ts/2 and positive for
|t| < Ts/2.

(i) Suppose that X(·) is fed to a filter of impulse response h : t 7→ I{|t| ≤ Ts/2}. Is
it true that for every ` ∈ {1, . . . , n} one can recover X` from the filter’s output at
time `Ts? If so, how?

(ii) Suppose now that the filter’s impulse response is h : t 7→ I{−Ts/2 ≤ t ≤ 3Ts/4}.
Can one always receover X` from the filter’s output at time `Ts? Can one recover
the sequence (X1, . . . , Xn) from the n samples of the filter’s output at the times
Ts, . . . , nTs?

Exercise 10.8 (Continuous Phase Modulation). In Continuous Phase Modulation (CPM)
the symbols

(
X`
)

are mapped to the waveform

X(t) = A cos
(
2πfct+ 2πh

∞∑
`=−∞

X` q(t− `Ts)
)
, t ∈ R,

where fc, h > 0 are constants and q is a mapping from R to R. Is CPM a special case of
linear modulation?



Chapter 11

Nyquist’s Criterion

11.1 Introduction

In Section 10.7 we discussed the benefit of choosing the pulse shape φ in Pulse
Amplitude Modulation so that its time shifts by integer multiples of the baud
period Ts be orthonormal. We saw that if the real transmitted signal is given by

X(t) = A

n∑
`=1

X` φ(t− `Ts), t ∈ R,

where for all integers `, `′ ∈ {1, . . . , n}∫ ∞

−∞
φ(t− `Ts)φ(t− `′Ts) dt = I{` = `′},

then
X` =

1
A

∫ ∞

−∞
X(t)φ(t− `Ts) dt, ` = 1, . . . , n,

and all the inner products∫ ∞

−∞
X(t)φ(t− `Ts) dt, ` = 1, . . . , n

can be computed using one circuit by feeding the signal X(·) to a matched filter of
impulse response ~φ and sampling the output at the times t = `Ts, for ` = 1, . . . , n.
(In the complex case the matched filter is of impulse response ~φ∗.)

In this chapter we shall address the design of and the limitations on signals that are
orthogonal to their time-shifts. While our focus so far has been on real functions φ,
for reasons that will become apparent in Chapter 16 when we discuss Quadrature
Amplitude Modulation, we prefer to generalize the discussion and allow φ to be
complex. The main results of this chapter are Corollary 11.3.4 and Corollary 11.3.5.

An obvious way of choosing a signal φ that is orthogonal to its time shifts by
nonzero integer multiples of Ts is by choosing a pulse that is zero outside some
interval of length Ts, say [−Ts/2, Ts/2). This guarantees that the pulse and its

185
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time shifts by nonzero integer multiples of Ts do not overlap in time and that they
are thus orthogonal. But this choice limits us to pulses of infinite bandwidth,
because no nonzero bandlimited signal can vanish outside a finite (time) interval
(Theorem 6.8.2).

Fortunately, as we shall see, there exist signals that are orthogonal to their time
shifts and that are also bandlimited. This does not contradict Theorem 6.8.2
because these signals are not time-limited. They are orthogonal to their time
shifts in spite of overlapping with them in time.

Since we have in mind using the pulse to send a very large number of symbols n
(where n corresponds to the number of symbols sent during the lifetime of the
system) we shall strengthen the orthonormality requirement to∫ ∞

−∞
φ(t− `Ts)φ∗(t− `′Ts) dt = I{` = `′}, for all integers `, `′ (11.1)

and not only to those `, `′ in {1, . . . , n}. We shall refer to Condition (11.1) as
saying that “the time shifts of φ by integer multiples of Ts are orthonormal.”

Condition (11.1) can also be phrased as a condition on φ’s self-similarity function,
which we introduce next.

11.2 The Self-Similarity Function of Energy-Limited Signals

We next introduce the self-similarity function of energy-limited signals. This
term is not standard; more common in the literature is the term “autocorrelation
function.” I prefer “self-similarity function,” which was proposed to me by Jim
Massey, because it reduces the risk of confusion with the autocovariance function
and the autocorrelation function of stochastic processes. There is nothing random
in our current setup.

Definition 11.2.1 (Self-Similarity Function). The self-similarity function Rvv

of an energy-limited signal v ∈ L2 is defined as the mapping

Rvv : τ 7→
∫ ∞

−∞
v(t+ τ) v∗(t) dt, τ ∈ R. (11.2)

If v is real, then the self-similarity function has a nice pictorial interpretation: one
plots the original signal and the result of shifting the signal by τ on the same graph,
and one then takes the pointwise product and integrates over time.

The main properties of the self-similarity function are summarized in the following
proposition.

Proposition 11.2.2 (Properties of the Self-Similarity Function). Let Rvv be the
self-similarity function of some energy-limited signal v ∈ L2 .

(i) Value at zero:

Rvv(0) =
∫ ∞

−∞
|v(t)|2 dt. (11.3)
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(ii) Maximum at zero:

|Rvv(τ)| ≤ Rvv(0), τ ∈ R. (11.4)

(iii) Conjugate symmetry:

Rvv(−τ) = R∗vv(τ), τ ∈ R. (11.5)

(iv) Integral representation:

Rvv(τ) =
∫ ∞

−∞
|v̂(f)|2 ei2πfτ df, τ ∈ R, (11.6)

where v̂ is the L2 -Fourier Transform of v.

(v) Uniform Continuity: Rvv is uniformly continuous.

(vi) Convolution Representation:

Rvv(τ) = (v ? ~v∗) (τ), τ ∈ R. (11.7)

Proof. Part (i) follows by substituting τ = 0 in (11.2).

Part (ii) follows by noting that Rvv(τ) is the inner product between the mapping
t 7→ v(t+ τ) and the mapping t 7→ v(t); by the Cauchy-Schwarz Inequality; and by
noting that both of the above mappings have the same energy, namely, the energy
of v:

|Rvv(τ)| =
∣∣∣∣∫ ∞

−∞
v(t+ τ) v∗(t) dt

∣∣∣∣
≤
(∫ ∞

−∞
|v(t+ τ)|2 dt

)1/2(∫ ∞

−∞
|v∗(t)|2 dt

)1/2

= ‖v‖22
= Rvv(0), τ ∈ R.

Part (iii) follows from the substitution s , t+ τ in the following:

Rvv(τ) =
∫ ∞

−∞
v(t+ τ) v∗(t) dt

=
∫ ∞

−∞
v(s) v∗(s− τ) ds

=
(∫ ∞

−∞
v(s− τ) v∗(s) ds

)∗
= R∗vv(−τ), τ ∈ R.

Part (iv) follows from the representation of Rvv(τ) as the inner product between
the mapping t 7→ v(t + τ) and the mapping t 7→ v(t); by Parseval’s Theorem;
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and by noting that the L2 -Fourier Transform of the mapping t 7→ v(t + τ) is the
(equivalence class of the) mapping f 7→ ei2πfτ v̂(f):

Rvv(τ) =
∫ ∞

−∞
v(t+ τ) v∗(t) dt

=
〈
t 7→ v(t+ τ), t 7→ v(t)

〉
=
〈
f 7→ ei2πfτ v̂(f), f 7→ v̂(f)

〉
=
∫ ∞

−∞
ei2πfτ |v̂(f)|2 df, τ ∈ R.

Part (v) follows from the integral representation of Part (iv) and from the inte-
grability of the function f 7→ |v̂(f)|2. See, for example, the proof of (Katznelson,
1976, Section VI, Theorem 1.2).

Part (vi) follows from the substitution s , t+ τ and by rearranging terms:

Rvv(τ) =
∫ ∞

−∞
v(t+ τ) v∗(t) dt

=
∫ ∞

−∞
v(s) v∗(s− τ) ds

=
∫ ∞

−∞
v(s)~v∗(τ − s) ds

= (v ? ~v∗)(τ).

With the above definition we can restate the orthonormality condition (11.1) in
terms of the self-similarity function Rφφ of φ:

Proposition 11.2.3 (Shift-Orthonormality and Self-Similarity). If φ is energy-
limited, then the shift-orthonormality condition∫ ∞

−∞
φ(t− `Ts)φ∗(t− `′Ts) dt = I{` = `′}, `, `′ ∈ Z (11.8)

is equivalent to the condition

Rφφ(`Ts) = I{` = 0}, ` ∈ Z. (11.9)

Proof. The proposition follows by substituting s , t − `′Ts in the LHS of (11.8)
to obtain ∫ ∞

−∞
φ(t− `Ts)φ∗(t− `′Ts) dt =

∫ ∞

−∞
φ
(
s+ (`′ − `)Ts

)
φ∗(s) ds

= Rφφ
(
(`′ − `)Ts

)
.

At this point, Proposition 11.2.3 does not seem particularly helpful because Con-
dition (11.9) is not easy to verify. But, as we shall see in the next section, this
condition can be phrased very elegantly in the frequency domain.
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11.3 Nyquist’s Criterion

Definition 11.3.1 (Nyquist Pulse). We say that a complex signal v : R 7→ C is a
Nyquist Pulse of parameter Ts if

v(`Ts) = I{` = 0}, ` ∈ Z. (11.10)

Theorem 11.3.2 (Nyquist’s Criterion). Let Ts > 0 be given, and let the signal v(·)
be given by

v(t) =
∫ ∞

−∞
g(f) ei2πft df, t ∈ R, (11.11)

for some integrable function g : f 7→ g(f). Then v(·) is a Nyquist Pulse of param-
eter Ts if, and only if,

lim
J→∞

∫ 1/(2Ts)

−1/(2Ts)

∣∣∣∣∣Ts −
J∑

j=−J

g
(
f +

j

Ts

)∣∣∣∣∣ df = 0. (11.12)

Note 11.3.3. Condition (11.12) is sometimes written imprecisely1 in the form

∞∑
j=−∞

g
(
f +

j

Ts

)
= Ts, − 1

2Ts
≤ f ≤ 1

2Ts
, (11.13)

or, in view of the periodicity of the LHS of (11.13), as

∞∑
j=−∞

g
(
f +

j

Ts

)
= Ts, f ∈ R. (11.14)

Neither form is mathematically precise.

Proof. We will show that v(−`Ts) is the `-th Fourier Series Coefficient of the
function2

1√
Ts

∞∑
j=−∞

g
(
f +

j

Ts

)
, − 1

2Ts
≤ f ≤ 1

2Ts
. (11.15)

It will then follow that the condition that v is a Nyquist Pulse of parameter Ts is
equivalent to the condition that the function in (11.15) has Fourier Series Coeffi-
cients that are all zero except for the zeroth coefficient, which is one. The theorem
will then follow by noting that a function is indistinguishable from a constant if,
and only if, all but its zeroth Fourier Series Coefficient are zero. (This can be
proved by applying Theorem A.2.3 with g1 chosen as the constant function.) The

1There is no guarantee that the sum converges at every frequency f .
2Since, by hypothesis, g is integrable, it follows that the sum in (11.15) converges in the L1

sense, i.e., that there exists some integrable function s∞ such that

lim
J→∞

∫ 1/(2Ts)

−1/(2Ts)

∣∣∣∣s∞(f)−
J∑

j=−J

g
(
f +

j

Ts

)∣∣∣∣ df = 0.

By writing
∑∞
j=−∞ g

(
f + j

Ts

)
we are referring to this function s∞.
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value of the constant can be computed from the zeroth Fourier Series Coefficient.
To conclude the proof we thus need to relate v(−`Ts) to the `-th Fourier Series
Coefficient of the function in (11.15). The calculation is straightforward: for every
integer `,

v(−`Ts) =
∫ ∞

−∞
g(f) e−i2πf`Ts df

=
∞∑

j=−∞

∫ j
Ts

+ 1
2Ts

j
Ts
− 1

2Ts

g(f) e−i2πf`Ts df

=
∞∑

j=−∞

∫ 1
2Ts

− 1
2Ts

g
(
f̃ +

j

Ts

)
e−i2π(f̃+ j

Ts )`Ts df̃

=
∞∑

j=−∞

∫ 1
2Ts

− 1
2Ts

g
(
f̃ +

j

Ts

)
e−i2πf̃`Ts df̃

=
∫ 1

2Ts

− 1
2Ts

∞∑
j=−∞

g
(
f̃ +

j

Ts

)
e−i2πf̃`Ts df̃

=
∫ 1

2Ts

− 1
2Ts

(
1√
Ts

∞∑
j=−∞

g
(
f̃ +

j

Ts

))√
Ts e

−i2πf̃`Ts df̃ , (11.16)

which is the `-th Fourier Series Coefficient of the function in (11.15). Here the first
equality follows by substituting −`Ts for t in (11.11); the second by partitioning the
region of integration into intervals of length 1

Ts
; the third by the change of variable

f̃ , f − j
Ts

; the fourth by the periodicity of the complex exponentials; the fifth by
Fubini’s Theorem, which allows us to swap the order summation and integration;
and the final equality by multiplying and dividing by

√
Ts.

An example of a function f 7→ g(f) satisfying (11.12) is plotted in Figure 11.1.

Corollary 11.3.4 (Characterization of Shift-Orthonormal Pulses). Let φ : R 7→ C
be energy-limited and let Ts be positive. Then the condition∫ ∞

−∞
φ(t− `Ts)φ∗(t− `′Ts) dt = I{` = `′}, `, `′ ∈ Z (11.17)

is equivalent to the condition

∞∑
j=−∞

∣∣∣φ̂(f +
j

Ts

)∣∣∣2 ≡ Ts, (11.18)

i.e., to the condition that the set of frequencies f ∈ R for which the LHS of (11.18)
is not equal to Ts is of Lebesgue measure zero.3

3It is a simple technical matter to verify that the question as to whether or not (11.18) is
satisfied outside a set of frequencies of Lebesgue measure zero does not depend on which element
in the equivalence class of the L2 -Fourier Transform of φ is considered.
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j
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)
= Ts

Figure 11.1: A function g(·) satisfying (11.12).
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Proof. By Proposition 11.2.3, Condition (11.17) can be equivalently expressed in
terms of the self-similarity function as

Rφφ(mTs) = I{m = 0}, m ∈ Z. (11.19)

The result now follows from the integral representation of the self-similarity func-
tion Rφφ (Proposition 11.2.2 (iv)) and from Theorem 11.3.2 (with the additional
simplification that for every j ∈ Z the function f 7→

∣∣φ̂(f+ j
Ts

)∣∣2 is nonnegative, so
the sum on the LHS of (11.18) converges (possibly to +∞) for every f ∈ R).

An extremely important consequence of Corollary 11.3.4 is the following corollary
about the minimum bandwidth of a pulse φ satisfying the orthonormality condition
(11.1).

Corollary 11.3.5 (Minimum Bandwidth of Shift-Orthonormal Pulses). Let Ts > 0
be fixed, and let φ be an energy-limited signal that is bandlimited to W Hz. If the
time shifts of φ by integer multiples of Ts are orthonormal, then

W ≥ 1
2Ts

. (11.20)

Equality is achieved if ∣∣φ̂(f)
∣∣ =√Ts I

{
|f | ≤ 1

2Ts

}
, f ∈ R (11.21)

and, in particular, by the sinc(·) pulse

φ(t) =
1√
Ts

sinc
( t

Ts

)
, t ∈ R (11.22)

or any time-shift thereof.

Proof. Figure 11.2 illustrates why φ cannot satisfy (11.18) if (11.20) is violated.
The figure should also convince you of the conditions for equality in (11.20).

For the algebraically-inclined readers we prove the corollary by showing that if
W ≤ 1/(2Ts), then (11.18) can only be satisfied if φ satisfies (11.21) (outside a set
of frequencies of Lebesgue measure zero).4 To see this, consider the sum

∞∑
j=−∞

∣∣∣φ̂(f +
j

Ts

)∣∣∣2 (11.23)

for frequencies f in the open interval
(
− 1

2Ts
,+ 1

2Ts

)
. The key observation in the

proof is that for frequencies in this open interval, if W ≤ 1/(2Ts), then all the terms
in the sum (11.23) are zero, except for the j = 0 term. That is,

∞∑
j=−∞

∣∣∣φ̂(f +
j

Ts

)∣∣∣2 =
∣∣φ̂(f)

∣∣2, (
W ≤ 1

2Ts
, f ∈

(
− 1

2Ts
,+

1
2Ts

))
. (11.24)

4In the remainder of the proof we assume that φ̂(f) is zero for frequencies f satisfying |f | > W.
The proof can be easily adjusted to account for the fact that, for frequencies |f | > W, it is possible

that φ̂(·) be nonzero on a set of Lebesgue measure zero.
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To convince yourself of (11.24), consider, for example, the term corresponding to
j = 1, namely, |φ̂(f + 1/Ts)|2. By the definition of bandwidth, it is zero whenever
|f + 1/Ts| > W, i.e., whenever f > −1/Ts + W or f < −1/Ts −W. Since the
former category f > −1/Ts + W includes—by our assumption that W ≤ 1/(2Ts)—
all frequencies f > −1/(2Ts), we conclude that the term corresponding to j = 1
is zero for all the frequencies f in the open interval

(
− 1

2Ts
,+ 1

2Ts

)
. More generally,

the j-th term |φ̂(f + j/Ts)|2 is zero for all frequencies f satisfying the condition
|f+j/Ts| > W, a condition that is satisfied—assuming j 6= 0 and W ≤ 1/(2Ts)—by
the frequencies in the open interval that is of interest to us

(
− 1

2Ts
,+ 1

2Ts

)
.

For W ≤ 1/(2Ts) we thus obtain from (11.24) that the condition (11.18) implies
(11.21), and, in particular, that W = 1/(2Ts).

Functions satisfying (11.21) are seldom used in digital communication because they
typically decay like 1/t so that even if the transmitted symbols X` are bounded,
the signal X(t) may take on very high values (albeit quite rarely). Consequently,
the pulses φ that are used in practice have a larger bandwidth than 1/(2Ts).

This leads to the following definition.

Definition 11.3.6 (Excess Bandwidth). The excess bandwidth in percent of a
signal φ relative to Ts > 0 is defined as

100%
(

bandwidth of φ
1/(2Ts)

− 1
)
. (11.25)

The following corollary to Corollary 11.3.4 is useful for the understanding of real
signals of excess bandwidth smaller than 100%.

Corollary 11.3.7 (Band-Edge Symmetry). Let Ts be positive, and let φ be a real
energy-limited signal that is bandlimited to W Hz, where W < 1/Ts so φ is of excess
bandwidth smaller than 100%. Then the time shifts of φ by integer multiples of Ts

are orthonormal if, and only if, f 7→ |φ̂(f)|2 satisfies the band-edge symmetry
condition5 ∣∣∣φ̂( 1

2Ts
− f

)∣∣∣2 +
∣∣∣φ̂( 1

2Ts
+ f

)∣∣∣2 ≡ Ts, 0 < f ≤ 1
2Ts

. (11.26)

Proof. We first note that, since we have assumed that W < 1/Ts, only the terms
corresponding to j = −1, j = 0, and j = 1 contribute to the sum on the LHS of
(11.18) for f ∈

(
− 1

2Ts
,+ 1

2Ts

)
. Moreover, since φ is by hypothesis real, it follows

that |φ̂(−f)| = |φ̂(f)|, so the sum on the LHS of (11.18) is a symmetric function
of f . Thus, the sum is equal to Ts on the interval

(
− 1

2Ts
,+ 1

2Ts

)
if, and only if, it is

equal to Ts on the interval
[
0,+ 1

2Ts

)
. For frequencies in this shorter interval only

two terms in the sum contribute: those corresponding to j = 0 and j = −1. We

5Condition (11.26) should be understood to indicate that the LHS and RHS of (11.26) are
equal for all frequencies 0 ≤ f ≤ 1/(2Ts) outside a set of Lebesgue measure zero. Again, we

ignore this issue in the proof and assume that φ̂(f) is zero for all |f | > W.
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Figure 11.2: If W < 1/(2Ts), then all the terms of the form
∣∣φ̂(f + j

Ts

)∣∣2 are zero
over the shaded frequencies W < |f | < 1/(2Ts). Thus, for W < 1/(2Ts) the sum∑∞
j=−∞

∣∣φ̂(f + j
Ts

)∣∣2 cannot be equal to Ts at any of the shaded frequencies.
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f

∣∣φ̂(f)
∣∣2

Ts

Ts
2

1
2Ts

1
Ts

f ′

∣∣φ̂(f ′ + 1
2Ts

)∣∣2 − Ts
2

Figure 11.3: An example of a choice for |φ̂(·)|2 satisfying the band-edge symmetry
condition (11.26).

thus conclude that, for real signals of excess bandwidth smaller than 100%, the
condition (11.18) is equivalent to the condition∣∣φ̂(f)

∣∣2 +
∣∣φ̂(f − 1/Ts)

∣∣2 ≡ Ts, 0 ≤ f < 1
2Ts

.

Substituting f ′ , 1
2Ts
− f in this condition leads to the condition∣∣∣φ̂( 1

2Ts
− f ′

)∣∣∣2 +
∣∣∣φ̂(−f ′ − 1

2Ts

)∣∣∣2 ≡ Ts, 0 < f ′ ≤ 1
2Ts

,

which, in view of the symmetry of |φ̂(·)|, is equivalent to∣∣∣φ̂( 1
2Ts
− f ′

)∣∣∣2 +
∣∣∣φ̂(f ′ + 1

2Ts

)∣∣∣2 ≡ Ts, 0 < f ′ ≤ 1
2Ts

,

i.e., to (11.26).

Note 11.3.8. The band-edge symmetry condition (11.26) has a nice geometric
interpretation. This is best seen by rewriting the condition in the form∣∣∣φ̂( 1

2Ts
− f ′

)∣∣∣2 − Ts

2︸ ︷︷ ︸
=g̃(−f ′)

= −
(∣∣∣φ̂( 1

2Ts
+ f ′

)∣∣∣2 − Ts

2

)
︸ ︷︷ ︸

=g̃(f ′)

, 0 < f ′ ≤ 1
2Ts

, (11.27)

which demonstrates that the band-edge condition is equivalent to the condition
that the plot of f 7→ |φ̂(f)|2 in the interval 0 < f < 1/Ts be invariant with
respect to a 180◦-rotation around the point

(
1

2Ts
, Ts

2

)
. In other words, the function

g̃ : f ′ 7→
∣∣φ̂( 1

2Ts
+ f ′

)∣∣2 − Ts
2 should be anti-symmetric for 0 < f ′ ≤ 1

2Ts
. I.e., it

should satisfy

g̃(−f ′) = −g̃(f ′), 0 < f ′ ≤ 1
2Ts

.
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f

∣∣φ̂(f)
∣∣2

Ts

1−β
2Ts

1
2Ts

1+β
2Ts

Figure 11.4: A plot of f 7→ |φ̂(f)|2 as given in (11.30) with β = 0.5.

Figure 11.3 is a plot over the interval [0, 1/Ts) of a mapping f 7→ |φ̂(f)|2 that
satisfies the band-edge symmetry condition (11.26).

A popular choice of φ is based on the raised-cosine family of functions. For every
0 < β ≤ 1 and every Ts > 0, the raised-cosine function is given by the mapping

f 7→


Ts if 0 ≤ |f | ≤ 1−β

2Ts
,

Ts
2

(
1 + cos

(
πTs
β (|f | − 1−β

2Ts
)
))

if 1−β
2Ts

< |f | ≤ 1+β
2Ts

,

0 if |f | > 1+β
2Ts

.

(11.28)

Choosing φ so that its Fourier Transform is the square root of the raised-cosine
mapping (11.28)

φ̂(f) =


√

Ts if 0 ≤ |f | ≤ 1−β
2Ts

,√
Ts
2

√
1 + cos

(
πTs
β (|f | − 1−β

2Ts
)
)

if 1−β
2Ts

< |f | ≤ 1+β
2Ts

,

0 if |f | > 1+β
2Ts

,

(11.29)

results in φ being real with

|φ̂(f)|2 =


Ts if 0 ≤ |f | ≤ 1−β

2Ts
,

Ts
2

(
1 + cos

(
πTs
β (|f | − 1−β

2Ts
)
))

if 1−β
2Ts

< |f | ≤ 1+β
2Ts

,

0 if |f | > 1+β
2Ts

,

(11.30)

as depicted in Figure 11.4 for β = 0.5.

Using (11.29) and using the band-edge symmetry criterion (Corollary 11.3.7), it
can be readily verified that the time shifts of φ by integer multiples of Ts are
orthonormal. Moreover, by (11.29), φ is bandlimited to (1 + β)/(2Ts) Hz. It is
thus of excess bandwidth β × 100%. For every 0 < β ≤ 1 we have thus found a
pulse φ of excess bandwidth β × 100% whose time shifts by integer multiples of Ts

are orthonormal.
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τ

φ(t)

Rφφ(τ)

1

1

Ts 2Ts−Ts−2Ts

Figure 11.5: The pulse φ(·) of (11.31) with β = 0.5 and its self-similarity func-
tion Rφφ(·) of (11.32).

In the time domain

φ(t) =
2β
π
√

Ts

cos
(
(1 + β)π t

Ts

)
+

sin ((1−β)π t
Ts

)

4β t
Ts

1− (4β t
Ts

)2
, t ∈ R, (11.31)

with corresponding self-similarity function

Rφφ(τ) = sinc
( τ

Ts

) cos(πβτ/Ts)
1− 4β2τ2/T2

s

, τ ∈ R. (11.32)

The pulse φ of (11.31) is plotted in Figure 11.5 (top) for β = 0.5. Its self-similarity
function (11.32) is plotted in the same figure (bottom). That the time shifts of φ
by integer multiples of Ts are orthonormal can be verified again by observing that
Rφφ as given in (11.32) satisfies Rφφ(`Ts) = I{` = 0} for all ` ∈ Z.

Notice also that if φ(·) is chosen as in (11.31), then for all 0 < β ≤ 1, the pulse φ(·)
decays like 1/t2. This decay property combined with the fact that the infinite sum∑∞
ν=1 ν

−2 converges (Rudin, 1976, Chapter 3, Theorem 3.28) will prove useful in
Section 14.3 when we discuss the power in PAM.
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11.4 The Self-Similarity Function of Integrable Signals

This section is a bit technical and can be omitted at first reading. In it we define
the self-similarity function for integrable signals that are not necessarily energy-
limited, and we then compute the Fourier Transform of the so-defined self-similarity
function.

Recall that a Lebesgue measurable complex signal v : R → C is integrable if∫∞
−∞ |v(t)|dt < ∞ and that the class of integrable signal is denoted by L1 . For

such signals there may be τ ’s for which the integral in (11.2) is undefined. For
example, if v is not energy-limited, then the integral in (11.2) will be infinite at
τ = 0. Nevertheless, we can discuss the self-similarity function of such signals by
adopting the convolution representation of Proposition 11.2.2 as the definition. We
thus define the self-similarity function Rvv of an integrable signal v ∈ L1 as

Rvv , v ? ~v∗, v ∈ L1 , (11.33)

but we need some clarification. Since v is integrable, and since this implies that
its reflected image ~v is also integrable, it follows that the convolution in (11.33) is
a convolution between two integrable signals. As such, we are guaranteed by the
discussion leading to (5.9) that the integral∫ ∞

−∞
v(σ)~v∗(τ − σ) dσ =

∫ ∞

−∞
v(t+ τ) v∗(t) dt

is defined for all τ ’s outside a set of Lebesgue measure zero. (This set of Lebesgue
measure zero will include the point τ = 0 if v is not of finite energy.) For τ ’s inside
this set of measure zero we define the self-similarity function to be zero. The value
zero is quite arbitrary because, irrespective of the value we choose for such τ ’s, we
are guaranteed by (5.9) that the so-defined self-similarity function Rvv is integrable∫ ∞

−∞

∣∣Rvv(τ)
∣∣ dτ ≤ ‖v‖21 , v ∈ L1 , (11.34)

and that its L1 -Fourier Transform is given by the product of the L1 -Fourier Trans-
form of v and the L1 -Fourier Transform of ~v∗, i.e.,

R̂vv(f) = |v̂(f)|2,
(
v ∈ L1 , f ∈ R

)
. (11.35)

11.5 Exercises

Exercise 11.1 (Passband Signaling). Let f0,Ts > 0 be fixed.

(i) Show that a signal x is a Nyquist Pulse of parameter Ts if, and only if, the signal
t 7→ ei2πf0t x(t) is such a pulse.

(ii) Show that if x is a Nyquist Pulse of parameter Ts, then so is t 7→ cos(2πf0t)x(t).

(iii) If t 7→ cos(2πf0t)x(t) is a Nyquist Pulse of parameter Ts, must x also be one?
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Exercise 11.2 (The Self-Similarity Function of a Delayed Signal). Let u be an energy-
limited signal, and let the signal v be given by v : t 7→ u(t−t0). Express the self-similarity
function of v in terms of the self-similarity of u and t0.

Exercise 11.3 (The Self-Similarity Function of a Frequency Shifted Signal). Let u be
an energy-limited complex signal, and let the signal v be given by v : t 7→ u(t) ei2πf0t for
some f0 ∈ R. Express the self-similarity function of v in terms of f0 and the self-similarity
function of u.

Exercise 11.4 (A Self-Similarity Function). Compute and plot the self-similarity function
of the signal t 7→ A

(
1− |t|/T

)
I
{
|t| ≤ T

}
.

Exercise 11.5 (Symmetry of the FT of the Self-Similarity Function of a Real Signal).
Show that if φ is an integrable real signal, then the FT of its self-similarity function is
symmetric: (

R̂φφ(f) = R̂φφ(−f), f ∈ R
)
, φ ∈ L1 is real.

Exercise 11.6 (The Self-Similarity Function is Positive Definite). Showthat if v is an
energy-limited signal, n is a positive integer, α1, . . . , αn ∈ C, and t1, . . . , tn ∈ R, then

n∑
j=1

n∑
`=1

αjα
∗
` Rvv(tj − t`) ≥ 0.

Hint: Compute the energy in the signal t 7→
∑n
j=1 αj v(t+ tj).

Exercise 11.7 (Relaxing the Orthonormality Condition). What is the minimal bandwidth
of an energy-limited signal whose time shifts by even multiples of Ts are orthonormal?
What is the minimal bandwidth of an energy-limited signal whose time shifts by odd
multiples of Ts are orthonormal?

Exercise 11.8 (A Specific Signal). Let p be the complex energy-limited bandlimited signal
whose FT p̂ is given by

p̂(f) = Ts

(
1− |Tsf − 1|

)
I
{
0 ≤ f ≤ 2

Ts

}
, f ∈ R.

(i) Plot p̂(·).

(ii) Is p(·) a Nyquist Pulse of parameter Ts?

(iii) Is the real part of p(·) a Nyquist Pulse of parameter Ts?

(iv) What about the imaginary part of p(·)?

Exercise 11.9 (Nyquist’s Third Criterion). We say that an energy-limited signal ψ(·)
satisfies Nyquist’s Third Criterion if∫ (2ν+1)Ts/2

(2ν−1)Ts/2

ψ(t) dt =

{
1 if ν = 0,

0 if ν ∈ Z \ {0}.
(11.36)

(i) Express the LHS of (11.36) as an inner product between ψ and some function gν .
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(ii) Show that (11.36) is equivalent to

Ts

∫ ∞

−∞
ψ̂(f) e−i2πfνTs sinc(Tsf) df =

{
1 if ν = 0,

0 if ν ∈ Z \ {0}.

(iii) Show that, loosely speaking, ψ satisfies Nyquist’s Third Criterion if, and only if,

∞∑
j=−∞

ψ̂
(
f − j

Ts

)
sinc(Tsf − j)

is indistinguishable from the all-one function. More precisely, if and only if,

lim
J→∞

∫ 1
2Ts

− 1
2Ts

∣∣∣∣1− J∑
j=−J

ψ̂
(
f − j

Ts

)
sinc(Tsf − j)

∣∣∣∣ df = 0.

(iv) What is the FT of the pulse of least bandwidth that satisfies Nyquist’s Third
Criterion with respect to the baud Ts? What is its bandwidth?

Exercise 11.10 (Multiplication by a Carrier).

(i) Let u be an energy-limited complex signal that is bandlimited to W Hz, and let
f0 > W be given. Let v be the signal v : t 7→ u(t) cos(2πf0t). Express the self-
similarity function of v in terms of f0 and the self-similarity function of u.

(ii) Let the signal φ be given by φ : t 7→
√

2 cos(2πfct)ψ(t), where fc > W/2 > 0;
where 4fcTs is an odd integer; and where ψ is a real energy-limited signal that
is bandlimited to W/2 Hz and whose time shifts by integer multiples of (2Ts)
are orthonormal. Show that the time shifts of φ by integer multiples of Ts are
orthonormal.

Exercise 11.11 (The Self-Similarity of a Convolution). Let p and q be integrable signals
of self-similarity functions Rpp and Rqq. Show that the self-similarity function of their
convolution p ? q is indistinguishable from Rpp ?Rqq.



Chapter 12

Stochastic Processes: Definition

12.1 Introduction and Continuous-Time Heuristics

In this chapter we shall define stochastic processes. Our definition will be general so
as to include the continuous-time stochastic processes of the type we encountered
in Section 10.2 and also discrete-time processes.

In Section 10.2 we saw that since the data bits that we wish to communicate
are random, the transmitted waveform is a stochastic process. But stochastic
processes play an important role in Digital Communications not only in modeling
the transmitted signals: they are also used to model the noise in the system and
other sources of impairments.

The stochastic processes we encountered in Section 10.2 are continuous-time pro-
cesses. We proposed that you think about such a process as a real-valued function
of two variables: “time” and “luck.” By “luck” we mean the realization of all the
random components of the system, e.g., the bits to be sent, the realization of the
noise processes (that we shall discuss later), or any other sources of randomness in
the system.

Somewhat more precisely, recall that a probability space is defined as a triplet
(Ω,F , P ), where the set Ω is the set of experiment outcomes, the set F is the set
of events, and where P (·) assigns probabilities to the various events. A measurable
real-valued function of the outcome is a random variable, and a function of time and
the experiment outcome is a random process or a stochastic process. A continuous-
time stochastic process X is thus a mapping

X : Ω× R→ R
(ω, t) 7→ X(ω, t).

If we fix some experiment outcome ω ∈ Ω, then the random process can be regarded
as a function of one argument: time. This function is sometimes called a sample-
path, trajectory, sample-path realization, or a sample function

X(ω, ·) : R→ R
t 7→ X(ω, t).

201
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t

t

Ts
2

−Ts
2

Ts−Ts

g(t)

∑4
`=−4 x` g(t− `Ts)

Figure 12.1: The pulse shape g : t 7→
(
1 − 4|t|/Ts

)
I
{
|t| < Ts/4

}
, and the sample

function t 7→
∑4
`=−4 x` g(t − `Ts) when

(
x−4, x−3, x−2, x−1, x0, x1, x2, x3, x4

)
=

(−1,−1,+1,+1,−1,+1,−1,−1,−1).

Similarly, if we fix an epoch t ∈ R and view the stochastic process as a function of
“luck” only, we obtain a random variable:

X(·, t) : Ω→ R
ω 7→ X(ω, t).

This random variable is sometimes called the value of the process at time t or
the time-t sample of the process.

Figure 12.1 shows the pulse shape g : t 7→
(
1− 4|t|/Ts

)
I{|t| < Ts/4} and a sample-

path of the PAM signal

X(t) =
4∑

`=−4

X` g(t− `Ts) (12.1)

with {X`} taking value in the set {−1,+1}. Notice that in this example the
functions t 7→ g(t− `Ts) and t 7→ g(t− `′Ts) do not “overlap” if ` 6= `′.

Figure 12.2 shows the pulse shape

g : t 7→

{
1− 4

3Ts
|t| |t| ≤ 3Ts

4 ,

0 |t| > 3Ts
4 ,

t ∈ R (12.2)

and a sample-path of the PAM signal (12.1) for {X`} taking value in the set
{−1,+1}. In this example the mappings t 7→ g(t − `Ts) and t 7→ g(t − `′Ts) do
overlap (when `′ ∈ {`− 1, `, `+ 1}).
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t

t

Ts
2

−Ts
2

Ts−Ts

g(t)

∑4
`=−4 x` g(t− `Ts)

Figure 12.2: The pulse shape g of (12.2) and the trajectory t 7→
∑4
`=−4 x` g(t−`Ts)

for
(
x−4, x−3, x−2, x−1, x0, x1, x2, x3, x4

)
= (−1,−1,+1,+1,−1,+1,−1,−1,−1).

12.2 A Formal Definition

We next give a formal definition of a stochastic process, which is also called a
random process, or a random function.

Definition 12.2.1 (Stochastic Process). A stochastic process
(
X(t), t ∈ T

)
is an

indexed family of random variables that are defined on a common probability space
(Ω,F , P ). Here T denotes the indexing set and X(t) (or sometimes Xt) denotes
the random variable indexed by t.

Thus, X(t) is the random variable to which t ∈ T is mapped. For each t ∈ T
we have that X(t) is a random variable, i.e., a measurable mapping from the
experiment outcomes set Ω to the reals.1

A stochastic process
(
X(t), t ∈ T

)
is said to be centered or of zero mean if all

the random variables in the family are of zero mean, i.e., if for every t ∈ T we have
E[X(t)] = 0. It is said to be of finite variance if all the random variables in the
family are of finite variance, i.e., if E

[
X2(t)

]
<∞ for all t ∈ T .

The case where the indexing set T comprises only one element is not particularly
exciting because in this case the stochastic process is just a random variable with
fancy packaging. Similarly, when T is finite, the SP is just a random vector or a
tuple of random variables in disguise. The cases that will be of most interest are
enumerated below.

(i) When the indexing set T is the set of integers Z, the stochastic process is
said to be a discrete-time stochastic process and in this case it is simply

1Some authors, e.g., (Doob, 1990), allow for X(t) to take on the values ±∞ provided that
at each t ∈ T this occurs with zero probability, but we, following (Loève, 1963), insist that X(t)
only take on finite values.
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a bi-infinite sequence of random variables

. . . , X−2, X−1, X0, X1, X2, . . .

For discrete-time stochastic processes it is customary to denote the random
variable to which ν ∈ Z is mapped by Xν rather than X(ν) and to refer to
Xν as the time-ν sample of the process

(
Xν , ν ∈ Z

)
.

(ii) When the indexing set is the set of positive integers N, the stochastic process
is said to be a one-sided discrete-time stochastic process and it is simply
a one-sided sequence of random variables

X1, X2, . . .

Again, we refer to Xν as the time-ν sample of
(
Xν , ν ∈ N

)
.

(iii) When the indexing set T is the real line R, the stochastic process is said to
be a continuous-time stochastic process and the random variable X(t)
is the time-t sample of

(
X(t), t ∈ R

)
.

In dealing with continuous-time stochastic processes we shall usually denote the
process by

(
X(t), t ∈ R

)
, by X, by X(·), or by

(
X(t)

)
. The random variable to

which t is mapped, i.e., the time-t sample of the process will be denoted by X(t).
Its realization will be denoted by x(t), and the sample-path of the process by x or
x(·).
Discrete-time processes will typically be denoted by

(
Xν , ν ∈ Z

)
or by

(
Xν

)
.

We shall need only a few results on discrete-time stochastic processes, and those will
be presented in Chapter 13. Continuous-time stochastic processes will be discussed
in Chapter 25.

12.3 Describing Stochastic Processes

The description of a continuous-time stochastic process in terms of a random vari-
able (as in Section 10.2), in terms of a finite number of random variables (as in
PAM signaling), or in terms of an infinite sequence of random variables (as in the
transmission using PAM signaling of an infinite binary data stream) is particularly
well suited for describing human-generated stochastic processes or stochastic pro-
cesses that are generated using a mechanism that we fully understand. We simply
describe how the stochastic process is synthesized from the random variables. The
method is less useful when the stochastic process denotes a random signal (such
as thermal noise or some other interference of unknown origin) that we observe
rather than generate. In this case we can use measurements and statistical meth-
ods to analyze the process. Often, the best we can hope for is to be informed
of the finite-dimensional distributions of the process, a concept that will be
introduced in Section 25.2.
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12.4 Additional Reading

Classic references on stochastic processes to which we shall frequently refer are
(Doob, 1990) and (Loève, 1963). We also recommend (Gikhman and Skorokhod,
1996), (Cramér and Leadbetter, 2004), and (Grimmett and Stirzaker, 2001). For
discrete-time stochastic processes, see (Pourahmadi, 2001) and (Porat, 2008).

12.5 Exercises

Exercise 12.1 (Objects in a Basement). Let T1, T2, . . . be a sequence of positive random
variables, and let N1, N2, . . . be a sequence of random variables taking value in N. Define

X(t) =

∞∑
j=1

Nj I
{
t ≥ Tj

}
, t ∈ R.

Draw some sample paths of
(
X(t), t ∈ R

)
. Assume that at time zero a basement is empty

and that Nj denotes the number of objects in the j-th box, which is brought down to the
basement at time Tj . Explain why you can think of X(t) as the number of objects in the
basement at time t.

Exercise 12.2 (A Queue). Let S1, S2, . . . be a sequence of positive random variables. A
system is turned on at time zero. The first customer arrives at the system at time S1

and the next at time S1 + S2. More generally, Customer η arrives Sη minutes after
Customer (η − 1). The system serves one customer at a time. It takes the system one
minute to serve each customer, and a customer leaves the system once it has been served.
Let X(t) denote the number of customers in the system at time t. Express X(t) in terms
of S1, S2, . . . Is

(
X(t), t ∈ R

)
a stochastic process? If so, draw a few of its sample paths.

Compute Pr
[
X(0.5) > 0

]
. Express your answer in terms of the distribution of S1, S2, . . .

Exercise 12.3 (A Continuous-Time Markov SP). A particle is in State Zero at time t = 0.

It stays in that state for T
(0)
1 seconds and then jumps to State One. It stays in State One

for T
(1)
1 seconds and then jumps back to State Zero, where it stays for T

(0)
2 seconds. In

general, T
(0)
ν is the duration of the particle’s stay in State Zero on its ν-th visit to that

state. Similarly, T
(1)
ν is the duration of its stay in State One on its ν-th visit. Assume

that T
(0)
1 , T

(1)
1 , T

(0)
2 , T

(1)
2 , T

(0)
3 , T

(1)
3 , . . . are independent with T

(0)
ν being a mean-µ0

exponential and with T
(1)
ν being a mean-µ1 exponential for all ν ∈ N.

Let X(t) be deterministically equal to zero for t < 0, and equal to the particle’s state for
t ≥ 0.

(i) Plot some sample paths of
(
X(t), t ∈ R

)
.

(ii) What is the probability that the sample path t 7→ X(ω, t) is continuous in the
interval [0, t)?

(iii) Conditional on X(t) = 0, where t ≥ 0, what is the distribution of the remaining
duration of the particle’s stay in State Zero?

Hint: An exponential RV X has the memoryless property, i.e., that for every s, t ≥ 0 we
have Pr[X > s+ t |X > t] = Pr[X ≥ s].
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Exercise 12.4 (Peak Power). Let the random variables
(
Dj , j ∈ Z

)
be IID, each taking

on the values 0 and 1 equiprobably. Let

X(t) = A

∞∑
`=−∞

(
1− 2D`

)
g(t− `Ts), t ∈ R,

where A,Ts > 0 and g : t 7→ I{|t| ≤ 3Ts/4}. Find the distribution of the random variable

sup
t∈R

∣∣X(t)
∣∣.

Exercise 12.5 (Sample-Path Continuity). Let the random variables
(
Dj , j ∈ Z

)
be IID,

each taking on the values 0 and 1 equiprobably. Let

X(t) = A

∞∑
`=−∞

(
1− 2D`

)
g(t− `Ts), t ∈ R,

where A,Ts > 0. Suppose that the function g : R → R is continuous and is zero outside
some interval, so g(t) = 0 whenever |t| ≥ T. Show that for every ω ∈ Ω, the sample-path
t 7→ X(ω, t) is a continuous function of time.

Exercise 12.6 (Random Sampling Time). Consider the setup of Exercise 12.5, with the
pulse shape g : t 7→

(
1 − 2|t|/Ts

)
I
{
|t| ≤ Ts/2

}
. Further assume that the RV T is in-

dependent of
(
Dj , j ∈ Z

)
and uniformly distributed over the interval [−δ, δ]. Find the

distribution of X(kTs + T ) for any integer k.

Exercise 12.7 (A Strange SP). Let T be a mean-one exponential RV, and define the SP(
X(t), t ∈ R

)
by

X(t) =

{
1 if t = T ,

0 otherwise.

Compute the distribution of X(t1) and the joint distribution of X(t1) and X(t2) for
t1, t2 ∈ R. What is the probability that the sample-path t 7→ X(ω, t) is continuous at t1?
What is the probability that the sample-path is a continuous function (everwhere)?

Exercise 12.8 (The Sum of Stochastic Processes: Formalities). Let the stochastic pro-
cesses

(
X1(t), t ∈ R

)
and

(
X2(t), t ∈ R

)
be defined on the same probability space

(Ω,F , P ). Let
(
Y (t), t ∈ R

)
be the SP corresponding to their sum. Express Y as a

mapping from Ω× R to R. What is Y (ω, t) for (ω, t) ∈ Ω× R?

Exercise 12.9 (Independent Stochastic Processes). Let the SP
(
X1(t), t ∈ R

)
be de-

fined on the probability space (Ω1,F1, P1), and let
(
X2(t), t ∈ R

)
be defined on the

space (Ω2,F2, P2). Define a new probability space (Ω,F , P ) with two stochastic processes(
X̃1(t), t ∈ R

)
and

(
X̃2(t), t ∈ R

)
such that for every η ∈ N and epochs t1, . . . , tη ∈ R

the following three conditions hold:

1) The joint law of X̃1(t1), . . . , X̃1(tη) is the same as the joint law ofX1(t1), . . . , X1(tη).

2) The joint law of X̃2(t1), . . . , X̃2(tη) is the same as the joint law ofX2(t1), . . . , X2(tη).

3) The η-tuple X̃1(t1), . . . , X̃1(tη) is independent of the η-tuple X̃2(t1), . . . , X̃2(tη).

Hint: Consider Ω = Ω1 × Ω2.
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Exercise 12.10 (Pathwise Integration). Let
(
Xj , j ∈ Z

)
be IID random variables defined

over the probability space (Ω,F , P ), with Xj taking on the values 0 and 1 equiprobably.
Define the stochastic process

(
X(t), t ∈ R

)
as

X(t) =

∞∑
j=−∞

Xj I{j ≤ t < j + 1}, t ∈ R.

For a given n ∈ N, compute the distribution of the random variable

ω 7→
∫ n

0

X(ω, t) dt.



Chapter 13

Stationary Discrete-Time Stochastic
Processes

13.1 Introduction

This chapter discusses some of the properties of real discrete-time stochastic pro-
cesses. Extensions to complex discrete-time stochastic processes are discussed in
Chapter 17.

13.2 Stationary Processes

A discrete-time stochastic process is said to be stationary if all equal-length tuples
of consecutive samples have the same joint law. Thus:

Definition 13.2.1 (Stationary Discrete-Time Processes). A discrete-time SP
(
Xν

)
is said to be stationary or strict sense stationary or strongly stationary
if for every n ∈ N and all integers η, η′ the joint distribution of the n-tuple
(Xη, . . . Xη+n−1) is identical to that of the n-tuple (Xη′ , . . . , Xη′+n−1):(

Xη, . . . Xη+n−1

) L=
(
Xη′ , . . . Xη′+n−1

)
. (13.1)

Here L= denotes equality of distribution (law) so X L= Y indicates that the random
variables X and Y have the same distribution; (X,Y ) L= (W,Z) indicates that the
pair (X,Y ) and the pair (W,Z) have the same joint distribution; and similarly for
n-tuples.

By considering the case where n = 1 we obtain that if
(
Xν

)
is stationary, then the

distribution of Xη is the same as the distribution of Xη′ , for all η, η′ ∈ Z. That
is, if

(
Xν

)
is stationary, then all the random variables in the family

(
Xν , ν ∈ Z

)
have the same distribution: the random variable X1 has the same distribution as
the random variable X2, etc. Thus,((

Xν , ν ∈ Z
)

stationary
)
⇒
(
Xν

L= X1, ν ∈ Z
)
. (13.2)

208
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By considering in the above definition the case where n = 2 we obtain that for a
stationary process

(
Xν

)
the joint distribution of X1, X2 is the same as the joint

distribution of Xη, Xη+1 for any integer η. More, however, is true. If
(
Xν

)
is

stationary, then the joint distribution ofXν , Xν′ is the same as the joint distribution
of Xη+ν , Xη+ν′ :((

Xν , ν ∈ Z
)

stationary
)
⇒
(
(Xν , Xν′)

L= (Xη+ν , Xη+ν′), ν, ν′, η ∈ Z
)
. (13.3)

To prove (13.3) first note that it suffices to treat the case where ν ≥ ν′ because
(X,Y ) L= (W,Z) if, and only if, (Y,X) L= (Z,W ). Next note that stationarity
implies that (

Xν′ , . . . , Xν

) L=
(
Xη+ν′ , . . . , Xη+ν

)
(13.4)

because both are (ν − ν′ + 1)-length tuples of consecutive samples of the process.
Finally, (13.4) implies that the joint distribution of (Xν′ , Xν) is identical to the
joint distribution of (Xη+ν′ , Xη+ν) and (13.3) follows.

The above argument can be generalized to more samples. This yields the following
proposition, which gives an alternative definition of stationarity, a definition that
more easily generalizes to continuous-time stochastic processes.

Proposition 13.2.2. A discrete-time SP
(
Xν , ν ∈ Z

)
is stationary if, and only if,

for every n ∈ N, all integers ν1, . . . , νn ∈ Z, and every η ∈ Z(
Xν1 , . . . , Xνn

) L=
(
Xη+ν1 , . . . , Xη+νn

)
. (13.5)

Proof. One direction is trivial and simply follows by substituting consecutive in-
tegers for ν1, . . . , νn in (13.5). The proof of the other direction is a straightforward
extension of the argument we used to prove (13.3).

By noting that (W1, . . . ,Wn)
L= (Z1, . . . , Zn) if, and only if,1

∑
j αjWj

L=
∑
j αjZj

for all α1, . . . , αn ∈ R we obtain the following equivalent characterization of sta-
tionary processes:

Proposition 13.2.3. A discrete-time SP
(
Xν

)
is stationary if, and only if, for every

n ∈ N, all η, ν1, . . . , νn ∈ Z, and all α1, . . . , αn ∈ R
n∑
j=1

αjXνj
L=

n∑
j=1

αjXνj+η. (13.6)

13.3 Wide-Sense Stationary Stochastic Processes

Definition 13.3.1 (Wide-Sense Stationary Discrete-Time SP). We say that a
discrete-time SP

(
Xν , ν ∈ Z

)
is wide-sense stationary (WSS) or weakly

1This follows because the multivariate characteristic function determines the joint distribution
(see Proposition 23.4.4 or (Dudley, 2003, Chapter 9, Section 5, Theorem 9.5.1)) and because
the characteristic functions of all the linear combinations of the components of a random vector
determine the multivariate characteristic function of the random vector (Feller, 1971, Chapter XV,
Section 7).
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stationary or covariance stationary or second-order stationary or weak-
sense stationary if the following three conditions are satisfied:

1) The random variables Xν , ν ∈ Z are all of finite variance:

Var[Xν ] <∞, ν ∈ Z. (13.7a)

2) The random variables Xν , ν ∈ Z have identical means:

E[Xν ] = E[X1] , ν ∈ Z. (13.7b)

3) The quantity E[Xν′Xν ] depends on ν′ and ν only via ν − ν′:

E[Xν′Xν ] = E[Xη+ν′Xη+ν ] , ν, ν′, η ∈ Z. (13.7c)

Note 13.3.2. By considering (13.7c) when ν = ν′ we obtain that all the samples
of a WSS SP have identical second moments. And since, by (13.7b), they also all
have identical means, it follows that all the samples of a WSS SP have identical
variances: ((

Xν , ν ∈ Z
)

WSS
)
⇒
(
Var[Xν ] = Var[X1] , ν ∈ Z

)
. (13.8)

An alternative definition of a WSS process in terms of the variance of linear func-
tionals of the process is given below.

Proposition 13.3.3. A finite-variance discrete-time SP
(
Xν

)
is WSS if, and only

if, for every n ∈ N, every η, ν1, . . . , νn ∈ Z, and every α1, . . . , αn ∈ R
n∑
j=1

αjXνj and
n∑
j=1

αjXνj+η have the same mean & variance. (13.9)

Proof. The proof is left as an exercise. Alternatively, see the proof of Proposi-
tion 17.5.5.

13.4 Stationarity and Wide-Sense Stationarity

Comparing (13.9) with (13.6) we see that, for finite-variance stochastic processes,
stationarity implies wide-sense stationarity, which is the content of the following
proposition. This explains why stationary processes are sometimes called strong-
sense stationary and why wide-sense stationary processes are sometimes called
weak-sense stationary.

Proposition 13.4.1 (Finite-Variance Stationary Stochastic Processes Are WSS).
Every finite-variance discrete-time stationary SP is WSS.

Proof. While this is obvious from (13.9) and (13.6) we shall nevertheless give an
alternative proof because the proof of Proposition 13.3.3 was left as an exercise. The
proof is straightforward and follows directly from (13.2) and (13.3) by noting that if
X

L= Y , then E[X] = E[Y ] and that if (X,Y ) L= (W,Z), then E[XY ] = E[WZ].
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It is not surprising that not every WSS process is stationary. Indeed, the definition
of WSS processes only involves means and covariances, so it cannot possibly say
everything regarding the distribution. For example, the process whose samples
are independent with the odd ones taking on the value ±1 equiprobably and with
the even ones uniformly distributed over the interval [−

√
3,+
√

3] is WSS but not
stationary.

13.5 The Autocovariance Function

Definition 13.5.1 (Autocovariance Function). The autocovariance function
KXX : Z→ R of a WSS discrete-time SP

(
Xν

)
is defined by

KXX(η) , Cov[Xν+η, Xν ] , η ∈ Z. (13.10)

Thus, the autocovariance function at η is the covariance between two samples of
the process taken η units of time apart. Note that because

(
Xν

)
is WSS, the RHS

of (13.10) does not depend on ν. Also, for WSS processes all samples are of equal
mean (13.7b), so

KXX(η) = Cov[Xν+η, Xν ]
= E[Xν+ηXν ]− E[Xν+η]E[Xν ]

= E[Xν+ηXν ]−
(
E[X1]

)2
, η ∈ Z.

In some engineering texts the autocovariance function is called “autocorrelation
function.” We prefer the former because KXX(η) does not measure the correlation
coefficient between Xν and Xν+η but rather the covariance. These concepts are
different also for zero-mean processes. Following (Grimmett and Stirzaker, 2001)
we define the autocorrelation function of a WSS process of nonzero variance as

ρXX(η) ,
Cov[Xν+η, Xν ]

Var[X1]
, η ∈ Z, (13.11)

i.e., as the correlation coefficient between Xν+η and Xν . (Recall that for a WSS
process all samples are of the same variance (13.8), so for such a process the
denominator in (13.11) is equal to

√
Var[Xν ] Var[Xν+η].)

Not every function from the integers to the reals is the autocovariance function of
some WSS SP. For example, the autocovariance function must be symmetric in the
sense that

KXX(−η) = KXX(η), η ∈ Z, (13.12)

because, by (13.10),

KXX(η) = Cov[Xν+η, Xν ]
= Cov[Xν̃ , Xν̃−η]
= Cov[Xν̃−η, Xν̃ ]
= KXX(−η), η ∈ Z,
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where in the second equality we defined ν̃ , ν + η, and where in the third equal-
ity we used the fact that for real random variables the covariance is symmetric:
Cov[X,Y ] = Cov[Y,X].

Another property that the autocovariance function must satisfy is
n∑
ν=1

n∑
ν′=1

αναν′ KXX(ν − ν′) ≥ 0, α1, . . . , αn ∈ R, (13.13)

because
n∑
ν=1

n∑
ν′=1

αναν′ KXX(ν − ν′) =
n∑
ν=1

n∑
ν′=1

αναν′Cov[Xν , Xν′ ]

= Cov

[ n∑
ν=1

ανXν ,

n∑
ν′=1

αν′Xν′

]

= Var

[ n∑
ν=1

ανXν

]
≥ 0.

It turns out that (13.12) and (13.13) fully characterize the autocovariance functions
of discrete-time WSS stochastic processes in a sense that is made precise in the
following theorem.

Theorem 13.5.2 (Characterizing Autocovariance Functions).

(i) If KXX is the autocovariance function of some discrete-time WSS SP
(
Xν

)
,

then KXX must satisfy (13.12) & (13.13).

(ii) If K : Z→ R is some function satisfying

K(−η) = K(η), η ∈ Z (13.14)

and
n∑
ν=1

n∑
ν′=1

αναν′K(ν − ν′) ≥ 0,
(
n ∈ N, α1, . . . , αn ∈ R

)
, (13.15)

then there exists a discrete-time WSS SP
(
Xν

)
whose autocovariance func-

tion KXX is given by KXX(η) = K(η) for all η ∈ Z.

Proof. We have already proved Part (i). For a proof of Part (ii) see, for example,
(Doob, 1990, Chapter X, § 3, Theorem 3.1) or (Pourahmadi, 2001, Theorem 5.1 in
Section 5.1 and Section 9.7).2

A function K : Z → R satisfying (13.14) & (13.15) is called a positive definite
function. Such functions have been extensively studied in the literature, and in
Section 13.7 we shall give an alternative characterization of autocovariance func-
tions based on these studies. But first we introduce the power spectral density.

2For the benefit of readers who have already encountered Gaussian stochastic processes, we
mention here that if K(·) satisfies (13.14) & (13.15) then we can even find a Gaussian SP whose
autocovariance function is equal to K(·).
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13.6 The Power Spectral Density Function

Roughly speaking, the power spectral density (PSD) of a discrete-time WSS
SP
(
Xν

)
of autocovariance function KXX is an integrable function on the interval

[−1/2, 1/2) whose η-th Fourier Series Coefficient is equal to KXX(η). Such a func-
tion does not always exist. When it does, it is unique in the sense that any two such
functions can only differ on a subset of the interval [−1/2, 1/2) of Lebesgue measure
zero. (This follows because integrable functions on the interval [−1/2, 1/2) that
have identical Fourier Series Coefficients can differ only on a subset of [−1/2, 1/2)
of Lebesgue measure zero; see Theorem A.2.3.) Consequently, we shall speak of
“the” PSD but try to remember that this does not always exist and that, when it
does, it is only unique in this restricted sense.

Definition 13.6.1 (Power Spectral Density). We say that the discrete-time WSS
SP

(
Xν

)
is of power spectral density SXX if SXX is an integrable mapping

from the interval [−1/2, 1/2) to the reals such that

KXX(η) =
∫ 1/2

−1/2

SXX(θ) e−i2πηθ dθ, η ∈ Z. (13.16)

But see also Note 13.6.5 ahead.

Note 13.6.2. We shall sometimes abuse notation and, rather than say that the
stochastic process

(
Xν , ν ∈ Z

)
is of PSD SXX , we shall say that the autocovariance

function KXX is of PSD SXX .

By considering the special case of η = 0 in (13.16) we obtain that

Var[Xν ] = KXX(0)

=
∫ 1/2

−1/2

SXX(θ) dθ, ν ∈ Z. (13.17)

The main result of the following proposition is that power spectral densities are
nonnegative (except possibly on a set of Lebesgue measure zero).

Proposition 13.6.3 (PSDs Are Nonnegative and Symmetric).

(i) If the WSS SP
(
Xν , ν ∈ Z

)
of autocovariance KXX is of PSD SXX , then,

except on subsets of (−1/2, 1/2) of Lebesgue measure zero,

SXX(θ) ≥ 0 (13.18)

and
SXX(θ) = SXX(−θ). (13.19)

(ii) If the function S : [−1/2, 1/2)→ R is integrable, nonnegative, and symmetric
(in the sense that S(θ) = S(−θ) for all θ ∈ (−1/2, 1/2)), then there exists a
WSS SP

(
Xν

)
whose PSD SXX is given by

SXX(θ) = S(θ), θ ∈ [−1/2, 1/2).
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Proof. The nonnegativity of the PSD (13.18) will be established later in the more
general setting of complex stochastic processes (Proposition 17.5.7 ahead). Here we
only prove the symmetry (13.19) and establish the second half of the proposition.

That (13.19) holds (except on a set of Lebesgue measure zero) follows because KXX
is symmetric. Indeed, for any η ∈ Z we have∫ 1/2

−1/2

(
SXX(θ)− SXX(−θ)

)
e−i2πηθ dθ

=
∫ 1/2

−1/2

SXX(θ) e−i2πηθ dθ −
∫ 1/2

−1/2

SXX(−θ) e−i2πηθ dθ

= KXX(η)−
∫ 1/2

−1/2

SXX(θ̃) e−i2π(−η)θ̃ dθ̃

= KXX(η)− KXX(−η)
= 0, η ∈ Z. (13.20)

Consequently, all the Fourier Series Coefficients of the function θ 7→ SXX(θ) −
SXX(−θ) are zero, thus establishing that this function is zero except on a set of
Lebesgue measure zero (Theorem A.2.3).

We next prove that if the function S : [−1/2, 1/2)→ R is symmetric, nonnegative,
and integrable, then it is the PSD of some WSS real SP. We cheat a bit because
our proof relies on Theorem 13.5.2, which we never proved. From Theorem 13.5.2
it follows that it suffices to establish that the sequence K : Z→ R defined by

K(η) =
∫ 1/2

−1/2

S(θ) e−i2πηθ dθ, η ∈ Z (13.21)

satisfies (13.14) & (13.15).

Verifying (13.14) is straightforward: by hypothesis, S(·) is symmetric so

K(−η) =
∫ 1/2

−1/2

S(θ) e−i2π(−η)θ dθ

=
∫ 1/2

−1/2

S(−ϕ) e−i2πηϕ dϕ

=
∫ 1/2

−1/2

S(ϕ) e−i2πηϕ dϕ

= K(η), η ∈ Z,

where the first equality follows from (13.21); the second from the change of variable
ϕ , −θ; the third from the symmetry of S(·), which implies that S(−ϕ) = S(ϕ);
and the last equality again from (13.21).

We next verify (13.15). To this end we fix arbitrary α1, . . . , αn ∈ R and compute

n∑
ν=1

n∑
ν′=1

αναν′K(ν − ν′) =
n∑
ν=1

n∑
ν′=1

αναν′

∫ 1/2

−1/2

S(θ) e−i2π(ν−ν′)θ dθ
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=
∫ 1/2

−1/2

S(θ)
( n∑
ν=1

n∑
ν′=1

αναν′ e
−i2π(ν−ν′)θ

)
dθ

=
∫ 1/2

−1/2

S(θ)
( n∑

ν=1

n∑
ν′=1

αν e
−i2πνθ αν′ e

i2πν′θ

)
dθ

=
∫ 1/2

−1/2

S(θ)
( n∑
ν=1

αν e
−i2πνθ

)( n∑
ν′=1

αν′ e
−i2πν′θ

)∗
dθ

=
∫ 1/2

−1/2

S(θ)
∣∣∣∣ n∑
ν=1

αν e
−i2πνθ

∣∣∣∣2 dθ

≥ 0, (13.22)

where the first equality follows from (13.21); the subsequent equalities by simple
algebraic manipulation; and the final inequality from the nonnegativity of S(·).

Corollary 13.6.4. If a discrete-time WSS SP
(
Xν

)
has a PSD, then it also has a

PSD SXX for which (13.18) holds for every θ ∈ [−1/2, 1/2) and for which (13.19)
holds for every θ ∈ (−1/2, 1/2) (and not only outside subsets of Lebesgue measure
zero).

Proof. Suppose that
(
Xν

)
is of PSD SXX . Define the mapping S : [−1/2, 1/2)→ R

by3

S(θ) =

{
1
2

(
|SXX(θ)|+ |SXX(−θ)|

)
if θ ∈ (−1/2, 1/2)

1 if θ = −1/2.
(13.23)

By the proposition, SXX and S(·) differ only on a set of Lebesgue measure zero,
so they must have identical Fourier Series Coefficients. Since the Fourier Series
Coefficients of SXX agree with KXX , it follows that so must those of S(·). Thus, S(·)
is a PSD for

(
Xν

)
, and it is by (13.23) nonnegative on [−1/2, 1/2) and symmetric

on (−1/2, 1/2).

Note 13.6.5. In view of Corollary 13.6.4 we shall only say that
(
Xν

)
is of PSD SXX

if the function SXX—in addition to being integrable and to satisfying (13.16)—is
also nonnegative and symmetric.

As we have noted, not every WSS SP has a PSD. For example, the process defined
by

Xν = X, ν ∈ Z,

where X is some zero-mean unit-variance random variable has the all-one auto-
covariance function KXX(η) = 1, η ∈ Z, and this all-one sequence cannot be
the Fourier Series Coefficients sequence of an integrable function because, by the
Riemann-Lebesgue lemma (Theorem A.2.4), the Fourier Series Coefficients of an
integrable function must converge to zero.4

3Our choice of S(−1/2) as 1 is arbitrary; any nonnegative value whould do.
4One could say that the PSD of this process is Dirac’s Delta, but we shall refrain from doing

so because we do not use Dirac’s Delta in this book and because there is not much to be gained
from this. (There exist processes that do not have a PSD even if one allows for Dirac’s Deltas.)
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In general, it is very difficult to characterize the autocovariance functions having
a PSD. We know by the Riemann-Lebesgue lemma that such autocovariance func-
tions must tend to zero, but this necessary condition is not sufficient. A very useful
sufficient (but not necessary) condition is the following:

Proposition 13.6.6 (PSD when KXX Is Absolutely Summable). If the autoco-
variance function KXX is absolutely summable, i.e.,

∞∑
η=−∞

∣∣KXX(η)
∣∣ <∞, (13.24)

then the function

S(θ) =
∞∑

η=−∞
KXX(η) ei2πηθ, θ ∈ [−1/2, 1/2] (13.25)

is continuous, symmetric, nonnegative, and satisfies∫ 1/2

−1/2

S(θ) e−i2πηθ dθ = KXX(η), η ∈ Z. (13.26)

Consequently, S(·) is a PSD for KXX .

Proof. First note that because |KXX(η) e−i2πθη| = |KXX(η)|, it follows that (13.24)
guarantees that the sum in (13.25) converges uniformly and absolutely. And since
each term in the sum is a continuous function, the uniform convergence of the
sum guarantees that S(·) is continuous (Rudin, 1976, Chapter 7, Theorem 7.12).
Consequently, ∫ 1/2

−1/2

|S(θ)|dθ <∞, (13.27)

and it is meaningful to discuss the Fourier Series Coefficients of S(·).
We next prove that the Fourier Series Coefficients of S(·) are equal to KXX , i.e.,
that (13.26) holds. This can be shown by swapping integration and summation
and using the orthonormality property∫ 1/2

−1/2

ei2π(η−η′)θ dθ = I{η = η′}, η, η′ ∈ Z (13.28)

as follows:∫ 1/2

−1/2

S(θ) e−i2πηθ dθ =
∫ 1/2

−1/2

( ∞∑
η′=−∞

KXX(η′) ei2πη
′θ

)
e−i2πηθ dθ

=
∞∑

η′=−∞
KXX(η′)

∫ 1/2

−1/2

ei2πη
′θ e−i2πηθ dθ

=
∞∑

η′=−∞
KXX(η′)

∫ 1/2

−1/2

ei2π(η′−η)θ dθ
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=
∞∑

η′=−∞
KXX(η′) I{η′ = η}

= KXX(η), η ∈ Z.

It remains to show that S(·) is symmetric, i.e., that S(θ) = S(−θ), and that it is
nonnegative. The symmetry of S(·) follows directly from its definition (13.25) and
from the fact that KXX , like every autocovariance function, is symmetric (Theo-
rem 13.5.2 (i)).

We next prove that S(·) is nonnegative. From (13.26) it follows that S(·) can
only be negative on a subset of the interval [−1/2, 1/2) of Lebesgue measure zero
(Proposition 13.6.3 (i)). And since S(·) is continuous, this implies that S(·) is
nonnegative.

13.7 The Spectral Distribution Function

We next briefly discuss the case where
(
Xν

)
does not necessarily have a power

spectral density function. We shall see that in this case too we can express the
autocovariance function as the Fourier Series of “something,” but this “something”
is not an integrable function. (It is, in fact, a measure.) The theorem will also yield
a characterization of nonnegative definite functions. The proof, which is based on
Herglotz’s Theorem, is omitted. The results of this section will not be used in
subsequent chapters.

Recall that a random variable taking value in the interval [−α, α] is said to be
symmetric (or to have a symmetric distribution) if Pr[X ≤ −ξ] = Pr[X ≥ ξ] for
all ξ ∈ [−α, α].

Theorem 13.7.1. A function ρ : Z → R is the autocorrelation function of a real
WSS SP if, and only if, there exists a symmetric random variable Θ taking value
in the interval [−1/2, 1/2] such that

ρ(η) = E
[
e−i2πηΘ

]
, η ∈ Z. (13.29)

The cumulative distribution function of Θ is fully determined by ρ.

Proof. See (Doob, 1990, Chapter X, § 3, Theorem 3.2), (Pourahmadi, 2001, The-
orem 9.22), (Shiryaev, 1996, Chapter VI, § 1.1), or (Porat, 2008, Section 2.8).

This theorem also characterizes autocovariance functions: a function K : Z → R
is the autocovariance function of a real WSS SP if, and only if, there exists a
symmetric random variable Θ taking value in the interval [−1/2, 1/2] and some
constant α ≥ 0 such that

K(η) = αE
[
e−i2πηΘ

]
, η ∈ Z. (13.30)

(By equating (13.30) at η = 0 we obtain that α = K(0), i.e., the variance of the
stochastic process.)
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Equivalently, we can state the theorem as follows. If
(
Xν

)
is a real WSS SP, then

its autocovariance function KXX can be expressed as

KXX(η) = Var[X1] E
[
e−i2πηΘ

]
, η ∈ Z (13.31)

for some random variable Θ taking value in the interval [−1/2, 1/2] according to
some symmetric distribution. If, additionally, Var[X1] > 0, then the cumulative
distribution function FΘ(·) of Θ is uniquely determined by KXX .

Note 13.7.2.

(i) If the random variable Θ above has a symmetric density fΘ(·), then the
process is of PSD θ 7→ Var[X1] fΘ(θ). Indeed, by (13.31) we have for every
integer η

KXX(η) = Var[X1] E
[
e−i2πηΘ

]
= Var[X1]

∫ 1/2

−1/2

fΘ(θ) e−i2πηθ dθ

=
∫ 1/2

−1/2

(
Var[X1] fΘ(θ)

)
e−i2πηθ dθ.

(ii) Some authors, e.g., (Grimmett and Stirzaker, 2001) refer to the cumulative
distribution function FΘ(·) of Θ, i.e., to the mapping θ 7→ Pr[Θ ≤ θ], as
the Spectral Distribution Function of

(
Xν

)
. This, however, is not stan-

dard. It is only in agreement with the more common usage in the case where
Var[X1] = 1.5

13.8 Exercises

Exercise 13.1 (Discrete-Time WSS Stochastic Processes). Prove Proposition 13.3.3.

Exercise 13.2 (Mapping a Discrete-Time Stationary SP). Let
(
Xν
)

be a stationary
discrete-time SP, and let g : R → R be some arbitrary (Borel measurable) function. For
every ν ∈ Z, let Yν = g(Xν). Prove that the discrete-time SP

(
Yν
)

is stationary.

Exercise 13.3 (Mapping a Discrete-Time WSS SP). Let
(
Xν
)

be a WSS discrete-time
SP, and let g : R → R be some arbitrary (Borel measurable) bounded function. For every
ν ∈ Z, let Yν = g(Xν). Must the SP

(
Yν
)

be WSS?

Exercise 13.4 (A Sliding-Window Mapping of a Stationary SP). Let
(
Xν
)

be a stationary
discrete-time SP, and let g : R2 → R be some arbitrary (Borel measurable) function. For
every ν ∈ Z define Yν = g(Xν−1, Xν). Must

(
Yν
)

be stationary?

5The more common definition is that θ 7→ Var[X1] Pr[Θ ≤ θ] is the spectral measure or
spectral distribution function. But this is not a distribution function in the probabilistic sense
because its value at θ = ∞ is Var[X1] which may be different from one.
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Exercise 13.5 (A Sliding-Window Mapping of a WSS SP). Let
(
Xν
)

be a WSS discrete-
time SP, and let g : R2 → R be some arbitrary bounded (Borel measurable) function. For
every ν ∈ Z define Yν = g(Xν−1, Xν). Must

(
Yν
)

be WSS?

Exercise 13.6 (Existence of a SP). For which values of α, β ∈ R is the function

KXX(m) =


1 if m = 0,

α if m = 1,

β if m = −1,

0 otherwise,

m ∈ Z

the autocovariance function of some WSS SP
(
Xν , ν ∈ Z

)
?

Exercise 13.7 (Dilating a Stationary SP). Let
(
Xν
)

be a stationary discrete-time SP, and
define Yν = X2ν for every ν ∈ Z. Must

(
Yν
)

be stationary?

Exercise 13.8 (Inserting Zeros Periodically). Let
(
Xν
)

be a stationary discrete-time SP,
and let the RV U be independent of it and take on the values 0 and 1 equiprobably. Define
for every ν ∈ Z

Yν =

{
0 if ν is odd

Xν/2 if ν is even
and Zν = Yν+U . (13.32)

Under what conditions is
(
Yν
)

stationary? Under what conditions is
(
Zν
)

stationary?

Exercise 13.9 (The Autocovariance Function of a Dilated WSS SP). Let
(
Xν
)

be a WSS
discrete-time SP of autocovariance function KXX . Define Yν = X2ν for every ν ∈ Z. Must(
Yν
)

be WSS? If so, express its autocovariance function KYY in terms of KXX .

Exercise 13.10 (Inserting Zeros Periodically: the Autocovariance Function). Let
(
Xν
)

be
a WSS discrete-time SP of autocovariance function KXX , and let the RV U be independent
of it and take on the values 0 and 1 equiprobably. Define

(
Zν
)

as in (13.32). Must
(
Zν
)

be WSS? If yes, express its autocovariance function in terms of KXX .

Exercise 13.11 (Stationary But Not WSS). Construct a discrete-time stationary SP that
is not WSS.

Exercise 13.12 (Complex Coefficients). Show that (13.13) will hold for complex numbers
α1, . . . , αn provided that we replace the product αναν′ with ανα

∗
ν′ . That is, show that if

KXX is the autocovariance function of a real discrete-time WSS SP, then

n∑
ν=1

n∑
ν′=1

ανα
∗
ν′ KXX(ν − ν′) ≥ 0, α1, . . . , αn ∈ C.



Chapter 14

Energy and Power in PAM

14.1 Introduction

Energy is an important resource in Digital Communications. The rate at which
it is transmitted—the “transmit power”—is critical in battery-operated devices.
In satellite applications it is a major consideration in determining the size of the
required solar panels, and in wireless systems it influences the interference that one
system causes to another. In this chapter we shall discuss the power in PAM signals.
To define power we shall need some modeling trickery which will allow us to pretend
that the system has been operating since “time −∞” and that it will continue
to operate indefinitely. Our definitions and derivations will be mathematically
somewhat informal. A more formal account for readers with background in Measure
Theory is provided in Section 14.6.

Before discussing power we begin with a discussion of the expected energy in trans-
mitting a finite number of bits.

14.2 Energy in PAM

We begin with a seemingly completely artificial problem. Suppose that K inde-
pendent data bits D1, . . . , DK, each taking on the values 0 and 1 equiprobably,
are mapped by a mapping enc : {0, 1}K → RN to an N-tuple of real numbers
(X1, . . . , XN), where X` is the `-th component of the N-tuple enc

(
D1, . . . , DK

)
.

Suppose further that the symbols X1, . . . , XN are then mapped to the waveform

X(t) = A

N∑
`=1

X` g(t− `Ts), t ∈ R, (14.1)

where g ∈ L2 is an energy-limited real pulse shape, A ≥ 0 is a scaling factor, and
Ts > 0 is the baud period. We seek the expected energy in the waveform X(·).
We assume that X(·) corresponds to the voltage across a unit-load or to the current
through a unit-load, so the transmitted energy is the time integral of the mapping
t 7→ X2(t). Because the data bits are random variables, the signal X(·) is a

220
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stochastic process. Its energy
∫∞
−∞X2(t) dt is thus a random variable.1 If (Ω,F , P )

is the probability space under consideration, then this RV is the mapping from Ω
to R defined by

ω 7→
∫ ∞

−∞
X2(ω, t) dt.

This RV’s expectation—the expected energy—is denoted by E and is given by

E , E

[∫ ∞

−∞
X2(t) dt

]
. (14.2)

Note that even though we are considering the transmission of a finite number of
symbols (N), the waveform X(·) may extend in time from −∞ to +∞.

We next derive an explicit expression for E. Starting from (14.2) and using (14.1),

E = E

[∫ ∞

−∞
X2(t) dt

]
= A2E

[∫ ∞

−∞

( N∑
`=1

X` g(t− `Ts)
)2

dt

]

= A2E

[∫ ∞

−∞

( N∑
`=1

X` g(t− `Ts)
)( N∑

`′=1

X`′ g(t− `′Ts)
)

dt

]

= A2E

[∫ ∞

−∞

N∑
`=1

N∑
`′=1

X`X`′ g(t− `Ts) g(t− `′Ts) dt

]

= A2

∫ ∞

−∞

N∑
`=1

N∑
`′=1

E[X`X`′ ] g(t− `Ts) g(t− `′Ts) dt

= A2
N∑
`=1

N∑
`′=1

E[X`X`′ ]
∫ ∞

−∞
g(t− `Ts) g(t− `′Ts) dt

= A2
N∑
`=1

N∑
`′=1

E[X`X`′ ]Rgg

(
(`− `′)Ts

)
, (14.3)

where Rgg is the self-similarity function of the pulse g(·) (Section 11.2). Here the
first equality follows from (14.2); the second from (14.1); the third by writing the
square of a number as its product with itself (ξ2 = ξξ); the fourth by writing the
product of sums as the double sum of products; the fifth by swapping expectation
with integration and by the linearity of expectation; the sixth by swapping integra-
tion and summation; and the final equality by the definition of the self-similarity
function (Definition 11.2.1).

Using Proposition 11.2.2 (iv) we can also express Rgg as

Rgg(τ) =
∫ ∞

−∞

∣∣ĝ(f)
∣∣2 ei2πfτ df, τ ∈ R (14.4)

1There are some slight measure-theoretic mathematical technicalities that we are sweeping
under the rug. Those are resolved in Section 14.6.
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and hence rewrite (14.3) as

E = A2

∫ ∞

−∞

N∑
`=1

N∑
`′=1

E[X`X`′ ] ei2πf(`−`′)Ts
∣∣ĝ(f)

∣∣2 df. (14.5)

We define the energy per bit as

Eb

[energy
bit

]
,

E

K
(14.6)

and the energy per real symbol as

Es

[
energy

real symbol

]
,

E

N
. (14.7)

As we shall see in Section 14.5.2, if infinite data are transmitted using the binary-
to-reals (K,N) block encoder enc(·), then the resulting transmitted power P is given
by

P =
Es

Ts
. (14.8)

This result will be proved in Section 14.5.2 after we carefully define the average
power. The units work out because if we think of Ts as having units of seconds per
real symbol then:

Es

[
energy

real symbol

]
Ts

[
second

real symbol

] =
Es

Ts

[ energy
second

]
. (14.9)

Expression (14.3) for the expected energy E is greatly simplified in two cases that
we discuss next. The first is when the pulse shape g satisfies the orthogonality
condition∫ ∞

−∞
g(t) g(t− κTs) dt = ‖g‖22 I{κ = 0}, κ ∈ {0, 1, . . . ,N− 1}. (14.10)

In this case (14.3) simplifies to

E = A2 ‖g‖22
N∑
`=1

E
[
X2
`

]
,
({
t 7→ g(t− `Ts)

}N−1

`=0
orthogonal

)
. (14.11)

(In this case one need not even go through the calculation leading to (14.3); the
result simply follows from (14.1) and the Pythagorean Theorem (Theorem 4.5.2).)

The second case for which the computation of E is simplified is when the distribu-
tion of D1, . . . , DK and the mapping enc(·) result in the real symbols X1, . . . , XN

being of zero mean and uncorrelated:2

E[X`] = 0, ` ∈ {1, . . . ,N} (14.12a)

2Actually, it suffices that (14.12b) hold; (14.12a) is not needed.
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and
E[X`X`′ ] = E

[
X2
`

]
I{` = `′}, `, `′ ∈ {1, . . . ,N}. (14.12b)

In this case too (14.3) simplifies to

E = A2 ‖g‖22
N∑
`=1

E
[
X2
`

]
,
((
X`, ` ∈ Z

)
zero-mean & uncorrelated

)
. (14.13)

14.3 Defining the Power in PAM

If
(
X(t), t ∈ R

)
is a continuous-time stochastic process describing the voltage

across a unit-load or the current through a unit-load, then it is reasonable to
define the power P in

(
X(t), t ∈ R

)
as the limit

P , lim
T→∞

1
2T

E

[∫ T

−T

X2(t) dt
]
. (14.14)

But there is a problem. Over its lifetime, a communication system is only used
to transmit a finite number of bits, and it only sends a finite amount of energy.
Consequently, if

(
X(t), t ∈ R

)
corresponds to the transmitted waveform over the

system’s lifetime, then P as defined in (14.14) will always end up being zero. The
definition in (14.14) is thus useless when discussing the transmission of a finite
number of bits.

To define power in a useful way we need some modeling trickery. Instead of thinking
about the encoder as producing a finite number of symbols, we should now pretend
that the encoder produces an infinite sequence of symbols

(
X`, ` ∈ Z

)
, which are

then mapped to the infinite sum

X(t) = A

∞∑
`=−∞

X` g(t− `Ts), t ∈ R. (14.15)

For the waveform in (14.15), the definition of P in (14.14) makes perfect sense.
Philosophically speaking, the modeling trickery we employ corresponds to mea-
suring power on a time scale much greater than the signaling period Ts but much
shorter than the system’s lifetime.

But philosophy aside, there are still two problems we must address: how to model
the generation of the infinite sequence

(
X`, ` ∈ Z

)
, and how to guarantee that

the sum in (14.15) converges for every t ∈ R. We begin with the latter. If g is of
finite duration, then at every epoch t ∈ R only a finite number of terms in (14.15)
are nonzero and convergence is thus guaranteed. But we do not want to restrict
ourselves to finite-duration pulse shapes because those, by Theorem 6.8.2, cannot
be bandlimited. Instead, to guarantee convergence, we shall assume throughout
that the following conditions both hold:

1) The symbols
(
X`, ` ∈ Z

)
are uniformly bounded in the sense that there

exists some constant γ such that∣∣X`

∣∣ ≤ γ, ` ∈ Z. (14.16)
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D−K+1, . . . , D0,

enc(·)

, X−N+1, . . . , X0,

enc(D−K+1, . . . , D0)

D1, . . . , DK,

enc(·)

X1, . . . , XN,

enc(D1, . . . , DK)

DK+1, · · · , D2K

enc(·)

XN+1, · · · , X2N,

enc(DK+1, . . . , D2K)

Figure 14.1: Bi-Infinite Block Encoding.

2) The pulse shape t 7→ g(t) decays faster than 1/t in the sense that there exist
positive constants α, β > 0 such that

|g(t)| ≤ β

1 + |t/Ts|1+α
, t ∈ R. (14.17)

Using the fact that the sum
∑
n≥1 n

−(1+α) converges whenever α > 0 (Rudin,
1976, Theorem 3.28), it is not difficult to show that if both (14.16) and (14.17)
hold, then the infinite sum (14.15) converges at every epoch t ∈ R.

As to the generation of
(
X`, ` ∈ Z

)
, we shall consider three scenarios. In the

first, which we analyze in Section 14.5.1, we ignore this issue and simply assume
that

(
X`, ` ∈ Z

)
is a WSS discrete-time SP of a given autocovariance function.

In the second scenario, which we analyze in Section 14.5.2, we tweak the block-
encoding mode that we introduced in Section 10.4 to account for a bi-infinite data
sequence. We call this tweaked mode bi-infinite block encoding and describe
it more precisely in Section 14.5.2. It is illustrated in Figure 14.1. Finally, the
third scenario, which we analyze in Section 14.5.3, is similar to the first except
that we relax some of the statistical assumptions on

(
X`, ` ∈ Z

)
. But we only

treat the case where the time shifts of the pulse shape by integer multiples of Ts

are orthonormal.

Except in the third scenario, we shall only analyze the power in the stochastic
process (14.15) assuming that the symbols

(
X`, ` ∈ Z

)
are of zero mean

E[X`] = 0, ` ∈ Z. (14.18)

This not only simplifies the analysis but also makes engineering sense, because it
guarantees that

(
X(t), t ∈ R

)
is centered

E[X(t)] = 0, t ∈ R, (14.19)

and, for the reasons that we outline in Section 14.4, transmitting zero-mean wave-
forms is usually power efficient.
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+ + +TX1

TX2

RX1

RX2

X X− c Y = X− c + N X + N{Dj} {Dest
j }

−c c

N

TX1 RX1
X Y = X + N

+

N

{Dj} {Dest
j }

Figure 14.2: The above two systems have identical performance. In the former
the transmitted power is the power in t 7→ X(t) whereas in the second it is the
power in t 7→ X(t)− c(t).

14.4 On the Mean of Transmitted Waveforms

We next explain why the transmitted waveforms in digital communications are
usually designed to be of zero mean.3 We focus on the case where the transmitted
signal suffers only from an additive disturbance. The key observation is that given
any transmitter that transmits the SP

(
X(t), t ∈ R

)
and any receiver, we can

design a new transmitter that transmits the waveform t 7→ X(t) − c(t) and a
new receiver with identical performance. Here c(·) is any deterministic signal.
Indeed, the new receiver can simply add c(·) to the received signal and then pass
on the result to the old receiver. That the old and the new systems have identical
performance follows by noting that if

(
N(t), t ∈ R

)
is the added disturbance, then

the received signal on which the old receiver operates is given by t 7→ X(t) +N(t).
And the received signal in the new system is t 7→ X(t) − c(t) + N(t), so after we
add c(·) to this signal we obtain the signal X(t) +N(t), which is equal the signal
that the old receiver operated on. Thus, the performance of a system transmitting
X(·) can be mimicked on a system transmitting X(·)− c(·) by simply adding c(·)
at the receiver. See Figure 14.2.

The addition at the receiver of c(·) entails no change in the transmitted power.
Therefore, if a system transmits X(·), then we might be able to improve its power
efficiency without hurting its performance by cleverly choosing c(·) so that the
power in X(·) − c(·) be smaller than the power in X(·) and by then transmitting
t 7→ X(t) − c(t) instead of t 7→ X(t). The only additional change we would need
to make is to add c(·) at the receiver.

How should we choose c(·)? To answer this we shall need the following lemma.

3This, however, is not the case with some wireless systems that transmit training sequences
to help the receiver learn the channel and acquire timing information.
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Lemma 14.4.1. If W is a random variable of finite variance, then

E
[
(W − c)2

]
≥ Var[W ] , c ∈ R (14.20)

with equality if, and only if,
c = E[W ] . (14.21)

Proof.

E
[
(W − c)2

]
= E

[(
(W − E[W ]) + (E[W ]− c)

)2]
= E

[
(W − E[W ])2

]
+ 2 E[W − E[W ]]︸ ︷︷ ︸

0

(E[W ]− c) + (E[W ]− c)2

= E
[
(W − E[W ])2

]
+ (E[W ]− c)2

≥ E
[
(W − E[W ])2

]
= Var[W ] ,

with equality if, and only if, c = E[W ].

With the aid of Lemma 14.4.1 we can now choose c(·) to minimize the power in
t 7→ X(t) − c(t) as follows. Keeping the definition of power (14.14) in mind, we
study

1
2T

∫ T

−T

E
[(
X(t)− c(t)

)2] dt

and note that this expression is minimized over all choices of the waveform c(·) by
minimizing the integrand, i.e., by choosing at every epoch t the value of c(t) to be
the one that mininimizes E

[(
X(t)− c(t)

)2]. By Lemma 14.4.1 this corresponds to
choosing c(t) to be E[X(t)]. It is thus optimal to choose c(·) as

c(t) = E[X(t)] , t ∈ R. (14.22)

This choice results in the transmitted waveform being t 7→ X(t)− E[X(t)], i.e., in
the transmitted waveform being of zero mean.

Stated differently, if in a given system the transmitted waveform is not of zero
mean, then a new system can be built that transmits a waveform of lower (or
equal) average power and whose performance on any additive noise channel is
identical.

14.5 Computing the Power in PAM

We proceed to compute the power in the signal

X(t) = A

∞∑
`=−∞

X` g(t− `Ts), t ∈ R (14.23)
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under various assumptions on the bi-infinite random sequence
(
X`, ` ∈ Z

)
. We

assume throughout that Conditions (14.16) & (14.17) are satisfied so the infinite
sum converges at every epoch t ∈ R. The power P is defined as in (14.14).4

14.5.1
(
X`

)
Is Zero-Mean and WSS

Here we compute the power in the signal (14.23) when
(
X`, ` ∈ Z

)
is a centered

WSS SP of autocovariance function KXX :

E[X`] = 0, ` ∈ Z, (14.24a)

E[X`X`+m] = KXX(m) , `,m ∈ Z. (14.24b)

We further assume that the pulse shape satisfies the decay condition (14.17) and
that the process

(
X`, ` ∈ Z

)
satisfies the boundedness condition (14.16).

We begin by calculating the expected energy ofX(·) in a half-open interval [τ, τ+Ts)
of length Ts and in showing that this expected energy does not depend on τ , i.e.,
that the expected energy in all intervals of length Ts are identical. We calculate
the energy in the interval [τ, τ + Ts) as follows:

E

[∫ τ+Ts

τ

X2(t) dt
]

= A2

∫ τ+Ts

τ

E

[( ∞∑
`=−∞

X` g(t− `Ts)
)2
]

dt (14.25)

= A2

∫ τ+Ts

τ

E

[ ∞∑
`=−∞

∞∑
`′=−∞

X`X`′ g(t− `Ts) g(t− `′Ts)
]

dt

= A2

∫ τ+Ts

τ

∞∑
`=−∞

∞∑
`′=−∞

E[X`X`′ ] g(t− `Ts) g(t− `′Ts) dt

= A2

∫ τ+Ts

τ

∞∑
`=−∞

∞∑
m=−∞

E[X`X`+m] g(t− `Ts) g
(
t− (`+m)Ts

)
dt

= A2

∫ τ+Ts

τ

∞∑
m=−∞

KXX(m)
∞∑

`=−∞

g(t− `Ts) g
(
t− (`+m)Ts

)
dt

= A2
∞∑

m=−∞
KXX(m)

∞∑
`=−∞

∫ τ+Ts−`Ts

τ−`Ts

g(t′) g(t′ −mTs) dt′ (14.26)

= A2
∞∑

m=−∞
KXX(m)

∫ ∞

−∞
g(t′) g(t′ −mTs) dt′

= A2
∞∑

m=−∞
KXX(m) Rgg(mTs), τ ∈ R, (14.27)

4A general mathematical definition of the power of a stochastic process is given in Defini-
tion 14.6.1 ahead.
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where the first equality follows by the structure of X(·) (14.15); the second by
writing X2(t) as X(t)X(t) and rearranging terms; the third by the linearity of
the expectation, which allows us to swap the double sum and the expectation
and to take the deterministic term g(t − `Ts)g(t − `′Ts) outside the expectation;
the fourth by defining m , `′ − `; the fifth by (14.24b); the sixth by defining
t′ , t − `Ts; the seventh by noting that the integrals of a function over all the
intervals [τ − `Ts, τ − `Ts + Ts) sum to the integral over the entire real line; and the
final by the definition of the self-similarity function Rgg (Section 11.2).

Note that, indeed, the RHS of (14.27) does not depend on the epoch τ at which
the length-Ts time interval starts. This observation will now help us to compute
the power in X(·). Since the interval [−T,+T) contains b(2T)/Tsc disjoint intervals
of the form [τ, τ + Ts), and since it is contained in the union of d(2T)/Tse such
intervals, it follows that⌊

2T

Ts

⌋
E

[∫ τ+Ts

τ

X2(t) dt
]
≤ E

[∫ T

−T

X2(t) dt
]
≤
⌈

2T

Ts

⌉
E

[∫ τ+Ts

τ

X2(t) dt
]
, (14.28)

where we use bξc to denote the greatest integer smaller than or equal to ξ (e.g.,
b4.2c = 4), and where we use dξe to denote the smallest integer that is greater than
or equal to ξ (e.g., d4.2e = 5) so

ξ − 1 < bξc ≤ dξe < ξ + 1, ξ ∈ R. (14.29)

Note that from (14.29) and the Sandwich Theorem it follows that

lim
T→∞

1
2T

⌊
2T

Ts

⌋
= lim

T→∞

1
2T

⌈
2T

Ts

⌉
=

1
Ts
, Ts > 0. (14.30)

Dividing (14.28) by 2T and using (14.30) we obtain that

lim
T→∞

1
2T

E

[∫ T

−T

X2(t) dt
]

=
1
Ts

E

[∫ τ+Ts

τ

X2(t) dt
]
,

which combines with (14.27) to yield

P =
1
Ts

A2
∞∑

m=−∞
KXX(m) Rgg(mTs). (14.31)

The power P can be alternatively expressed in the frequency domain using (14.31)
and (14.4) as

P =
A2

Ts

∫ ∞

−∞

∞∑
m=−∞

KXX(m) ei2πfmTs |ĝ(f)|2 df. (14.32)

An important special case of (14.31) is when the symbols
(
X`

)
are zero-mean,

uncorrelated, and of equal variance σ2
X . In this case KXX(m) = σ2

X I{m = 0}, and
the only nonzero term in (14.31) is the term corresponding to m = 0 so

P =
1
Ts

A2 ‖g‖22 σ
2
X ,

((
X`

)
centered, variance σ2

X , uncorrelated
)
. (14.33)
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14.5.2 Bi-Infinite Block-Mode

The bi-infinite block-mode with a (K,N) binary-to-reals block encoder

enc : {0, 1}K → RN

is depicted in Figure 14.1 and can be described as follows. A bi-infinite sequence
of data bits

(
Dj , j ∈ Z

)
is fed to an encoder. The encoder parses this sequences

into K-tuples and defines for every integer ν ∈ Z the “ν-th data block” Dν

Dν ,
(
DνK+1, . . . , DνK+K

)
, ν ∈ Z. (14.34)

Each data block Dν is then mapped by enc(·) to a real N-tuple, which we denote
by Xν :

Xν , enc(Dν), ν ∈ Z. (14.35)

The bi-infinite sequence
(
X`, ` ∈ Z

)
produced by the encoder is the concatenation

of these N-tuples so (
XνN+1, . . . , XνN+N

)
= Xν , ν ∈ Z. (14.36)

Stated differently, for every ν ∈ Z and η ∈ {1, . . . ,N}, the symbol XνN+η is the
η-th component of the N-tuple Xν . The transmitted signal X(·) is as in (14.15)
with the pulse shape g satisfying the decay condition (14.17) and with Ts > 0 being
arbitrary. (The boundedness condition (14.16) is always guaranteed in bi-infinite
block encoding.)

We next compute the power P in X(·) under the assumption that the data bits(
Dj , j ∈ Z

)
are independent and identically distributed (IID) random bits, where

we adopt the following definition.

Definition 14.5.1 (IID Random Bits). We say that a collection of random variables
are IID random bits if the random variables are independent and each of them
takes on the values 0 and 1 equiprobably.

The assumption that the bi-infinite data sequence
(
Dj , j ∈ Z

)
consists of IID

random bits is equivalent to the assumption that the K-tuples
(
Dν , ν ∈ Z

)
are

IID with Dν being uniformly distributed over the set of binary K-tuples {0, 1}K.
We shall also assume that the real N-tuple enc(D) is of zero mean whenever the
binary K-tuple is uniformly distributed over {0, 1}K. We will show that, subject to
these assumptions,

P =
1

NTs
E

[∫ ∞

−∞

(
A

N∑
`=1

X` g(t− `Ts)
)2

dt

]
. (14.37)

This expression has an interesting interpretation. On the LHS is the power in
the transmitted signal in bi-infinite block encoding using the (K,N) binary-to-reals
block encoder enc(·). On the RHS is the quantity E/(NTs), where E, as in (14.3), is
the expected energy in the signal that results when only the K-tuple (D1, . . . , DK)
is transmitted from time −∞ to time +∞. Using the definition of the energy
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per-symbol Es (14.7) we can also rewrite (14.37) as in (14.8). Thus, in bi-infinite
block-mode, the transmitted power is the energy per real symbol Es normalized by
the signaling period Ts. Also, by (14.5), we can rewrite (14.37) as

P =
A2

NTs

∫ ∞

−∞

N∑
`=1

N∑
`′=1

E[X`X`′ ] ei2πf(`−`′)Ts
∣∣ĝ(f)

∣∣2 df. (14.38)

To derive (14.37) we first express the transmitted waveform X(·) as

X(t) = A

∞∑
`=−∞

X` g(t− `Ts)

= A

∞∑
ν=−∞

N∑
η=1

XνN+η g
(
t− (νN + η)Ts

)
= A

∞∑
ν=−∞

u
(
Xν , t− νNTs

)
, t ∈ R, (14.39)

where the function u : RN × R→ R is given by

u : (x1, . . . , xN, t) 7→
N∑
η=1

xη g(t− ηTs). (14.40)

We now make three observations. The first is that because the law of Dν does not
depend on ν, neither does the law of Xν (= enc(Dν)):

Xν
L= Xν′ , ν, ν′ ∈ Z. (14.41)

The second is that the assumption that enc(D) is of zero mean whenever D is
uniformly distributed over {0, 1}K implies by (14.40) that

E
[
u
(
Xν , t

)]
= 0,

(
ν ∈ Z, t ∈ R

)
. (14.42)

The third is that the hypothesis that the data bits
(
Dj , j ∈ Z

)
are IID implies

that
(
Dν , ν ∈ Z

)
are IID and hence that

(
Xν , ν ∈ Z

)
are also IID. Consequently,

since the independence of Xν and Xν′ implies the independence of u
(
Xν , t

)
and

u
(
Xν′t

′), it follows from (14.42) that

E
[
u
(
Xν , t

)
u
(
Xν′ , t

′)] = 0,
(
t, t′ ∈ R, ν 6= ν′, ν, ν′ ∈ Z

)
. (14.43)

Using (14.39) and these three observations we can now compute for any epoch τ ∈ R
the expected energy in the time interval [τ, τ + NTs) as∫ τ+NTs

τ

E
[
X2(t)

]
dt

=
∫ τ+NTs

τ

E

[(
A

∞∑
ν=−∞

u
(
Xν , t− νNTs

))2
]

dt
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= A2

∫ τ+NTs

τ

∞∑
ν=−∞

∞∑
ν′=−∞

E
[
u
(
Xν , t− νNTs

)
u
(
Xν′ , t− ν′NTs

)]
dt

= A2

∫ τ+NTs

τ

∞∑
ν=−∞

E
[
u2
(
Xν , t− νNTs

)]
dt

= A2

∫ τ+NTs

τ

∞∑
ν=−∞

E
[
u2
(
X0, t− νNTs

)]
dt

= A2
∞∑

ν=−∞

∫ τ−(ν−1)NTs

τ−νNTs

E
[
u2
(
X0, t

′)] dt′

= A2

∫ ∞

−∞
E
[
u2
(
X0, t

′)] dt′

= E

[∫ ∞

−∞

(
A

N∑
`=1

X` g(t′ − `Ts)
)2

dt′
]
, τ ∈ R, (14.44)

where the first equality follows from(14.39); the second by writing the square as
a product and by using the linearity of expectation; the third from (14.43); the
fourth because the law of Xν does not depend on ν (14.41); the fifth by changing
the integration variable to t′ , t−NTs; the sixth because the sum of the integrals
is equal to the integral over R; and the seventh by (14.40).

Note that, indeed, the RHS of (14.44) does not depend on the starting epoch τ of
the interval. Because there are b2T/(NTs)c disjoint length-NTs half-open intervals
contained in the interval [−T, T) and because d2T/(NTs)e such intervals suffice to
cover the interval [−T, T), it follows that

⌊
2T

NTs

⌋
E

[∫ ∞

−∞

(
A

N∑
`=1

X` g(t− `Ts)
)2

dt

]

≤ E

[∫ T

T

X2(t) dt
]
≤⌈

2T

NTs

⌉
E

[∫ ∞

−∞

(
A

N∑
`=1

X` g(t− `Ts)
)2

dt

]
.

Dividing by 2T and then letting T tend to infinity establishes (14.37).

14.5.3 Time Shifts of Pulse Shape Are Orthonormal

We next consider the power in PAM when the time shifts of the real pulse shape by
integer multiples of Ts are orthonormal. To remind the reader of this assumption,
we change notation and denote the pulse shape by φ(·) and express the orthonor-
mality condition as∫ ∞

−∞
φ(t− `Ts)φ(t− `′Ts) dt = I{` = `′}, `, `′ ∈ Z. (14.45)
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The calculation of the power is a bit tricky because (14.45) only guarantees that the
time shifts of the pulse shape are orthogonal over the interval (−∞,∞); they need
not be orthogonal over the interval [−T,+T ] (even for very large T). Nevertheless,
intuition suggests that if `Ts and `′Ts are both much smaller than T, then the
orthogonality of t 7→ φ(t − `Ts) and t 7→ φ(t − `′Ts) over the interval (−∞,∞)
should imply that they are nearly orthogonal over [−T, T ]. Making this intuition
rigorous is a bit tricky and the calculation of the energy in the interval [−T, T ]
requires a fair number of approximations that must be justified.

To control these approximations we shall assume a decay condition on the pulse
shape that is identical to (14.17). Thus, we shall assume that there exist positive
constants α and β such that

∣∣φ(t)
∣∣ ≤ β

1 + |t/Ts|1+α
, t ∈ R. (14.46)

(The pulse shapes used in practice, like those we encountered in (11.31), typically
decay like 1/|t|2 so this is not a serious restriction.) We shall also continue to assume
the boundedness condition (14.16) but otherwise make no statistical assumptions
on the symbols

(
X`, ` ∈ Z

)
.

The main result of this section is the next theorem.

Theorem 14.5.2. Let the continuous-time SP
(
X(t), t ∈ R

)
be given by

X(t) = A

∞∑
`=−∞

X` φ(t− `Ts), t ∈ R, (14.47)

where A ≥ 0; Ts > 0; the pulse shape φ(·) is a Borel measurable function satisfying
the orthogonality condition (14.45) and the decay condition (14.46); and where the
random sequence

(
X`, ` ∈ Z

)
satisfies the boundedness condition (14.16). Then

lim
T→∞

1
2T

E

[∫ T

−T

X2(t) dt
]

=
A2

Ts
lim

L→∞

1
2L + 1

L∑
`=−L

E
[
X2
`

]
, (14.48)

whenever the limit on the RHS exists.

Proof. The proof is somewhat technical and may be skipped. We begin by arguing
that it suffices to prove the theorem for the case where Ts = 1. To see this, assume
that Ts > 0 is not necessarily equal to 1. Define the function

φ̃(t) =
√

Ts φ(Tst), t ∈ R, (14.49)

and note that, by changing the integration variable to τ , tTs,∫ ∞

−∞
φ̃(t− `) φ̃(t− `′) dt =

∫ ∞

−∞
φ(τ − `Ts)φ(τ − `′Ts) dτ

= I{` = `′}, `, `′ ∈ Z, (14.50a)
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where the second equality follows from the theorem’s assumption about the or-
thogonality of the time shifts of φ by integer multiples of Ts. Also, by (14.49) and
(14.46) we obtain

|φ̃(t)| =
√

Ts |φ(Tst)|

≤
√

Ts
β

1 + |t|1+α

=
β′

1 + |t|1+α
, t ∈ R, (14.50b)

for some β′ > 0 and α > 0.

As to the power, by changing the integration variable to σ , t/Ts we obtain

1
2T

∫ T

−T

(∑
`∈Z

X` φ(t−`Ts)
)2

dt =
1
Ts

1
2(T/Ts)

∫ T/Ts

−T/Ts

(∑
`∈Z

X` φ̃(σ−`)
)2

dσ. (14.50c)

It now follows from (14.50a) & (14.50b) that if we prove the theorem for the pulse
shape φ̃ with Ts = 1, it will then follow that the power in

∑
X` φ̃(σ − `) is equal

to limL→∞(2L + 1)−1
∑

E
[
X2
`

]
and that consequently, by (14.50c), the power in∑

X` φ(t− `Ts) is equal T−1
s limL→∞(2L + 1)−1

∑
E
[
X2
`

]
. In the remainder of the

proof we shall thus assume that Ts = 1 and express the decay condition (14.46) as

|φ(t)| ≤ β

1 + |t|1+α
, t ∈ R (14.51)

for some β, α > 0.

To further simplify notation we shall assume that T is a positive integer. Indeed,
if the limit is proved for positive integers, then the general result follows from the
Sandwich Theorem by noting that for T > 0 (not necessarily an integer)

bTc
T

1
bTc

∫ bTc

−bTc

(∑
`∈Z

X` φ(t− `)
)2

dt

≤ 1
T

∫ T

−T

(∑
`∈Z

X` φ(t− `)
)2

dt ≤

dTe
T

1
dTe

∫ dTe

−dTe

(∑
`∈Z

X` φ(t− `)
)2

dt (14.52)

and by noting that both bTc/T and dTe/T tend to 1, as T→∞.

We thus proceed to prove (14.48) for the case where Ts = 1 and where the limit
T→∞ is only over positive integers. We also assume A = 1 because both sides of
(14.48) scale like A2. We begin by introducing some notation. For every integer `
we denote the mapping t 7→ φ(t − `) by φ`, and for every positive integer T we
denote the windowed mapping t 7→ φ(t− `) I{|t| ≤ T} by φ`,w. Finally, we fix some
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(large) integer ν > 0 and define for every T > ν, the random processes

X0 =
∑

|`|≤T−ν

X` φ`,w, (14.53)

X1 =
∑

T−ν<|`|≤T+ν

X` φ`,w, (14.54)

X2 =
∑

T+ν<|`|<∞

X` φ`,w, (14.55)

and the unwindowed version of X0

Xu
0 =

∑
|`|≤T−ν

X` φ` (14.56)

so

X(t) I{|t| ≤ T} = X0(t) +X1(t) +X2(t)

= Xu
0 +

(
X0(t)−Xu

0 (t)
)

+X1(t) +X2(t), t ∈ R. (14.57)

Using arguments very similar to the ones leading to (4.14) (with integration re-
placed by integration and expectation) one can show that (14.57) leads to the
bound(√

E
[
‖Xu

0‖
2
2

]
−
√

E
[∥∥(X0 −Xu

0

)
+ X1 + X2

∥∥2

2

])2

≤ E

[∫ T

−T

X2(t) dt
]
≤(√

E
[
‖Xu

0‖
2
2

]
+
√

E
[∥∥(X0 −Xu

0

)
+ X1 + X2

∥∥2

2

])2

. (14.58)

Note that, by the orthonormality assumption on the time shifts of φ,

‖Xu
0‖

2
2 =

∑
|`|≤T−ν

X2
`

so
lim

T→∞

1
2T

E
[
‖Xu

0‖
2
2

]
= lim

L→∞

1
2L + 1

∑
|`|≤L

E
[
X2
`

]
. (14.59)

It follows from (14.58) and (14.59) that to conclude the proof of the theorem it
suffices to show that for every fixed ν ≥ 2 we have for T exceeding ν

lim
T→∞

1
2T

E
[
‖X1‖22

]
= 0, (14.60)

lim
T→∞

1
2T

E
[
‖X0 −Xu

0‖
2
2

]
= 0, (14.61)

and that
lim
ν→∞

lim
T→∞

1
2T

E
[
‖X2‖22

]
= 0. (14.62)
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We begin with (14.60), which follows directly from the Triangle Inequality,

‖X1‖2 ≤
∑

T−ν<|`|≤T+ν

|X`| ‖φ`,w‖2

≤ 4νγ,

where the second inequality follows from the boundedness condition (14.16), from
the fact that φ`,w is a windowed version of the unit-energy signal φ` so ‖φ`,w‖2 ≤
‖φ‖2 = 1, and because there are 4ν terms in the sum.

We next prove (14.62). To that end we upper-bound |X2(t)| for |t| ≤ T as follows:

|X2(t)| =
∣∣∣∣ ∑
T+ν<|`|<∞

X` φ(t− `)
∣∣∣∣, |t| ≤ T

≤ γ
∑

T+ν<|`|<∞

|φ(t− `)|

≤ γ
∑

T+ν<|`|<∞

β

|t− `|1+α

≤ γ
∑

T+ν<|`|<∞

β∣∣|`| − |t|∣∣1+α
≤ γ

∑
T+ν<|`|<∞

β

(|`| − T)1+α
, |t| ≤ T

= 2γβ
∞∑

`=T+ν+1

1
(`− T)1+α

= 2γβ
∞∑

˜̀=ν+1

1
˜̀1+α

≤ 2γβ
∫ ∞

ν

ξ−1−α dξ

=
2γβ
α
ν−α, (14.63)

where the equality in the first line follows from the definition of X2 (14.55) by
noting that for |t| ≤ T we have φ`(t) = φ`,w(t)); the inequality in the second line
follows from the boundedness condition (14.16) and from the Triangle Inequality for
Complex Numbers (2.12); the inequality in the third line from the decay condition
(14.51); the inequality in the fourth line because |ξ − ζ| ≥

∣∣|ξ| − |ζ|∣∣ whenever
ξ, ζ ∈ R; the inequality in the fifth line because we are only considering |t| ≤ T and
because over the range of this summation |`| > T + ν; the equality in the sixth line
from the symmetry of the summand; the equality in the seventh line by defining
˜̀ , ` − T; the inequality in the eighth line from the monotonicity of the function
ξ 7→ ξ−1−α, which implies that

1
˜̀1+α ≤

∫ ˜̀

˜̀−1

1
ξ1+α

dξ;
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and where the final equality on the ninth line follows by computing the integral
and by noting that for t that does not satisfy |t| ≤ T the LHS |X2(t)| is zero, so
the inequality is trivial.

Using (14.63) and noting that X2(t) is zero for |t| > T, we conclude that

‖X2‖22 ≤ 2T
(2γβ
α

)2

ν−2α, (14.64)

from which (14.62) follows.

We next turn to proving (14.61). We begin by using the Triangle Inequality and
the boundedness condition (14.16) to obtain

‖X0 −Xu
0‖

2
2 =

∥∥∥∥ ∑
|`|≤T−ν

X` φ`,w −
∑

|`|≤T−ν

X` φ`

∥∥∥∥2

2

=
∥∥∥∥ ∑
|`|≤T−ν

X`

(
φ`,w − φ`

)∥∥∥∥2

2

≤ γ2

( ∑
|`|≤T−ν

‖φ`,w − φ`‖2

)2

. (14.65)

We next proceed to upper-bound the RHS of (14.65) by first defining the function

ρ(τ) =

√∫
|t|>τ

φ2(t) dt (14.66)

and by then using this function to upper-bound ‖φ` − φ`,w‖2 as

‖φ` − φ`,w‖2 ≤ ρ(T− |`|), |`| ≤ T, (14.67)

because

‖φ` − φ`,w‖22 =
∫ −T

−∞
φ2(t− `) dt+

∫ ∞

T

φ2(t− `) dt

=
∫ −T−`

−∞
φ2(s) ds+

∫ ∞

T−`
φ2(s) ds

≤
∫ −T+|`|

−∞
φ2(s) ds+

∫ ∞

T−|`|
φ2(s) ds

=
∫
|s|≥T−|`|

φ2(s) ds, |`| ≤ T

= ρ2(T− |`|).

It follows from (14.65) and (14.67) that

‖X0 −Xu
0‖

2
2 ≤ γ

2

( ∑
|`|≤T−ν

‖φ`,w − φ`‖2

)2
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≤ γ2

( ∑
|`|≤T−ν

ρ(T− |`|)
)2

≤ γ2

(
2

∑
0≤`≤T−ν

ρ(T− `)
)2

= 4γ2

( T∑
η=ν

ρ(η)
)2

. (14.68)

We next note that the decay condition (14.51) implies that

ρ(τ) ≤
( 2β2

1 + 2α

)1/2

τ−
1
2−α, τ > 0, (14.69)

because for every τ > 0,

ρ2(τ) =
∫
|t|>τ

φ2(t) dt

≤
∫
|t|>τ

β2

|t|2+2α
dt

= 2β2

∫ ∞

τ

t−2−2α dt

=
2β2

1 + 2α
τ−1−2α.

It now follows from (14.69) that

T∑
η=ν

ρ(η) ≤
( 2β2

1 + 2α

)1/2 T∑
η=ν

η−
1
2−α

≤
( 2β2

1 + 2α

)1/2
∫ T

ν−1

ξ−
1
2−α dξ

and hence, by evaluating the integral explicitly, that

lim
T→∞

1

T1/2

T∑
η=ν

ρ(η) = 0. (14.70)

From (14.68) and (14.70) we thus obtain (14.61).

14.6 A More Formal Account

In this section we present a more formal definition of power and justify some of
the mathematical steps that we took in deriving the power in PAM signals. This
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section is quite mathematical and is recommended for readers who have had some
exposure to Measure Theory.

Let R denote the σ-algebra generated by the open sets in R. A continuous-time
stochastic process

(
X(t)

)
defined over the probability space (Ω,F , P ) is said to be

a measurable stochastic process if the mapping (ω, t) 7→ X(ω, t) from Ω× R
to R is measurable when its range R is endowed with the σ-algebra R and when its
domain Ω×R is endowed with the product σ-algebra F ×R. Thus,

(
X(t), t ∈ R

)
is measurable if the mapping (ω, t) 7→ X(ω, t) is F×R/R measurable.5

From Fubini’s Theorem it follows that if
(
X(t), t ∈ R

)
is measurable and if T > 0

is deterministic, then:

(i) For every ω ∈ Ω, the mapping t 7→ X2(ω, t) is Borel measurable;

(ii) the mapping

ω 7→
∫ T

−T

X2(ω, t) dt

is a random variable (i.e., F measurable) possibly taking on the value +∞;

(iii) and

E

[∫ T

−T

X2(t) dt
]

=
∫ T

−T

E
[
X2(t)

]
dt, T ∈ R. (14.71)

Definition 14.6.1 (Power of a Stochastic Process). We say that a measurable
stochastic process

(
X(t), t ∈ R

)
is of power P if the limit

lim
T→∞

1
2T

E

[∫ T

−T

X2(t) dt
]

(14.72)

exists and is equal to P.

Proposition 14.6.2. If the pulse shape g is a Borel measurable function satisfying
the decay condition (14.17) for some positive α, β, Ts, and if the discrete-time SP(
X`, ` ∈ Z

)
satisfies the boundedness condition (14.16) for some γ ≥ 0, then the

stochastic process

X : (ω, t) 7→ A

∞∑
`=−∞

X`(ω) g(t− `Ts) (14.73)

is a measurable stochastic process.

Proof. The mapping (ω, t) 7→ X`(ω) is F×R/R measurable because X` is a ran-
dom variable, so the mapping ω 7→ X`(ω) is F/R measurable. The mapping
(ω, t) 7→ Ag(t − `Ts) is F×R/R measurable because g is Borel measurable, so
t 7→ g(t − `Ts) is R/R measurable. Since the product of measurable functions is
measurable (Rudin, 1974, Chapter 1, Section 1.9 (c)), it follows that the mapping

5See (Billingsley, 1995, Section 37, p. 503) or (Loève, 1963, Section 35) for the definition of a
measurable stochastic process and see (Billingsley, 1995, Section 18) or (Loève, 1963, Section 8.2)
or (Halmos, 1950, Chapter VII) for the definition of the product σ-algebra.
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(ω, t) 7→ AX`(ω) g(t− `Ts) is F×R/R measurable. And since the sum of measur-
able functions is measurable (Rudin, 1974, Chapter 1, Section 1.9 (c)), it follows
that for every positive integer L ∈ Z, the mapping

(ω, t) 7→ A

L∑
`=−L

X`(ω) g(t− `Ts)

is F×R/Rmeasurable. The proposition now follows by recalling that the pointwise
limit of every pointwise convergent sequence of measurable functions is measurable
(Rudin, 1974, Theorem 1.14).

Having established that the PAM signal (14.73) is a measurable stochastic process
we would next like to justify the calculations leading to (14.31). To justify the
swapping of integration and summations in (14.26) we shall need the following
lemma, which also explains why the sum in (14.27) converges.

Lemma 14.6.3. If g(·) is a Borel measurable function satisfying the decay condition

|g(t)| ≤ β

1 + |t/Ts|1+α
, t ∈ R (14.74)

for some positive α, Ts, and β, then

∞∑
m=−∞

∫ ∞

−∞

∣∣g(t) g(t−mTs)
∣∣ dt <∞. (14.75)

Proof. The decay condition (14.74) guarantees that g is of finite energy. From the
Cauchy-Schwarz Inequality it thus follows that the terms in (14.75) are all finite.
Also, by symmetry, the term in (14.75) corresponding to m is the same as the one
corresponding to −m. Consequently, to establish (14.75), it suffices to prove

∞∑
m=2

∫ ∞

−∞

∣∣g(t) g(t−mTs)
∣∣ dt <∞. (14.76)

Define the function

gu(t) ,

{
1 if |t| ≤ 1,
|t|−1−α otherwise,

t ∈ R.

By (14.74) it follows that |g(t)| ≤ β gu (t/Ts) for all t ∈ R. Consequently,∫ ∞

−∞

∣∣g(t) g(t−mTs)
∣∣ dt ≤ β2

∫ ∞

−∞
gu(t/Ts) gu(t/Ts −m) dt

= β2Ts

∫ ∞

−∞
gu(τ) gu(τ −m) dτ,

and to establish (14.76) it thus suffices to prove

∞∑
m=2

∫ ∞

−∞
gu(τ) gu(τ −m) dτ <∞. (14.77)
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Since the integrand in (14.77) is symmetric around τ = m/2, it follows that∫ ∞

−∞
gu(τ) gu(τ −m) dτ = 2

∫ ∞

m/2

gu(τ) gu(τ −m) dτ, (14.78)

and it thus suffices to establish
∞∑
m=2

∫ ∞

m/2

gu(τ) gu(τ −m) dτ <∞. (14.79)

We next upper-bound the integral in (14.79) for every m ≥ 2 by first expressing it
as ∫ ∞

m/2

gu(τ) gu(τ −m) dτ = I1 + I2 + I3,

where

I1 ,
∫ m−1

m/2

1
τ1+α

1
(m− τ)1+α

dτ,

I2 ,
∫ m+1

m−1

1
τ1+α

dτ,

I3 ,
∫ ∞

m+1

1
τ1+α

1
(τ −m)1+α

dτ.

We next upper-bound each of these terms for m ≥ 2. Starting with I1 we obtain
upon defining ξ , m− τ

I1 =
∫ m−1

m/2

1
τ1+α

1
(m− τ)1+α

dτ

=
∫ m/2

1

1
(m− ξ)1+α

1
ξ1+α

dξ

≤
∫ m/2

1

1
(m/2)1+α

1
ξ1+α

dξ

=
1
α

21+α 1
m1+α

(
1− 2α

mα

)
, m ≥ 2,

which is summable over m. As to I2 we have

I2 =
∫ m+1

m−1

1
τ1+α

dτ

≤ 2
(m− 1)1+α

, m ≥ 2,

which is summable over m. Finally we upper-bound I3 by defining ξ , τ −m

I3 =
∫ ∞

m+1

1
τ1+α

1
(τ −m)1+α

dτ

=
∫ ∞

1

1
(ξ +m)1+α

1
ξ1+α

dξ
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=
∫ m

1

1
(ξ +m)1+α

1
ξ1+α

dξ +
∫ ∞

m

1
(ξ +m)1+α

1
ξ1+α

dξ

≤ 1
m1+α

∫ m

1

1
ξ1+α

dξ +
∫ ∞

m

1
ξ1+α

1
ξ1+α

dξ

=
1
α

1
m1+α

(
1− 1

mα

)
+

1
1 + 2α

1
m1+2α

, m ≥ 2,

which is summable over m.

We can now state (14.31) as a theorem.

Theorem 14.6.4. Let the pulse shape g : R→ R be a Borel measurable function sat-
isfying the decay condition (14.17) for some positive α, β, and Ts. Let

(
X`, ` ∈ Z

)
be a centered WSS SP of autocovariance function KXX and satisfying the bound-
edness condition (14.16) for some γ ≥ 0. Then the stochastic process (14.73) is
measurable and is of the power P given in (14.31).

Proof. The measurability of
(
X(t), t ∈ R

)
follows from Proposition 14.6.2. The

power can be derived as in the derivation of (14.31) from (14.27) with the derivation
of (14.27) now being justifiable by noting that (14.25) follows from (14.71) and by
noting that (14.26) follows from Lemma 14.6.3 and Fubini’s Theorem.

Similarly, we can state (14.37) as a theorem.

Theorem 14.6.5 (Power in Bi-Infinite Block-Mode PAM). Let
(
Dj , j ∈ Z

)
be

IID random bits. Let the (K,N) binary-to-reals encoder enc : {0, 1}K → RN be
such that enc(D1, . . . , DK) is of zero mean whenever the K-tuple (D1, . . . , DK) is
uniformly distributed over {0, 1}K. Let

(
X`, ` ∈ Z

)
be generated from

(
Dj , j ∈ Z

)
in bi-infinite block encoding mode using enc(·). Assume that the pulse shape g is a
Borel measurable function satisfying the decay condition (14.17) for some positive
α, β, and Ts. Then the stochastic process (14.73) is measurable and is of the
power P as given in (14.37).

Proof. Measurability follows from Proposition 14.6.2. The derivation of (14.37) is
justified using Fubini’s Theorem.

14.7 Exercises

Exercise 14.1 (Superimposing Independent Transmissions). Let the two PAM signals(
X(1)(t)

)
and

(
X(2)(t)

)
be given at every epoch t ∈ R by

X(1)(t) = A(1)
∞∑

`=−∞

X
(1)
` g(1)(t− `Ts), X(2)(t) = A(2)

∞∑
`=−∞

X
(2)
` g(2)(t− `Ts),

where the zero-mean real symbols
(
X

(1)
`

)
are generated from the data bits

(
D

(1)
j

)
and

the zero-mean real symbols
(
X

(2)
`

)
from

(
D

(2)
j

)
. Assume that the bit streams

(
D

(1)
j

)
and(

D
(2)
j

)
are independent and that

(
X(1)(t)

)
and

(
X(1)(t)

)
are of powers P(1) and P(2).

Find the power in the sum of
(
X(1)(t)

)
and

(
X(1)(t)

)
.
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Exercise 14.2 (The Minimum Distance of a Constellation and Power). Consider the
PAM signal (14.47) where the time shifts of the pulse shape φ by integer multiples of Ts

are orthonormal, and where the symbols
(
X`
)

are IID and uniformly distributed over the

set
{
± d

2
,± 3d

2
, . . . ,±(2ν − 1) d

2

}
. Relate the power in X(·) to the minimum distance d and

the constant A.

Exercise 14.3 (PAM with Nonorthogonal Pulses). Let the IID random bits
(
Dj , j ∈ Z

)
be modulated using PAM with the pulse shape g : t 7→ I{|t| ≤ Ts} and the repetition
block encoding map 0 7→ (+1,+1) and 1 7→ (−1,−1). Compute the average transmitted
power.

Exercise 14.4 (Non-IID Data Bits). Expression (14.37) for the power in bi-infinite block
mode was derived under the assumption that the data bits are IID. Show that it need
not otherwise hold.

Exercise 14.5 (The Power in Nonorthogonal PAM). Consider the PAM signal (14.23)
with the pulse shape g : t 7→ I{|t| ≤ Ts}.

(i) Compute the power in X(·) when
(
X`
)

are IID of zero-mean and unit-variance.

(ii) Repeat when
(
X`
)

is a zero-mean WSS SP of autocovariance function

KXX(m) =


1 m = 0
1
2

|m| = 1

0 otherwise

, m ∈ Z.

Note that in both parts E[X`] = 0 and E
[
X2
`

]
= 1.

Exercise 14.6 (Pre-Encoding). Rather than applying the mapping enc : {0, 1}K → RN

to the IID random bits D1, . . . , DK directly, we first map the data bits using a one-to-one
mapping φ : {0, 1}K → {0, 1}K to D′1, . . . , D

′
K, and we then map D′1, . . . , D

′
K using enc

to X1, . . . , XN. Does this change the transmitted energy?

Exercise 14.7 (Binary Linear Encoders Producing Pairwise-Independent Symbols). Bi-
nary linear encoders with the antipodal mapping can be described as follows. Using a de-
terministic binary K×N matrix G, the encoder first maps the row-vector d = (d1, . . . , dK)
to the row-vector dG, where dG is computed using matrix multiplication over the binary
field. (Recall that in the binary field multiplication is defined as 0 · 0 = 0 · 1 = 1 · 0 = 0,
and 1 · 1 = 1; and addition is modulo 2, so 0 ⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1).
Thus, the `-th component c` of dG is given by

c` = d1 · g(1,`) ⊕ d2 · g(2,`) ⊕ · · · ⊕ dK · g(K,`).

The real symbol x` is then computed according to the rule

x` =

{
+1 if c` = 0,

−1 if c` = 1,
` = 1, . . . ,N.

Let X1, X2, . . . , XN be the symbols produced by the encoder when it is fed IID random
bits D1, D2, . . . , DK. Show that:

(i) Unless all the entries in the `-th column of G are zero, E[X`] = 0.
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(ii) X` is independent of X`′ if, and only if, the `-th column and the `′-th column of G
are not identical.

You may find it useful to first prove the following.

(i) If a RV E takes value in the set {0, 1}, and if F takes on the values 0 and 1 equiprob-
ably and independently of E, then E⊕F is uniform on {0, 1} and independent of E.

(ii) If E1 and E2 take value in {0, 1}, and if F takes on the values 0 and 1 equiprobably
and independently of (E1, E2), then E1 ⊕ F is independent of E2.

Exercise 14.8 (Zero-Mean Signals for Linearly Dispersive Channels). Suppose that the
transmitted signal X suffers not only from an additive random disturbance but also
from a deterministic linear distortion. Thus, the received signal Y can be expressed as
Y = X ? h + N, where h is a known (deterministic) impulse response, and where N is
an unknown (random) additive disturbance. Show heuristically that transmitting signals
of nonzero mean is power inefficient. How would you mimic the performance of a system
transmitting X(·) using a system transmitting X(·)− c(·)?

Exercise 14.9 (The Power in Orthogonal Code-Division Multi-Accessing). Suppose that

the data bits
(
D

(1)
j

)
are mapped to the real symbols

(
X

(1)
`

)
and that the data bits

(
D

(2)
j

)
are mapped to

(
X

(2)
`

)
. Assume that(
A(1)

)2
Ts

lim
L→∞

1

2L + 1

L∑
`=−L

E
[(
X

(1)
`

)2]
= P(1),

and similarly for P(2). Further assume that the time shifts of φ by integer multiples of Ts

are orthonormal and that φ satisfies the decay condition (14.46). Finally assume that(
X

(1)
`

)
and

(
X

(2)
`

)
are bounded in the sense of (14.16). Compute the power in the signal

∞∑
`=−∞

((
A(1)X

(1)
` + A(2)X

(2)
`

)
φ
(
t− 2`Ts

)
+
(
A(1)X

(1)
` −A(2)X

(2)
`

)
φ
(
t− (2`+ 1)Ts

))
.

Exercise 14.10 (More on Orthogonal Code-Division Multi-Accessing). Extend the result
of Exercise 14.9 to the case with η data streams, where the transmitted signal is given by

∞∑
`=−∞

((
a(1,1)A(1)X

(1)
` + · · ·+ a(η,1)A(η)X

(η)
`

)
φ
(
t− η`Ts

)
+ · · ·+

(
a(1,η)A(1)X

(1)
` + · · ·+ a(η,η)A(η)X

(η)
`

)
φ
(
t− (η`+ η − 1)Ts

))
and where the real numbers a(ι,ν) for ι, ν ∈ {1, . . . , η} satisfy the orthogonality condition

η∑
ν=1

a(ι,ν)a(ι′,ν) =

{
η if ι = ι′,

0 if ι 6= ι′,
ι, ι′ ∈ {1, . . . , η}.

The sequence a(ι,1), . . . , a(ι,η) is sometimes called the signature of the ι-th stream.

Exercise 14.11 (The Samples of the Self-Similarity Function). Let g : R → R be of finite
energy, and let Rgg be its self-similarity function.
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(i) Show that there exists an integrable nonnegative function G : [−1/2, 1/2) → [0,∞)
such that

Rgg(mTs) =

∫ 1/2

−1/2

G(θ) e−i2πmθ dθ, m ∈ Z,

and such that G(−θ) = G(θ) for all |θ| < 1/2. Express G(·) in terms of the FT of g.

(ii) Show that if the samples of the self-similarity function are absolutely summable,
i.e., if ∑

m∈Z

∣∣Rgg(mTs)
∣∣ <∞,

then the function

θ 7→
∞∑

m=−∞

Rgg(mTs) e
i2πmθ, θ ∈ [−1/2, 1/2),

is such a function, and it is continuous.

(iii) Show that if
(
X`
)

is of PSD SXX , then the RHS of (14.31) can be expressed as

1

Ts
A2

∫ 1/2

−1/2

G(θ)SXX(θ) dθ.

Exercise 14.12 (A Bound on the Power in PAM). Let G(·) be as in Exercise 14.11.

(i) Show that if
(
X`
)

is of zero mean, of unit variance, and has a PSD, then the RHS
of (14.31) is upper-bounded by

1

Ts
A2 sup

−1/2≤θ<1/2

G(θ). (14.80)

(ii) Suppose now that G(·) is continuous. Show that for every ε > 0, there exists a zero-
mean unit-variance SP

(
X`
)

with a PSD for which the RHS of (14.31) is within ε
of (14.80).



Chapter 15

Operational Power Spectral Density

15.1 Introduction

The Power Spectral Density of a stochastic process tells us more about the SP than
just its power. It tells us something about how this power is distributed among
the different frequencies that the SP occupies. The purpose of this chapter is to
clarify this statement and to derive the PSD of PAM signals. Most of this chapter
is written informally with an emphasis on ideas and intuition as opposed to math-
ematical rigor. The mathematically-inclined readers will find precise statements
of the key results of this chapter in Section 15.5. We emphasize that this chapter
only deals with real continuous-time stochastic processes.

The classical definition of the PSD of continuous-time stochastic processes (Defini-
tion 25.7.2 ahead) is only applicable to wide-sense stationary stochastic processes,
and PAM signals are not WSS.1 Consequently, we shall have to introduce a new
concept, which we call the operational power spectral density, or the op-
erational PSD for short.2 This new concept is applicable to a large family of
stochastic processes that includes most WSS processes and most PAM signals.
For WSS stochastic processes, the operational PSD and the classical PSD coin-
cide (Section 25.14). In addition to being more general, the operational PSD is
more intuitive in that it clarifies the origin of the words “power spectral density.”
Moreover, it gives an operational meaning to the concept.

15.2 Motivation

To motivate the new definition we shall first briefly discuss other “densities” such
as charge density, mass density, and probability density.

In electromagnetism one encounters the concept of charge density, which is often
denoted by %(·). It measures the amount of charge per unit volume. Since the

1If the discrete-time symbol sequence is stationary then the PAM signal is cyclostationary.
But this term will not be used in this book.

2These terms are not standard. Most of the literature does not seem to distinguish between
the PSD in the sense of Definition 25.7.2 and what we call the operational PSD.

245
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function quantity of interest per unit of
charge (spatial) density charge space
mass (spatial) density mass space

mass line density mass length
probability (per unit of X) density probability unit of X

power spectral density power spectrum (Hz)

Table 15.1: Various densities and their units

charge need not be uniformly distributed, %(·) is typically not constant so the charge
density is a function of location. Thus, we usually write %(x, y, z) for the charge
density at the location (x, y, z). This can be defined differentially or integrally.
The differential definition is

%(x, y, z)

= lim
∆↓0

Charge in Box
{
(x′, y′, z′) : |x− x′| ≤ ∆

2 , |y − y
′| ≤ ∆

2 , |z − z
′| ≤ ∆

2

}
Volume of Box

{
(x′, y′, z′) : |x− x′| ≤ ∆

2 , |y − y′| ≤
∆
2 , |z − z′| ≤

∆
2

}
= lim

∆↓0

Charge in box
{
(x′, y′, z′) : |x− x′| ≤ ∆

2 , |y − y
′| ≤ ∆

2 , |z − z
′| ≤ ∆

2

}
∆3

,

and the integral definition is that a function %(·) is the charge density if for every
region D ⊂ R3

Charge in D =
∫

(x,y,z)∈D
%(x, y, z) dxdy dz, D ⊂ R3.

Ignoring some mathematical subtleties, the two definitions are equivalent. Perhaps
a more appropriate name for charge density is “Charge Spatial Density,” which
makes it clear that the quantity of interest is charge and that we are interested in
the way it is distributed in space. The units of %(x, y, z) are those of charge per
unit volume.

Mass density—or as we would prefer to call it, “Mass Spatial Density”—is analo-
gously defined. Either differentially, as

%(x, y, z)

= lim
∆↓0

Mass in Box
{
(x′, y′, z′) : |x− x′| ≤ ∆

2 , |y − y
′| ≤ ∆

2 , |z − z
′| ≤ ∆

2

}
Volume of Box

{
(x′, y′, z′) : |x− x′| ≤ ∆

2 , |y − y′| ≤
∆
2 , |z − z′| ≤

∆
2

}
= lim

∆↓0

Mass in box
{
(x′, y′, z′) : |x− x′| ≤ ∆

2 , |y − y
′| ≤ ∆

2 , |z − z
′| ≤ ∆

2

}
∆3

,

or integrally as the function %(x, y, z) such that for every subset D ⊂ R3

Mass in D =
∫

(x,y,z)∈D
%(x, y, z) dxdy dz, D ⊂ R3.

The units are those of mass per unit volume. Since mass is nonnegative, the
differential definition of mass density makes it clear that mass density must also
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be nonnegative. This is slightly less apparent from the integral definition, but
(excluding subsets of R3 of measure zero) is true nonetheless. By convention, if
one defines mass density integrally, then one typically insists that the density be
nonnegative.

Similarly, in discussing mass line density one envisions a one-dimensional object,
and its density with respect to unit length is defined differentially as

%(x) = lim
∆↓0

Mass in Interval
{
x′ : |x− x′| ≤ ∆

2

}
∆

,

or integrally as the nonnegative function %(·) such that for every subset D ⊂ R of
the real line

Mass in D =
∫
x∈D

%(x) dx, D ⊂ R.

The units are units of mass per unit length.

In probability theory one encounters the probability density function of a random
variable X. Here the quantity of interest is probability, and we are interested in
how it is distributed on the real line. The units depend on the units of X. Thus, if
X measures the time in days until at least one piece in your new china set breaks,
then the units of the probability density function fX(·) ofX are those of probability
(unit-less) per day. The probability density function can be defined differentially
as

fX(x) = lim
∆↓0

Pr
[
X ∈

(
x− ∆

2 , x+ ∆
2

)]
∆

or integrally by requiring that for every subset E ⊂ R

Pr[X ∈ E ] =
∫
x∈E

fX(x) dx, E ⊂ R. (15.1)

Again, since probabilities are nonnegative, the differential definition makes it clear
that the probability density function is nonnegative. In the integral definition we
typically add the nonnegativity as a condition. That is, we say that fX(·) is a
density function for the random variable X if fX(·) is nonnegative and if (15.1)
holds. (There is a technical uniqueness issue that we are sweeping under the rug
here: if fX(·) is a probability density function for X and if ξ(·) is a nonnegative
function that differs from fX(·) only on a set of Lebesgue measure zero, then ξ(·)
is also a probability density function for X.)

With these examples in mind, it is natural to interpret the power spectral density
of a stochastic process

(
X(t), t ∈ R

)
as the distribution of the power of X(·)

among the different frequencies. See Table 15.1 on Page 246. Heuristically, we
would define the power spectral density SXX at the frequency f differentially as

SXX(f) = lim
∆↓0

Power in the frequencies
[
f − ∆

2 , f + ∆
2

]
∆

or integrally by requiring that for any subset D of the spectrum

Power of X in D =
∫
f∈D

SXX(f) df, D ⊂ R. (15.2)
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To make this meaningful we next explain what we mean by “the power of X in
the frequencies D.” To that end it is best to envision a filter of impulse response h
whose frequency response ĥ is given by

ĥ(f) =

{
1 if f ∈ D,
0 otherwise,

(15.3)

and to think of the power of X(·) in the frequencies D as the average power at the
output of that filter when it is fed X(·), i.e., the average power of the stochastic
process X ? h.3

We are now almost ready to give a heuristic definition of the power spectral density.
But there are three more points we would like to discuss first. The first is that
(15.2) can also be rewritten as

Power of X in D =
∫

all frequencies

I{f ∈ D}SXX(f) df, D ⊂ R. (15.4)

It turns out that if (15.2) holds for all sets D ⊂ R of frequencies, then it also holds
for all “nice” filters (of a frequency response that is not necessarily {0, 1} valued):

Power of X ? h =
∫

all frequencies

|ĥ(f)|2 SXX(f) df, h “nice.” (15.5)

That (15.4) typically implies (15.5) can be heuristically argued as follows. By
(15.4) the set of frequency responses ĥ for which (15.5) holds includes all frequency
responses of the form ĥ(f) = I{f ∈ D}. But if (15.5) holds for some frequency
response ĥ, then it must also hold for αĥ, where α is any complex number, because
scaling the frequency response by α merely multiplies the output power by |α|2.
Also, if (15.5) holds for two responses ĥ1 and ĥ2 for which

ĥ1(f) ĥ2(f) = 0, f ∈ R, (15.6)

then it must also hold for h1 + h2, because Parseval’s Theorem and (15.6) imply
that X ? h1 and X ? h2 must be orthogonal. Thus, (15.6) implies that the power
in X ? (h1 + h2) is the sum of the power in X ? h1 and the power in X ? h2. It
thus intuitively follows that if (15.4) holds for all subsets D of the spectrum, then
it holds for all step functions ĥ(f) =

∑
ν αν I{f ∈ Dν}, where {Dν} are disjoint.

And since any “nice” frequency response ĥ can be arbitrarily well approximated
by such step functions, we expect that (15.5) would hold for all “nice” responses.

Having heuristically established that (15.2) implies (15.5), we prefer to define the
PSD as a function SXX for which (15.5) holds, where “nice” will be taken to mean
stable.

The second point we would like to make is regarding uniqueness. For real stochastic
processes it is reasonable to require that (15.5) hold only for filters of real impulse
response. Thus we would require

Power of X ? h =
∫

all frequencies

|ĥ(f)|2 SXX(f) df, h real and “nice.” (15.7a)

3We are ignoring the fact that the RHS of (15.3) is typically not the frequency response of a
stable filter. A stable filter has a continuous frequency response (Theorem 6.2.11 (i)).
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But since for filters of real impulse response the mapping f 7→ |ĥ(f)|2 is symmetric,
(15.7a) can be rewritten as∫ ∞

0

|ĥ(f)|2
(
SXX(f) + SXX(−f)

)
df, h real and “nice.” (15.7b)

This form makes it clear that for real stochastic processes, (15.7a) (or its equivalent
form (15.7b)) can only specify the function f 7→ SXX(f)+SXX(−f); it cannot fully
specify the mapping f 7→ SXX(f). For example, if a symmetric function SXX
satisfies (15.7a), then so does

f 7→

{
2SXX(f) if f > 0,
0 otherwise,

f ∈ R.

In fact, if SXX satisfies (15.7a), then so does any function S̃(·) such that

S̃(f) + S̃(−f) = SXX(f) + SXX(−f), f ∈ R.

Thus, for the sake of uniqueness, we define the power spectral density SXX to be
a function of frequency that satisfies (15.7a) and that is additionally symmetric.
It can be shown that this defines SXX (to within indistinguishability) uniquely.
In fact, once one has identified a nonnegative function S(·) such that for any real
impulse response h the integral∫ ∞

−∞
S(f) |ĥ(f)|2 df

corresponds to the power in X ? h, then the PSD SXX of X is given by the sym-
metrized version of S(·), i.e.,

SXX(f) =
1
2

(
S(f) + S(−f)

)
, f ∈ R. (15.8)

Note that the differential definition of the PSD would not have resolved the unique-
ness issue because a filter of frequency response f 7→ I

{
f ∈

[
f0 − ∆

2 , f0 + ∆
2

]}
is

not real.

The final point we would like to make is regarding additivity. Apart from some
mathematical details, what makes the definition of charge density possible is the
fact that the total charge in the union of two disjoint regions in space is the sum
of charges in the individual regions. The same holds for mass. For the probability
densities the crucial property is that the probability of the union of two disjoint
events is the sum of the probabilities. Consequently, if D1 and D2 are disjoint
subsets of R, then Pr[X ∈ D1 ∪ D2] = Pr[X ∈ D1] + Pr[X ∈ D2]. Does this
hold for power? In general the power in the sum of two signals is not the sum of
the individual powers. But if the signals are orthogonal, then their powers do add.
Thus, while Parseval’s theorem will not appear explicitly in our analysis of the PSD,
it is really what makes it all possible. It demonstrates that ifD1,D2 ⊂ R are disjoint
frequency bands, then the signals X ? h1 and X ? h2 that result when X is passed
through the filters of frequency response ĥ1(f) = I{f ∈ D1} and ĥ2(f) = I{f ∈ D2}
are orthogonal, so their powers add. We will not bother to formulate this result
precisely, because it does not show up in our analysis explicitly, but it is this result
that allows us to define the power spectral density.
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15.3 Defining the Operational PSD

Recall that in (14.14) we defined the power P in a SP
(
Y (t), t ∈ R

)
as

P = lim
T→∞

1
2T

E

[∫ T

−T

Y 2(t) dt

]
whenever the limit exists. Thus, the power is the limit, as T tends to infinity, of
the ratio of the expected energy in the interval [−T, T] to the interval’s duration 2T.
We define the operational power spectral density of a stochastic process as follows.

Definition 15.3.1 (Operational PSD of a Real SP). We say that the continuous-
time real stochastic process

(
X(t), t ∈ R

)
is of operational power spectral

density SXX if
(
X(t), t ∈ R

)
is a measurable SP; the mapping SXX : R → R is

integrable and symmetric; and for every stable real filter of impulse response h ∈ L1

the average power at the filter’s output when it is fed
(
X(t), t ∈ R

)
is given by

Power in X ? h =
∫ ∞

−∞
SXX(f) |ĥ(f)|2 df.

We chose our words very carefully in the above definition, and, in doing so, we
avoided two issues. The first is whether every SP is of some operational PSD.
The answer to that is “no.” (But most stochastic processes encountered in Digital
Communications are.) The second issue we avoided is the uniqueness issue. Our
wording did not indicate whether a SP could be of two different operational PSDs.
It turns out that if a SP is of two different operational PSDs, then the two are
equivalent in the sense that they agree except possibly on a set of frequencies of
Lebesgue measure zero. Consequently, somewhat loosely, we shall speak of the
operational power spectral density of

(
X(t), t ∈ R

)
even though the uniqueness is

only to within indistinguishability. The uniqueness is a corollary to the following
somewhat technical lemma.

Lemma 15.3.2.

(i) If s is an integrable function such that∫ ∞

−∞
s(f) |ĥ(f)|2 df = 0 (15.9)

for every integrable complex function h : R → C, then s(f) is zero for all
frequencies outside a set of Lebesgue measure zero.

(ii) If s is a symmetric function such that (15.9) holds for every integrable real
function h : R → R, then s(f) is zero for all frequencies outside a set of
Lebesgue measure zero.

Proof. We begin with a proof of Part (i). For any λ > 0 and f0 ∈ R define the
function h : R→ C by

h(t) =
1√
λ

I
{
|t| ≤ λ

2

}
ei2πf0t, t ∈ R. (15.10)
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This function is in both L1 and L2 . Since it is in L2 , its self-similarity func-
tion Rhh(τ) is defined at every τ ∈ R. In fact,

Rhh(τ) =
(

1− |τ |
λ

)
I{|τ | ≤ λ} ei2πf0τ , τ ∈ R. (15.11)

And since h ∈ L1 , it follows from (11.35) that the Fourier Transform of Rhh

is the mapping f 7→ |ĥ(f)|2. Consequently, by Proposition 6.2.3 (i) (with the
substitution ~Rhh for g), the mapping f 7→ |ĥ(f)|2 can be expressed as the Inverse
Fourier Transform of ~Rhh. Thus, by (6.9) (with the substitutions of s for x and ~Rhh

for g), ∫ ∞

−∞
s(f) |ĥ(f)|2 df =

∫ ∞

−∞
ŝ(f) ~R∗hh(f) df. (15.12)

It now follows from (15.9), (15.12), and (15.11) that

∫ λ

−λ

(
1− |f |

λ

)
ŝ(f) ei2πf0f df = 0, λ > 0, f0 ∈ R. (15.13)

Part (i) now follows from (15.13) and from Theorem 6.2.12 (ii) (with the substitu-
tion of s for x and with the substitution of f0 for t).

We next turn to Part (ii). For any integrable complex function h : R → C, define
hR , Re(h) and hI , Im(h) so

ĥR(f) =
ĥ(f) + ĥ∗(−f)

2
, f ∈ R,

ĥI(f) =
ĥ(f)− ĥ∗(−f)

2i
, f ∈ R.

Consequently,

∣∣ĥR(f)
∣∣2 =

1
4

(∣∣ĥ(f)
∣∣2 +

∣∣ĥ(−f)
∣∣2 + 2 Re

(
ĥ(f) ĥ(−f)

))
, f ∈ R∣∣ĥI(f)

∣∣2 =
1
4

(∣∣ĥ(f)
∣∣2 +

∣∣ĥ(−f)
∣∣2 − 2 Re

(
ĥ(f) ĥ(−f)

))
, f ∈ R,

and ∣∣ĥR(f)
∣∣2 +

∣∣ĥI(f)
∣∣2 =

1
2

(∣∣ĥ(f)
∣∣2 +

∣∣ĥ(−f)
∣∣2), f ∈ R. (15.14)

Applying the lemma’s hypothesis to the real functions hR and hI we obtain

0 =
∫ ∞

−∞
s(f)

∣∣ĥR(f)
∣∣2 df,

0 =
∫ ∞

−∞
s(f)

∣∣ĥI(f)
∣∣2 df,
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and thus, upon adding the equations,

0 =
∫ ∞

−∞
s(f)

(∣∣ĥR(f)
∣∣2 +

∣∣ĥI(f)
∣∣2) df

=
1
2

∫ ∞

−∞
s(f)

(∣∣ĥ(f)
∣∣2 +

∣∣ĥ(−f)
∣∣2) df

=
∫ ∞

−∞

s(f) + s(−f)
2

∣∣ĥ(f)
∣∣2 df

=
∫ ∞

−∞
s(f)

∣∣ĥ(f)
∣∣2 df, (15.15)

where the second equality follows from (15.14); the third by writing the integral
of the sum as a sum of integrals and by changing the integration variable in the
integral involving ĥ(−f); and the last equality from the hypothesis that s is sym-
metric. Since we have established (15.15) for every complex h : R→ C, we can now
apply Part (i) to conclude that s is zero at all frequencies outside a set of Lebesgue
measure zero.

Corollary 15.3.3 (Uniqueness of PSD). If both SXX and S′XX(·) are operational
PSDs for the real SP

(
X(t), t ∈ R

)
, then the set of frequencies at which they differ

is of Lebesgue measure zero.

Proof. Apply Lemma 15.3.2 (ii) to the function s : f 7→ SXX(f)− S′XX(f).

As noted above, we make here no general claims about the existence of opera-
tional PSDs. Under certain restrictions that are made precise in Section 15.5, the
operational PSD is defined for PAM signals. And by Theorem 25.13.2, the oper-
ational PSD always exists for measurable, centered, WSS, stochastic processes of
integrable autocovariance functions.

Definition 15.3.4 (Bandlimited Stochastic Processes). We say that a stochastic
process

(
X(t), t ∈ R

)
of operational PSD SXX is bandlimited to W Hz if, except

on a set of frequencies of Lebesgue measure zero, SXX(f) is zero for all frequencies f
satisfying |f | > W.

The smallest W to which
(
X(t), t ∈ R

)
is limited is called the bandwidth of(

X(t), t ∈ R
)
.

15.4 The Operational PSD of Real PAM Signals

Computing the operational PSD of PAM signals is much easier than you might
expect. This is because, as we next show, passing a PAM signal of pulse shape g
through a stable filter of impulse response h is tantamount to changing its pulse
shape from g to g ? h:((

σ 7→ A
∑
`

X`g(σ − `Ts)
)
? h
)

(t) = A
∑
`

X`(g ? h)(t− `Ts), t ∈ R. (15.16)
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(For a formal statement of this result, see Corollary 18.6.2, which also addresses the
difficulty that arises when the sum is infinite.) Consequently, if one can compute
the power in a PAM signal of arbitrary pulse shape (as explained in Chapter 14),
then one can also compute the power in a filtered PAM signal.

That filtering a PAM signal is tantamount to convolving its pulse shape with the
impulse response follows from two properties of the convolution: that it is linear

(αu + βv) ? h = αu ? h + βv ? h

and that convolving a delayed version of a signal with h is equivalent to convolving
the original signal and delaying the result((

σ 7→ u(σ − t0)
)
? h
)
(t) = (u ? h)(t− t0), t, t0 ∈ R.

Indeed, if X is the PAM signal

X(t) = A

∞∑
`=−∞

X` g(t− `Ts), (15.17)

then (15.16) follows from the calculation

(
X ? h

)
(t) =

((
σ 7→ A

∞∑
`=−∞

X` g(σ − `Ts)
)
? h
)

(t)

= A

∞∑
`=−∞

X`

∫ ∞

−∞
h(s) g(t− s− `Ts) ds

= A

∞∑
`=−∞

X` (g ? h)(t− `Ts), t ∈ R. (15.18)

We are now ready to apply the results of Chapter 14 on the power in PAM signals
to study the power in filtered PAM signals and hence to derive the operational
PSD of PAM signals. We will not treat the case discussed in Section 14.5.3 where
the only assumption is that the time shifts of the pulse shape by integer multiples
of Ts are orthonormal, because this orthonomality is typically lost under filtering.

15.4.1
(
X`, ` ∈ Z

)
Are Centered, Uncorrelated, and of Equal Variance

We begin with the case where the symbols
(
X`, ` ∈ Z

)
are of zero mean, uncor-

related, and of equal variance σ2
X . As in (15.17) we denote the PAM signal by(

X(t), t ∈ R
)

and study its operational PSD by studying the power in X ? h.
Using (15.18) we obtain that X?h is the PAM signal X but with the pulse shape g
replaced by g ? h. Consequently, using Expression (14.33) for the power in PAM
with zero-mean, uncorrelated, variance-σ2

X symbols, we obtain that the power in
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X ? h is given by

Power in X ? h =
A2

Ts
σ2
X ‖g ? h‖22

=
A2σ2

X

Ts

∫ ∞

−∞
|ĝ(f)|2 |ĥ(f)|2 df

=
∫ ∞

−∞

(
A2σ2

X

Ts
|ĝ(f)|2︸ ︷︷ ︸

SXX(f)

)
|ĥ(f)|2 df, (15.19)

where the first equality follows from (14.33) applied to the PAM signal of pulse
shape g?h; the second follows from Parseval’s Theorem by noting that the Fourier
Transform of a convolution of two signals is the product of their Fourier Transforms;
and where the third equality follows by rearranging terms. From (15.19) and from
the fact that f 7→ |ĝ(f)|2 is a symmetric function (because g is real), it follows
that the operational PSD of the PAM signal

(
X(t), t ∈ R

)
when

(
X`, ` ∈ Z

)
are

zero-mean, uncorrelated, and of variance σ2
X is given by

SXX(f) =
A2σ2

X

Ts
|ĝ(f)|2, f ∈ R. (15.20)

15.4.2
(
X`

)
Is Centered and WSS

The more general case where the symbols
(
X`, ` ∈ Z

)
are not necessarily un-

correlated but form a centered, WSS, discrete-time SP can be treated with the
same ease via (14.31) or (14.32). As above, passing X through a filter of impulse
response h results in a PAM signal with identical symbols but with pulse shape
g ? h. Consequently, the resulting power can be computed by substituting g ? h
for g in (14.32) to obtain that the power in X ? h is given by

Power in X ? h =
∫ ∞

−∞

(
A2

Ts

∞∑
m=−∞

KXX(m) ei2πfmTs |ĝ(f)|2︸ ︷︷ ︸
SXX(f)

)
|ĥ(f)|2 df,

where again we are using the fact that the FT of g ? h is f 7→ ĝ(f) ĥ(f). The
operational PSD is thus

SXX(f) =
A2

Ts

∞∑
m=−∞

KXX(m) ei2πfmTs |ĝ(f)|2, f ∈ R, (15.21)

because, as we next argue, the RHS of the above is a symmetric function of f .
This symmetry follows from the symmetry of |ĝ(·)| (because the pulse shape g
is real) and from the symmetry of the autocovariance function KXX (because the
symbols

(
X`, ` ∈ Z

)
are real; see (13.12)). Note that (15.21) reduces to (15.20) if

KXX(m) = σ2
X I{m = 0}.
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15.4.3 The Operational PSD in Bi-Infinite Block-Mode

We now assume, as in Section 14.5.2, that the (K,N) binary-to-reals block encoder
enc : {0, 1}K → RN is used in bi-infinite block encoding mode to map the bi-
infinite IID random bits

(
Dj , j ∈ Z

)
to the bi-infinite sequence of real numbers(

X`, ` ∈ Z
)
, and that the transmitted signal is

X(t) = A

∞∑
`=−∞

X` g(t− `Ts), (15.22)

where Ts > 0 is the baud, and where g(·) is a pulse shape satisfying the decay
condition (14.17). We do not assume that the time-shifts of g(·) by integer multiples
of Ts are orthogonal, or that the symbols

(
X`, ` ∈ Z

)
are uncorrelated. We do,

however, continue to assume that the N-tuple enc(D1, . . . , DK) is of zero mean
whenever D1, . . . , DK are IID random bits.

We shall determine the operational PSD of X by computing the power of the signal
that results when X is fed to a stable filter of impulse response h. As before, we note
that feeding X through a filter of impulse response h is tantamount to replacing
its pulse shape g by g ? h. The power of this output signal can be thus computed
from our expression for the power in bi-infinite block encoding with PAM signaling
(14.38) but with the pulse shape being g ? h and hence of FT f 7→ ĝ(f) ĥ(f):

Power in X ? h =
∫ ∞

−∞

(
A2

NTs

N∑
`=1

N∑
`′=1

E[X`X`′ ] ei2πf(`−`′)Ts |ĝ(f)|2︸ ︷︷ ︸
SXX(f)

)
|ĥ(f)|2 df.

As we next show, the underbraced term is a symmetric function of f , and we thus
conclude that the PSD of X is:

SXX(f) =
A2

NTs

N∑
`=1

N∑
`′=1

E[X`X`′ ] ei2πf(`−`′)Ts |ĝ(f)|2, f ∈ R. (15.23)

To see that the RHS of (15.23) is a symmetric function of f , use the identities

N∑
`=1

N∑
`′=1

a`,`′ =
N∑
`=1

a`,` +
N∑
`=1

`−1∑
`′=1

(a`,`′ + a`′,`)

and E[X`X`′ ] = E[X`′X`] to rewrite the RHS of (15.23) in the symmetric form

A2

NTs

(
N∑
`=1

E
[
X2
`

]
+

N∑
`=1

`−1∑
`′=1

2 E[X`X`′ ] cos
(
2πf(`− `′)Ts

))
|ĝ(f)|2.

From (15.23) we obtain:

Theorem 15.4.1 (The Bandwidth of PAM Is that of the Pulse Shape). Suppose
that the operational PSD in bi-infinite block-mode of a PAM signal

(
X(t)

)
is as
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given in (15.23), e.g., that the conditions of Theorem 15.5.2 ahead are satisfied.
Further assume

A > 0,
N∑
`=1

E
[
X2
`

]
> 0, (15.24)

e.g., that
(
X(t)

)
is not deterministically zero. Then the bandwidth of the SP

(
X(t)

)
is equal to the bandwidth of the pulse shape g.

Proof. If g is bandlimited to W Hz, then so is
(
X(t)

)
, because, by (15.23),(

ĝ(f) = 0
)
⇒
(
SXX(f) = 0

)
.

We next complete the proof by showing that there are at most a countable number
of frequencies f such that SXX(f) = 0 but ĝ(f) 6= 0. From (15.23) it follows
that to show this it suffices to show that there are at most a countable number of
frequencies f such that σ(f) = 0, where

σ(f) ,
A2

NTs

N∑
`=1

N∑
`′=1

E[X`X`′ ] ei2πf(`−`′)Ts

=
N−1∑

m=−N+1

γm e
i2πfmTs

=
N−1∑

m=−N+1

γm z
m
∣∣∣
z=ei2πfTs

, (15.25)

and

γm =
A2

NTs

min{N,N+m}∑
`=max{1,m+1}

E[X`X`−m] , m ∈ {−N + 1, . . . ,N− 1}. (15.26)

It follows from (15.25) that σ(f) is zero if, and only if, ei2πfTs is a root of the
mapping

z 7→
N−1∑

m=−N+1

γm z
m.

Since ei2πfTs is of unit magnitude, it follows that σ(f) is zero if, and only if, ei2πfTs

is a root of the polynomial

z 7→
2N−2∑
ν=0

γν−N+1 z
ν . (15.27)

From (15.26) and (15.24) it follows that γ0 > 0, so the polynomial in (15.27) is
not zero. Consequently, since it is of degree 2N− 2, it has at most 2N− 2 distinct
roots and, a fortiori, at most 2N−2 distinct roots of unit magnitude. Denote these
roots by

eiθ1 , . . . , eiθd ,
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where d ≤ 2N − 2 and θ1, . . . , θd ∈ [−π, π). Since f satisfies ei2πfTs = eiθ if, and
only if,

f =
θ

2πTs
+
η

Ts

for some η ∈ Z, we conclude that the set of frequencies f satisfying σ(f) = 0 is the
set {

θ1
2πTs

+
η

Ts
: η ∈ Z

}
∪ · · · ∪

{
θd

2πTs
+
η

Ts
: η ∈ Z

}
,

and is thus countable. (The union of a finite (or countable) number of countable
sets is countable.)

15.5 A More Formal Account

In this section we shall give a more formal account of the power at the output of
a stable filter that is fed a PAM signal. There are two approaches to this. The
first is based on carefully justifying the steps in our informal derivation.4 This
approach is pursued in Section 18.6.5, where the results are generalized to complex
pulse shapes and complex symbols. The second approach is to convert the problem
into one about WSS stochastic processes and to then rely heavily on Sections 25.13
and 25.14 on the filtering of WSS stochastic processes and, in particular, on the
Wiener-Khinchin Theorem (Theorem 25.14.1). For the benefit of readers who have
already encountered the Wiener-Khinchin Theorem we follow this latter approach
here. We ask the readers to note that the Wiener-Khinchin Theorem is not directly
applicable here because the PAM signal is not WSS. A “stationarization argument”
is thus needed.

The key results of this section are the following two theorems.

Theorem 15.5.1. Consider the setup of Theorem 14.6.4 with the additional as-
sumption that the autocovariance function KXX of

(
X`

)
is absolutely summable:

∞∑
m=−∞

∣∣KXX(m)
∣∣ <∞. (15.28)

Let h ∈ L1 be the impulse response of a stable real filter. Then:

(i) The PAM signal

X : (ω, t) 7→ A

∞∑
`=−∞

X`(ω) g(t− `Ts) (15.29)

is bounded in the sense that there exists a constant Γ such that

|X(ω, t)| < Γ,
(
ω ∈ Ω, t ∈ R

)
. (15.30)

4The main difficulties in the justification are in making (15.16) rigorous and in controlling
the decay of g ? h for arbitrary h ∈ L1 .
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(ii) For every ω ∈ Ω the convolution of the sample-path t 7→ X(ω, t) with h is
defined at every epoch.

(iii) The stochastic process

(ω, t) 7→
∫ ∞

−∞
x(ω, σ)h(t− σ) dσ,

(
ω ∈ Ω, t ∈ R

)
(15.31)

that results when the sample-paths of X are convolved with h is a measurable
stochastic process of power

P =
∫ ∞

−∞

(
A2

Ts

∞∑
m=−∞

KXX(m) ei2πfmTs |ĝ(f)|2
)
|ĥ(f)|2 df. (15.32)

Theorem 15.5.2. Consider the setup of Theorem 14.6.5. Let h ∈ L1 be the impulse
response of a real stable filter. Then:

(i) The sample-paths of the PAM stochastic process

X : (ω, t) 7→ A

∞∑
`=−∞

X`(ω) g(t− `Ts) (15.33)

are bounded in the sense of (15.30).

(ii) For every ω ∈ Ω the convolution of the sample-path t 7→ X(ω, t) and h is
defined at every epoch.

(iii) The stochastic process
(
X(t), t ∈ R

)
? h that results when the sample-paths

of X are convolved with h is a measurable stochastic process of power

P =
∫ ∞

−∞

(
A2

NTs

N∑
`=1

N∑
`′=1

E[X`X`′ ] ei2πf(`−`′)Ts |ĝ(f)|2
)
|ĥ(f)|2 df, (15.34)

where
(
X1, . . . , XN

)
= enc

(
D1, . . . , DK

)
, and where D1, . . . , DK are IID ran-

dom bits.

Proof of Theorem 15.5.1. Part (i) is a consequence of the assumption that
(
X`

)
is bounded in the sense of (14.16) and that the pulse shape g decays faster than 1/t
in the sense of (14.17).

Part (ii) is a consequence of the fact that the convolution of a bounded function
with an integrable function is defined at every epoch; see Section 5.5.

We next turn to Part (iii). The proof of the measurability of the convolution of(
X(t), t ∈ R

)
with h is a bit technical. It is very similar to the proof of Theo-

rem 25.13.2 (i). As in that proof, we first note that it suffices to prove the result
for functions h that are Borel measurable; the extension to Lebesgue measurable
functions will then follow by approximating h by a Borel measurable function that
differs from it on a set of Lebesgue measure zero (Rudin, 1974, Chapter 7, Lemma 1)
and by then noting that the convolution of t 7→ X(ω, t) with h is unaltered when h
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is replaced by a function that differs from it on a set of Lebesgue measure zero. We
thus assume that h is Borel measurable. Consequently, the mapping from R2 to R
defined by (t, σ) 7→ h(t−σ) is also Borel measurable, because it is the composition
of the continuous (and hence Borel measurable) mapping (t, σ) 7→ t − σ with the
Borel measurable mapping t 7→ h(t).

As in the proof of Theorem 25.13.2, we prove the measurability of the convolution
of
(
X(t), t ∈ R

)
with h by proving the measurability of the mapping defined by

(ω, t) 7→ (1 + t2)−1
∫∞
−∞X(ω, σ)h(t− σ) dσ. To this end we study the function

(
(ω, t), σ

)
7→ X(ω, σ)h(t− σ)

1 + t2
,
(
(ω, t) ∈ Ω× R, σ ∈ R

)
. (15.35)

This function is measurable because, as noted above, (t, σ) 7→ h(t− σ) is measur-
able; because, by Proposition 14.6.2,

(
X(t), t ∈ R

)
is measurable; and because the

product of Borel measurable functions is Borel measurable (Rudin, 1974, Chap-
ter 1, Section 1.9 (c)). Moreover, using (15.30) and Fubini’s Theorem it can be
readily verified that this function is integrable. Using Fubini’s Theorem again, we
conclude that the function

(ω, t) 7→ 1
1 + t2

∫ ∞

−∞
X(ω, σ)h(t− σ) dσ

is measurable. Consequently, so is X ? h.

To conclude the proof we now need to compute the power in the measurable (non-
stationary) SP X ?h. This will be done in a roundabout way. We shall first define
a new SP X′. This SP is centered, measurable, and WSS so the power in X′?h can
be computed using Theorem 25.14.1. We shall then show that the powers of X ?h
and X′ ? h are equal and hence that from the power in X′ ? h we can immediately
obtain the power in X ? h.

We begin by defining the SP
(
X ′(t), t ∈ R

)
as

X ′(t) = X(t+ S), t ∈ R, (15.36a)

where S is independent of
(
X(t)

)
and uniformly distributed over the interval [0, Ts],

S ∼ U ([0, Ts]) . (15.36b)

That
(
X ′(t)

)
is centered follows from the calculation

E[X ′(t)] = E[X(t+ S)]

=
∫ Ts

0

1
Ts

E[X(t+ s)] ds

= 0,

where the first equality follows from the definition of
(
X ′(t)

)
; the second from the

independence of
(
X(t)

)
and S and from the specific form of the density of S; and

the third because
(
X(t)

)
is centered. That

(
X ′(t)

)
is measurable follows because

the mapping
(
(ω, s), t

)
7→ X(ω, t + s) can be written as the composition of the
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mapping
(
(ω, s), t

)
7→ (ω, t+ s) with the mapping (ω, t) 7→ X(ω, t). And that it is

WSS follows from the calculation

E[X ′(t)X ′(t+ τ)]
= E[X(t+ S)X(t+ S + τ)]

=
1
Ts

∫ Ts

0

E[X(t+ s)X(t+ s+ τ)] ds

=
1
Ts

A2

∫ Ts

0

E

[ ∞∑
`=−∞

X` g(t+ s− `Ts)
∞∑

`′=−∞

X`′ g(t+ s+ τ − `′Ts)
]

ds

=
1
Ts

A2
∞∑

`=−∞

∞∑
`′=−∞

E[X`X`′ ]
∫ Ts

0

g(t+ s− `Ts) g(t+ s+ τ − `′Ts) ds

=
1
Ts

A2
∞∑

`=−∞

∞∑
`′=−∞

KXX(`− `′)
∫ Ts

0

g(t+ s− `Ts) g(t+ s+ τ − `′Ts) ds

=
1
Ts

A2
∞∑

`=−∞

∞∑
m=−∞

KXX(m)
∫ Ts

0

g
(
t+ s− `Ts

)
g
(
t+ s+ τ − (`−m)Ts

)
ds

=
1
Ts

A2
∞∑

m=−∞
KXX(m)

∞∑
`=−∞

∫ −`Ts+Ts+t

−`Ts+t

g(ξ) g(ξ + τ +mTs) dξ

=
1
Ts

A2
∞∑

m=−∞
KXX(m)

∫ ∞

−∞
g(ξ) g(ξ + τ +mTs) dξ

=
1
Ts

A2
∞∑

m=−∞
KXX(m) Rgg(mTs + τ), τ, t ∈ R. (15.37)

Note that (15.37) also shows that
(
X ′(t)

)
is of PSD (as defined in Definition 25.7.2)

SX′X′(f) =
A2

Ts

∞∑
m=−∞

KXX(m) ei2πfmTs |ĝ(f)|2, f ∈ R, (15.38)

which is integrable by the absolute summability of KXX .

Defining
(
Y ′(t), t ∈ R

)
to be

(
X ′(t), t ∈ R

)
? h we can now use Theorem 25.14.1

to compute the power in
(
Y ′(t), t ∈ R

)
:

lim
T→∞

1
2T

E

[∫ T

−T

(
Y ′(t)

)2 dt

]
=
∫ ∞

−∞

(
A2

Ts

∞∑
m=−∞

KXX(m) ei2πfmTs |ĝ(f)|2
)
|ĥ(f)|2 df.

To conclude the proof we next show that the power in Y is the same as the power
in Y′. To that end we first note that from (15.36a) it follows that(

X′ ? h
)(

(ω, s), t
)

=
(
X ? h

)
(ω, t+ s),

(
ω ∈ Ω, 0 ≤ s ≤ Ts, t ∈ R

)
,

i.e., that

Y ′((ω, s), t) = Y (ω, t+ s),
(
ω ∈ Ω, 0 ≤ s ≤ Ts, t ∈ R

)
. (15.39)
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It thus follows that∫ T

−T

Y 2(ω, t) dt ≤
∫ T

−T−Ts

(
Y ′((ω, s), t)

)2 dt,
(
ω ∈ Ω, 0 ≤ s ≤ Ts, t ∈ R

)
,

(15.40)
because ∫ T

−T−Ts

(
Y ′((ω, s), t)

)2 dt =
∫ T

−T−Ts

Y 2(ω, t+ s) dt

=
∫ T+s

−T−Ts+s

Y 2(ω, σ) dσ

≥
∫ T

−T

Y 2(ω, σ) dσ, 0 ≤ s ≤ Ts,

where the equality in the first line follows from (15.39); the equality in the second
line from the substitution σ , t+s; and the final inequality from the nonnegativity
of the integrand and because 0 ≤ s ≤ Ts.

Similarly,∫ T

−T

Y 2(ω, t) dt ≥
∫ T−Ts

−T

(
Y ′((ω, s), t)

)2 dt,
(
ω ∈ Ω, 0 ≤ s ≤ Ts, t ∈ R

)
, (15.41)

because ∫ T−Ts

−T

(
Y ′((ω, s), t)

)2 dt =
∫ T−Ts

−T

Y 2(ω, t+ s) dt

=
∫ T−Ts+s

−T+s

Y 2(ω, σ) dσ

≤
∫ T

−T

Y 2(ω, σ) dσ, 0 ≤ s ≤ Ts.

Combining (15.40) and (15.41) and using the nonnegativity of the integrand we
obtain that for every ω ∈ Ω and s ∈ [0, Ts]∫ T−Ts

−T+Ts

(
Y ′((ω, s), t)

)2 dt ≤
∫ T

−T

Y 2(ω, σ) dσ ≤
∫ T+Ts

−T−Ts

(
Y ′((ω, s), t)

)2 dt. (15.42)

Dividing by 2T and taking expectations we obtain

2T− 2Ts

2T

1
2T− 2Ts

E

[∫ T−Ts

−T+Ts

(
Y ′(t)

)2 dt

]

≤ 1
2T

E

[∫ T

−T

Y 2(σ) dσ

]
≤

2T + 2Ts

2T

1
2T + 2Ts

E

[∫ T+Ts

−T−Ts

(
Y ′(t)

)2 dt

]
, (15.43)

from which the equality between the power in Y′ and in Y follows by letting T

tend to infinity and using the Sandwich Theorem.



262 Operational Power Spectral Density

Proof of Theorem 15.5.2. The proof of Theorem 15.5.2 is very similar to the proof
of Theorem 15.5.1, so most of the details will be omitted. The main difference is
that the process

(
X ′(t), t ∈ R

)
is now defined as

X ′(t) = X(t+ S)

where the random variable S is now uniformly distributed over the interval [0,NTs],

S ∼ U ([0,NTs]) .

With this definition, the autocovariance of
(
X ′(t), t ∈ R

)
can be computed as

KX′X′(τ)
= E
[
X(t+ S)X(t+ τ + S)

]
=

1
NTs

∫ NTs

0

E
[
X(t+ s)X(t+ τ + s)

]
ds

=
A2

NTs
E

[∫ NTs

0

( ∞∑
ν=−∞

u
(
Xν , t+ s− νNTs

) ∞∑
ν′=−∞

u
(
Xν′ , t+ τ + s− ν′NTs

))
ds

]

=
A2

NTs

∫ NTs

0

∞∑
ν=−∞

∞∑
ν′=−∞

E
[
u
(
Xν , t+ s− νNTs

)
u
(
Xν′ , t+ τ + s− ν′NTs

)]
ds

=
A2

NTs

∫ NTs

0

∞∑
ν=−∞

E
[
u
(
Xν , t+ s− νNTs

)
u
(
Xν , t+ τ + s− νNTs

)]
ds

=
A2

NTs

∫ NTs

0

∞∑
ν=−∞

E
[
u
(
X0, t+ s− νNTs

)
u
(
X0, t+ τ + s− νNTs

)]
ds

=
A2

NTs

∫ ∞

−∞
E
[
u
(
X0, ξ

)
u
(
X0, ξ + τ

)]
dξ

=
A2

NTs

∫ ∞

−∞
E

[
N∑
η=1

Xη g(ξ − ηTs)
N∑
η′=1

Xη′ g(ξ + τ − η′Ts)

]
dξ

=
A2

NTs

N∑
η=1

N∑
η′=1

E
[
XηXη′

]
Rgg

(
τ + (η − η′)

)
, t, τ ∈ R,

where the third equality follows from (14.36), (14.39), and (14.40); the fifth follows
from (14.43); the sixth because the N-tuples

(
Xη, η ∈ Z

)
are IID; the seventh by

defining ξ = t+ s; the eighth by the definition (14.40) of the function u(·); and the
final equality by swapping the summations and the expectation.

The process
(
X ′(t)

)
is thus a WSS process of PSD (as defined in Definition 25.7.2)

SX′X′(f) =
A2

NTs

N∑
`=1

N∑
`′=1

E
[
X`X`′

]
ei2πf(`−`′)Ts |ĝ(f)|2. (15.44)

The proof proceeds now along the same lines as the proof of Theorem 15.5.1.
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15.6 Exercises

Exercise 15.1 (Scaling a SP). Let
(
Y (t)

)
be the result of scaling the SP

(
X(t)

)
by the

real number α. Thus, Y (t) = αX(t) for every epoch t ∈ R. Show that if
(
X(t)

)
is of

operational PSD SXX , then
(
Y (t)

)
is of operational PSD f 7→ α2

SXX(f).

Exercise 15.2 (The Operational PSD of a Sum of Independent SPs). Intuition suggests
that if

(
X(t)

)
and

(
Y (t)

)
are centered independent stochastic processes of operational

PSDs SXX and SYY , then their sum should be of operational PSD f 7→ SXX(f) + SYY (f).
Explain why.

Exercise 15.3 (Operational PSD of a Deterministic SP). Let
(
X(t)

)
be deterministically

equal to the energy-limited signal g : R → R in the sense that, at every epoch t ∈ R, the
RV X(t) is deterministically equal to g(t). Find the operational PSD of

(
X(t)

)
.

Exercise 15.4 (Stretching Time). Let
(
X(t)

)
be of operational PSD SXX , and let a > 0

be fixed. Define the SP
(
Y (t)

)
at every epoch t ∈ R as Y (t) = X(t/a). Show that

(
Y (t)

)
is of operational PSD f 7→ a SXX(af).

Exercise 15.5 (The Operational PSD is Nonnegative). Show that if
(
X(t), t ∈ R

)
is of

operational PSD SXX , then SXX(f) must be nonnegative outside a set of frequencies of
Lebesgue measure zero. Would this also have been true if we had not insisted that the
operational PSD be symmetric?

Hint: Proceed along the lines of the proof of Lemma 15.3.2.

Exercise 15.6 (Operational PSD of PAM). Let
(
X`, ` ∈ Z

)
be IID with X` taking on

the values ±1 equiprobably. Let

g(t) = I
{
|t| ≤ Ts

2

}
, t ∈ R,

X1(t) = A

∞∑
`=−∞

X` g(t− `Ts), t ∈ R,

where A,Ts > 0 are deterministic.

(i) Plot a sample function of X1 for a realization of
(
X`, ` ∈ Z

)
of your choice.

(ii) Compute the operational PSD of X1.

(iii) Repeat Parts (i) and (ii) for

X2(t) = A

∞∑
`=−∞

X` g(t− 2`Ts), t ∈ R.

(iv) How do the operational PSDs of X1 and X2 compare?

Exercise 15.7 (Spectral Shaping via Precoding). Let
(
X`, ` ∈ Z

)
be IID with X` taking

on the values ±1 equiprobably. Let X̃` = X` +X`−1 for every ` ∈ Z.

(i) Compute the operational PSD of the PAM signal

X1(t) =
∞∑

`=−∞

X̃` g(t− `Ts), t ∈ R

for g(·) decaying to zero sufficiently fast as |t| → ∞, e.g., satsifying (14.17).
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(ii) Throw mathematical caution to the wind and evaluate your answer for the pulse
shape whose FT is

ĝ(f) = I
{
|f | ≤ 1

2Ts

}
, f ∈ R.

(Ignore the fact that this pulse shape does not satisfy (14.17).) Plot your answer
and compare it to the operational PSD of the PAM signal

X2(t) =

∞∑
`=−∞

X` g(t− `Ts), t ∈ R.

(iii) Show that X1 can also be written as a PAM signal with IID symbols but with a
different pulse shape. That is,

X1(t) =

∞∑
`=−∞

X` h(t− `Ts),

h : t 7→ g(t) + g(t− Ts).

Exercise 15.8 (The Operational PSD and Block Codes). PAM is used in block-mode in
conjunction with the (1, 2) binary-to-reals block encoder

0 7→ (+1,−1), 1 7→ (−1,+1)

to transmit IID random bits. The pulse shape g(·) satisfies the decay condition (14.17).
Compute the power and operational PSD of the signal.

Exercise 15.9 (Repetitions and the Operational PSD). Let
(
X(t)

)
be the signal (15.22)

that results when the (1, 2) binary-to-reals block-encoder (10.4) is used in bi-infinite block-
mode. Find the operational PSD of

(
X(t)

)
.

Exercise 15.10 (Direct-Sequence Spread-Spectrum Communications). This problem is
motivated by uncoded Direct-Sequence Spread-Spectrum communications with process-
ing gain N. Let the (1,N) binary-to-reals block encoder map 0 to the sequence a1, . . . , aN

and 1 to −a1, . . . ,−aN. Consider PAM with bi-infinite block encoding with this map-
ping. Express the operational PSD of the resulting PAM signal in terms of the sequence
a1, . . . , aN and the pulse shape g. Calculate explicitly when the pulse shape is the map-
ping t 7→ I{|t| ≤ Ts/2} for two cases: when the sequence a1, . . . , aN is the Barker-7 code
(+1,+1,+1,−1,−1,+1,−1) and when it is the sequence (+1,+1,+1,+1,+1,+1,+1).
Compare the latter case with the case where the mapping is the antipodal mapping
0 7→ +1, and 1 7→ −1, the baud period 7Ts, and the pulse shape is t 7→ I{|t| ≤ 7Ts/2}



Chapter 16

Quadrature Amplitude Modulation

16.1 Introduction

We next discuss linear modulation in passband. We envision being allocated band-
width W around the carrier frequency fc, so we can only send real signals whose
Fourier Transform is zero at frequencies f satisfying

∣∣|f | − fc
∣∣ > W/2. That

is, the FT of the transmitted signal is allowed to be nonzero only in the fre-
quency interval [fc − W/2, fc + W/2] and in its negative frequency counterpart
[−fc −W/2,−fc + W/2] (Definition 7.3.1). We assume throughout this chapter
that

fc >
W

2
. (16.1)

There are numerous ways to communicate in passband and, to complicate things
further, sometimes seemingly different approaches lead to identical signals. Thus,
while we would like to motivate the scheme we shall focus on—Quadrature Ampli-
tude Modulation (QAM)—we cannot prove or claim that it is the only “optimal”
solution.1 Nevertheless, we shall try to motivate it by discussing some features
that one would typically like to have and by then showing that QAM has these
features.

From our studies of PAM we recall that if we are allocated (baseband) band-
width W Hz and if Ts ≥ 1/(2W), then we can find a bandwidth-W pulse shape
whose time shifts by integer multiples of Ts are orthonormal. If Ts = 1/(2W), then
such a pulse is the bandwidth-W unit-energy pulse t 7→

√
2W sinc(2Wt). (You may

recall that such pulses are rarely used because they decay to zero too slowly over
time, thus rendering the computation of the PAM signal unstable and the resulting
peak power unbounded.) And if Ts < 1/(2W), then no such pulse shape exists.
(Corollary 11.3.5.)

From a somewhat more abstract perspective, PAM with the above pulse shape (or
with the square root of a raised-cosine pulse shape (11.29) with very small excess

1There are information theoretic considerations that show that QAM can achieve the capacity
of the bandlimited passband additive white Gaussian noise channel.
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bandwidth) allows us to send symbols arriving at rate

Rs

[
real symbol

second

]
as the coefficients in a linear combination of orthonormal signals whose bandwidth
does not exceed (or only slightly exceeds)

Rs

2
[Hz] .

That is, for each spectral sliver of 1 Hz at baseband we obtain 2 real dimensions
per second, i.e., we can communicate at spectral efficiency

2
[real dimension/sec]

[baseband Hz]
.

This is an achievement that we would like to replicate for passband signaling:

First Objective: Find a way to transmit real symbols arriving at rate Rs real sym-
bols per second as the coefficients in a linear combination of orthonormal passband
signals occupying a (passband) bandwidth of W Hz around the carrier frequency fc,
where the bandwidth W is equal to (or only slightly exceeds) Rs/2. That is, we
would like to find a communication scheme that would allow us to communicate at

2
[real dimension/sec]

[passband Hz]
.

Equivalently, since any stream of real symbols arriving at rate Rs real symbols
per second can be viewed as a stream of complex symbols arriving at rate Rs/2
complex symbols per second (simply by pairing tuples (a, b) of real numbers a, b ∈ R
into single complex numbers a + ib), we can restate our objective as follows: find
a way to transmit complex symbols arriving at rate Rs/2 complex symbols per
second as the coefficients in a linear combination of orthonormal passband signals
occupying a (passband) bandwidth of W Hz around the carrier frequency fc, where
the bandwidth W is equal to, or only slightly exceeds Rs/2. That is, we would like
to find a communication scheme that would allow us to communicate at

1
[complex dimension/sec]

[passband Hz]
. (16.2)

In addition, we would like our modulation scheme to be of reasonable complexity.
One of the benefits of the baseband PAM scheme is that we can compute all the
inner products required to reconstruct the coefficients (symbols) using the matched
filter by feeding it with the transmitted signal and sampling its output at the
appropriate times.

A naive approach that does not achieve our objective is to use real baseband PAM
of the type we studied in Chapter 10 and to up-convert the PAM signal to passband
by multiplying it by the mapping t 7→ cos(2πfct). The problem with this approach
is that the up-conversion doubles the bandwidth (Proposition 7.3.3).
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16.2 PAM for Passband?

A natural approach to passband signaling might be to consider PAM directly with-
out any up-conversion. We merely have to look for a pulse shape φ whose Fourier
Transform is zero outside the band

∣∣|f | − fc
∣∣ ≤ W/2 and whose self-similarity

function Rφφ is a Nyquist Pulse. It turns out that with this approach we can only
achieve our objective if 4fcTs is an odd integer. Indeed, the reader is encouraged
to use Corollary 11.3.4 to verify that if a pulse φ is an energy-limited passband
signal that is bandlimited to W Hz around the carrier frequency fc, and if its time
shifts by integer multiples of Ts are orthonormal, then

Ts ≥
1

2W

with equality being achievable only if both

|φ̂(f)|2 = Ts I
{∣∣|f | − fc∣∣ ≤W/2

}
(for all frequencies f ∈ R outside a set of Lebesgue measure zero) and

4fcTs is an odd integer. (16.3)

In fact, it can be shown that if (16.3) is satisfied and if ψ is any energy-limited
signal that is bandlimited to W/2 Hz and whose time shifts by integer multiples
of 2Ts are orthonormal, then the passband signal

φ(t) =
√

2 cos(2πfct)ψ(t), t ∈ R

is an energy-limited passband signal that is bandlimited to W Hz around the carrier
frequency fc, and its time shifts by integer multiples of Ts are orthonormal.

It would thus seem that if (16.3) is satisfied, then PAM would be a viable solution
to our problem. Nevertheless, this is not the standard solution. The reason may
have to do with implementation. If the above approach is used, then the carrier
frequency influences the choice of the pulse shape. Thus, a radio with a selectable
carrier frequency would require a different pulse shape for each frequency! More-
over, the implementation of the modulator becomes carrier-dependent and fairly
complex. This discussion motivates our second objective:

Second Objective: To allow for flexibility in the choice of the carrier, it is desir-
able to decouple the pulse shape selection from the carrier frequency.

16.3 The QAM Signal

Quadrature Amplitude Modulation achieves both our objectives. It achieves our
desired spectral efficiency (16.2) and also decouples the signal design from the
carrier frequency. It is easiest to describe QAM by describing the baseband repre-
sentation xBB(·) of the transmitted passband signal xPB(·). Indeed, the baseband
representation of the transmitted signal has the structure of PAM but with one
important difference: we allow for complex symbols and for complex pulse shapes.2

2Allowing complex pulse shapes is not critical. Crucial is that we allow complex symbols.
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In QAM the encoder
ϕ : {0, 1}k → Cn (16.4)

maps k-tuples of data bits (D1, . . . , Dk) to n-tuples of complex symbols (C1, . . . , Cn),
and the baseband representation of the transmitted signal is

XBB(t) = A

n∑
`=1

C` g(t− `Ts), t ∈ R, (16.5a)

where the pulse shape g(·) may be complex (though it is often chosen to be real),
A ≥ 0 is a real constant, Ts > 0 is the baud period, and 1/Ts is the baud rate. The
rate of the encoder is given by

k

n

[
bit

complex symbol

]
, (16.5b)

and the transmitted real passband QAM signal XPB(·) is given by

XPB(t) = 2 Re
(
XBB(t) ei2πfct

)
, t ∈ R. (16.5c)

Using (16.5a) & (16.5c) we can also express the QAM signal as

XPB(t) = 2 Re
(

A

n∑
`=1

C` g(t− `Ts) ei2πfct
)
, t ∈ R. (16.6)

Alternatively, we can use the identities

Re(wz) = Re(w) Re(z)− Im(w) Im(z), w, z ∈ C,

Im(z) = −Re(iz), z ∈ C

to express the QAM signal as

XPB(t) =
√

2A

n∑
`=1

Re(C`)

gI,`(t)︷ ︸︸ ︷
2 Re

(
1√
2
g(t− `Ts)︸ ︷︷ ︸
gI,`,BB(t)

ei2πfct

)

+
√

2A

n∑
`=1

Im(C`)

gQ,`(t)︷ ︸︸ ︷
2 Re

(
i

1√
2
g(t− `Ts)︸ ︷︷ ︸

gQ,`,BB(t)

ei2πfct

)
, t ∈ R, (16.7)

where we define

gI,`(t) , 2 Re
(

1√
2
g(t− `Ts) ei2πfct

)
(16.8a)

= 2Re
(
gI,`,BB(t) ei2πfct

)
, t ∈ R,
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and

gQ,`(t) , 2 Re
(

i
1√
2
g(t− `Ts) ei2πfct

)
(16.8b)

= 2Re
(
gQ,`,BB(t) ei2πfct

)
, t ∈ R,

with corresponding baseband representations:

gI,`,BB(t) ,
1√
2
g(t− `Ts), t ∈ R, (16.9a)

gQ,`,BB(t) , i
1√
2
g(t− `Ts), t ∈ R. (16.9b)

Some comments about the QAM signal:

(i) The representation (16.7) demonstrates that the QAM signal is a linear com-
bination of the waveforms {gI,`} and {gQ,`}, where the coefficients are pro-
portional to the real parts and the imaginary parts of the symbols {C`}.

(ii) The normalization factor of 1/
√

2 in the definition of the functions {gI,`} and
{gQ,`} is for convenience only. Its role will become clearer in Section 16.5,
where the pulse shape is chosen to be of unit energy. In this case the factor of
1/
√

2 guarantees that the functions {gI,`} and {gQ,`} are also of unit energy.

(iii) We could also view QAM slightly differently as a modulation scheme where
data bits D1, . . . , Dk are mapped to 2n real numbers X1, . . . , X2n, which are
then grouped in pairs to form the n complex numbers C` = X2`−1 + iX2`

for ` = 1, . . . , n and where these complex numbers are then mapped into the
passband signal whose baseband representation is given in (16.5a). The two
views are, of course, completely equivalent.

The expression for the QAM signal XPB(·) is simplified if the pulse shape g is real.
In this case we obtain from (16.6) for every t ∈ R

XPB(t) = 2A

n∑
`=1

Re(C`) g(t− `Ts) cos(2πfct)

− 2A

n∑
`=1

Im(C`) g(t− `Ts) sin(2πfct), g real. (16.10)

Thus, if the pulse shape g is real, then the QAM signal can be viewed as the
sum of two signals: the first is the result of feeding {Re(C`)} to a baseband PAM
modulator of pulse shape g and multiplying the result by cos(2πfct), and the second
is the result of feeding {Im(C`)} to a baseband PAM modulator of pulse shape g
and multiplying the result by − sin(2πfct). Figure 16.1 illustrates the generation
of the QAM signal when the pulse shape g is real.



270 Quadrature Amplitude Modulation

cos(2πfct)

−sin(2πfct)

90◦

×

×

+{C`}

Re(·)

Im(·)

Re(C`)

Im(C`)

PAM

PAM

A
∑
` Re(C`)g(t− `Ts)

A
∑
` Im(C`)g(t− `Ts)

A
∑
` Re(C`)g(t− `Ts) cos(2πfct)

−A
∑
` Im(C`)g(t− `Ts) sin(2πfct)

xPB(t)/2

Figure 16.1: Generating a QAM signal when the pulse shape g is real.

16.4 Bandwidth Considerations

Recalling that the bandwidth of a passband signal around the carrier frequency is
twice the bandwidth of its baseband representation (Proposition 7.6.7 and Theo-
rem 7.7.12 (i)) we conclude:

Note 16.4.1. If the pulse shape g is bandlimited to W/2 Hz, then the QAM signal
(16.6) is bandlimited to W Hz around the carrier frequency fc.

If the pulse shape g is real, then these bandwidth considerations can also be ex-
plained in another way. We note that if g(·) is bandlimited to W/2 Hz then
the signal

∑
` Re(C`) g(t − `Ts) is also bandlimited to W/2 Hz, so when it is up-

converted by multiplication by cos(2πfct) the resulting signal is bandlimited to W

Hz around the carrier frequency fc (Proposition 7.3.3). A similar argument holds
for the signal that is multiplied by − sin(2πfct).

16.5 Orthogonality Considerations

We next study the consequences of choosing the pulse shape g(·) so that its time
shifts by integer multiples of Ts be orthonormal. As in our treatment of PAM, we
change notation and denote the pulse shape in this case by φ(·). The orthonormal-
ity condition is thus∫ ∞

−∞
φ(t− `Ts)φ∗(t− `′Ts) dt = I{` = `′}, `, `′ ∈ Z. (16.11)
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By Corollary 11.3.4, this is equivalent to requiring that

∞∑
`=−∞

∣∣∣φ̂(f +
`

Ts

)∣∣∣2 = Ts, (16.12)

for all frequencies f outside a set of Lebesgue measure zero.

When the pulse shape satisfies the orthogonality condition (16.11) we refer to 1/Ts

as having units of complex dimensions per second. In analogy to Definition 11.3.6,
we define the excess bandwidth as

100%
(

bandwidth of φ
1/(2Ts)

− 1
)
. (16.13)

Proposition 16.5.1. If the energy-limited pulse shape φ satisfies (16.11), then the
QAM signal XPB(·) can be expressed as

XPB =
√

2A

n∑
`=1

Re(C`)ψI,` +
√

2A

n∑
`=1

Im(C`)ψQ,` (16.14)

where
. . . ,ψI,−1,ψQ,−1,ψI,0,ψQ,0,ψI,1,ψQ,1, . . .

are orthonormal functions that are given by

ψI,` : t 7→ 2 Re
(

1√
2
φ(t− `Ts) ei2πfct

)
, ` ∈ Z (16.15a)

ψQ,` : t 7→ 2 Re
(

i
1√
2
φ(t− `Ts) ei2πfct

)
, ` ∈ Z. (16.15b)

Proof. Substituting φ for g in (16.7) we obtain

XPB(t) =
√

2A

n∑
`=1

Re(C`)

ψI,`(t)︷ ︸︸ ︷
2 Re

(
1√
2
φ(t− `Ts)︸ ︷︷ ︸
ψI,`,BB(t)

ei2πfct
)

+
√

2A

n∑
`=1

Im(C`)

ψQ,`(t)︷ ︸︸ ︷
2 Re

(
i

1√
2
φ(t− `Ts)︸ ︷︷ ︸

ψQ,`,BB(t)

ei2πfct
)
, t ∈ R,

where for every t ∈ R

ψI,`(t) , 2 Re
(

1√
2
φ(t− `Ts) ei2πfct

)
(16.16a)

= 2Re
(
ψI,`,BB(t) ei2πfct

)
,
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ψQ,`(t) , 2 Re
(

i
1√
2
φ(t− `Ts) ei2πfct

)
(16.16b)

= 2Re
(
ψQ,`,BB(t) ei2πfct

)
,

and the baseband representations are given by

ψI,`,BB(t) ,
1√
2
φ(t− `Ts) (16.17a)

and
ψQ,`,BB(t) , i

1√
2
φ(t− `Ts). (16.17b)

We next verify that, when φ satisfies (16.11), the functions

. . . ,ψI,−1,ψQ,−1,ψI,0,ψQ,0,ψI,1,ψQ,1, . . .

are orthonormal. To this end we recall that the inner product between two real
passband signals is twice the real part of the inner product between their baseband
representations (Theorem 7.6.10). For ` 6= `′ we thus have by (16.11)

〈ψI,`,ψI,`′〉 = 2Re
(〈
ψI,`,BB,ψI,`′,BB

〉)
= 2Re

(〈
t 7→ 1√

2
φ(t− `Ts), t 7→

1√
2
φ(t− `′Ts)

〉)
= 0,

〈ψQ,`,ψQ,`′〉 = 2Re
(〈
ψQ,`,BB,ψQ,`′,BB

〉)
= 2Re

(〈
t 7→ i

1√
2
φ(t− `Ts), t 7→ i

1√
2
φ(t− `′Ts)

〉)
= 0,

and

〈ψI,`,ψQ,`′〉 = 2Re
(〈
t 7→ 1√

2
φ(t− `Ts), t 7→ i

1√
2
φ(t− `′Ts)

〉)
= 0.

And for ` = `′ we have, again by (16.11),

〈ψI,`,ψI,`〉 = 2Re
(〈
t 7→ 1√

2
φ(t− `Ts), t 7→

1√
2
φ(t− `Ts)

〉)
= 1,

〈ψI,`,ψQ,`〉 = 2Re
(〈
t 7→ 1√

2
φ(t− `Ts), t 7→ i

1√
2
φ(t− `Ts)

〉)
= Re

(
−i ‖φ‖22

)
= 0,
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and

〈ψQ,`,ψQ,`〉 = 2Re
(〈
t 7→ i

1√
2
φ(t− `Ts), t 7→ i

1√
2
φ(t− `Ts)

〉)
= 1.

Notice that (16.14)–(16.15) can be simplified when φ is real:

Corollary 16.5.2. If, in addition to the assumptions of Proposition 16.5.1, we also
assume that the pulse shape φ is real, then the QAM signal can be written as

XPB(t) =
√

2A

n∑
`=1

Re(C`)
√

2φ(t− `Ts) cos(2πfct)

−
√

2A

n∑
`=1

Im(C`)
√

2φ(t− `Ts) sin(2πfct), t ∈ R, (16.18)

and{
t 7→
√

2φ(t− `Ts) cos(2πfct)
}∞
`=−∞

,
{
t 7→
√

2φ(t− `Ts) sin(2πfct)
}∞
`=−∞

are orthonormal.

16.6 Spectral Efficiency

We next show that QAM achieves our spectral efficiency objective. We assume
that we are only allowed to transmit signals of bandwidth W around the carrier
frequency fc, so the transmitted signal can only occupy the frequencies f satisfying∣∣|f | − fc∣∣ ≤W/2.

In order for the QAM signal to meet this constraint, we choose a pulse shape φ
that is bandlimited to W/2 Hz, because the up-conversion doubles the bandwidth
(Note 16.4.1). Thus, by Corollary 11.3.5, the orthogonality (16.11) can only hold
if the baud period Ts satisfies Ts ≥ 1/(2×W/2) or

Ts ≥
1
W
,

with the RHS being achievable by choosing φ to be the bandwidth-W/2 unit-energy
signal t 7→

√
W sinc(Wt).

If we choose Ts equal to 1/W (or only slightly larger than that), then our modulation
will support the transmission of complex symbols arriving at a rate of 1/Ts ≈ W

complex symbols per second. And since our QAM signal only occupies W Hz
around the carrier frequency, our scheme achieves a spectral efficiency of 1 [complex
dimension per second] per Hz. QAM thus achieves our spectral efficiency objective.
This is so exciting that we highlight the achievement:
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QAM with the bandwidth-W/2 unit-energy pulse shape given by
t 7→
√

W sinc(Wt) transmits a sequence of real symbols arriving at
a rate of 2W real symbols per second as the coefficients in a linear
combination of orthogonal signals, with the resulting waveform
being bandlimited to W Hz around the carrier frequency fc. It
thus achieves a spectral efficiency of

2
[real dimension/sec]

[passband Hz]
= 1

[complex dimension/sec]
[passband Hz]

.

16.7 QAM Constellations

In analogy to the definition of the constellation of a PAM scheme (Section 10.8),
we define the constellation of a QAM scheme (or, perhaps more appropriately, of
the mapping ϕ(·) in (16.4)) as the smallest subset of C of which C` is an element
for every ` ∈ {1, . . . , n} and for every realization of the data bits. We denote
the constellation by C. The number of points in the constellation C is just the
number of elements of C.
Important constellations include the square 4-QAM constellation (also knows as
QPSK)

{+1 + i,−1 + i,−1− i,+1− i},

the square QAM constellation with (2ν)× (2ν) points{
a+ ib : a, b ∈

{
−(2ν − 1), . . . ,−3,−1,+1,+3, . . . , (2ν − 1)

}}
, (16.19)

and the M-PSK (M-ary Phase Shift Keying) constellation comprising the M com-
plex numbers on the unit circle whose M-th power is one, i.e.,{

1, ei2π/M, ei4π/M, ei6π/M, . . . , ei(M−1)2π/M
}
.

See Figure 16.2 for some common QAM constellations. Please note that the square
16-QAM and the 16-PSK are just two of many possible constellations with 16
points. However, some engineers omit the word “square” and write 4-QAM, 16-
QAM, 64-QAM, etc. for the respective square constellations.

We can also define the minimum distance δ of a constellation C in analogy to
(10.21) as

δ , min
c,c′∈C
c6=c′

|c− c′|. (16.20)

In analogy to (10.23), we define the second moment of a constellation C as

1
# C

∑
c∈C
|c|2. (16.21)
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4-QAM

8-PSK

16-QAM

32-QAM

Figure 16.2: Some QAM constellations (drawn to no particular scale).

16.8 Recovering the Complex Symbols via Inner Products

Recall that, by Proposition 16.5.1, if the time shifts of φ by integer multiples of Ts

are orthonormal, then the QAM signal can be written as

XPB =
√

2A

n∑
`=1

Re(C`)ψI,` +
√

2A

n∑
`=1

Im(C`)ψQ,`,

where the signals . . . ,ψI,−1,ψQ,−1,ψI,0,ψQ,0,ψI,1,ψQ,1, . . ., which are given in
(16.15), are orthonormal. Consequently, the complex symbols can be recovered
from the QAM signal (in the absence of noise) using the inner product:

Re(C`) =
1√
2A
〈XPB,ψI,`〉 , ` ∈ {1, . . . , n}, (16.22a)

Im(C`) =
1√
2A
〈XPB,ψQ,`〉 , ` ∈ {1, . . . , n}. (16.22b)

We next describe circuits to compute these inner products. With a view to future
chapters where noise will be present, we shall describe more general circuits that
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compute the inner products 〈r,ψI,`〉 and 〈r,ψQ,`〉 for an arbitrary (not necessarily
QAM) energy-limited signal r. Moreover, since the calculation of the inner products
will not exploit the orthogonality condition (16.11), we shall describe the more
general setting where the pulse shape is arbitrary and refer to the notation of
(16.7). Thus, we shall present circuits to compute

〈r,gI,`〉 , 〈r,gQ,`〉 ,

where gI,` and gQ,` and their baseband representations are given in (16.8) and
(16.9). Here r is an arbitrary energy-limited signal. We present two approaches:
an approach based on baseband conversion and a direct approach.

16.8.1 Inner Products via Baseband Conversion

We begin by noting that if the pulse shape g is bandlimited to W/2 Hz then both
gI,` and gQ,` are bandlimited to W Hz around the carrier frequency fc. Conse-
quently, since they contain no energy outside the bands [fc −W/2, fc + W/2] and
[−fc−W/2,−fc+W/2], it follows from Parseval’s Theorem that the Fourier Trans-
form of r outside these bands does not influence the value of the inner products.
Thus, if s is the result of passing r through an ideal unit-gain bandpass filter of
bandwidth W around the carrier frequency fc, i.e.,

s = r ? BPFW,fc , (16.23)

then

〈r,gI,`〉 = 〈s,gI,`〉 , (16.24a)
〈r,gQ,`〉 = 〈s,gQ,`〉 . (16.24b)

If we denote the baseband representation of s by sBB, then

〈r,gI,`〉 = 〈s,gI,`〉
= 2Re

(
〈sBB,gI,`,BB〉

)
=
√

2 Re
(
〈sBB, t 7→ g(t− `Ts)〉

)
, (16.25a)

where the first equality follows from (16.24a); the second from Theorem 7.6.10;
and the final equality from (16.9a). Similarly,

〈r,gQ,`〉 = 〈s,gQ,`〉
= 2Re

(
〈sBB,gQ,`,BB〉

)
=
√

2 Re
(
〈sBB, t 7→ i g(t− `Ts)〉

)
=
√

2 Im
(
〈sBB, t 7→ g(t− `Ts)〉

)
. (16.25b)

We next describe circuits to compute the RHS of (16.25a) & (16.25b). The circuit
to produce sBB from s was already discussed in Section 7.6 on the baseband rep-
resentation of passband signals (Figure 7.11). One multiplies s(t) by e−i2πfct and
then passes the result through a lowpass filter whose cutoff frequency Wc satisfies

W

2
≤Wc ≤ 2fc −

W

2
,
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cos(2πfct)

90◦

×

×

r(t)
s(t)

BPFW,fc

LPFWc

LPFWc

W
2
≤ Wc ≤ 2fc − W

2

Re(sBB)

Im(sBB)

Figure 16.3: QAM demodulation: the front-end.

i.e.,
sBB =

(
t 7→ s(t) e−i2πfct

)
? LPFWc ,

or, in terms of real operations:

Re
(
sBB

)
=
(
t 7→ s(t) cos(2πfct)

)
? LPFWc ,

Im
(
sBB

)
= −

(
t 7→ s(t) sin(2πfct)

)
? LPFWc .

This circuit is depicted in Figure 16.3. Notice that this circuit depends only on
the carrier frequency fc and on the bandwidth W; it does not depend on the pulse
shape.

Once sBB has been computed, the calculation of the inner products on the RHS of
(16.25a) & (16.25b) is straightforward. For example, to compute the inner product
on the RHS of (16.25a) we note that from (16.25a)

〈r,gI,`〉 =
√

2 Re
(∫ ∞

−∞
sBB(t) g∗(t− `Ts) dt

)
=
√

2
∫ ∞

−∞
Re
(
sBB(t)

)
Re
(
g(t− `Ts)

)
dt

+
√

2
∫ ∞

−∞
Im
(
sBB(t)

)
Im
(
g(t− `Ts)

)
dt, (16.26)

where the terms on the RHS can be computed by feeding Re(sBB) to a matched
filter matched to Re(g) and sampling the filter’s output at time `Ts∫ ∞

−∞
Re
(
sBB(t)

)
Re
(
g(t− `Ts)

)
dt =

(
Re(sBB) ? Re(~g)

)
(`Ts), (16.27)
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and by feeding Im(sBB) to a matched filter matched to Im(g) and sampling the
filter’s output at time `Ts∫ ∞

−∞
Im
(
sBB(t)

)
Im
(
g(t− `Ts)

)
dt =

(
Im(sBB) ? Im(~g)

)
(`Ts). (16.28)

Similarly, to compute the inner product on the RHS of (16.25b) we note that from
(16.25b)

〈r,gQ,`〉 =
√

2 Im
(∫ ∞

−∞
sBB(t) g∗(t− `Ts) dt

)
=
√

2
∫ ∞

−∞
Im
(
sBB(t)

)
Re
(
g(t− `Ts)

)
dt

−
√

2
∫ ∞

−∞
Re
(
sBB(t)

)
Im
(
g(t− `Ts)

)
dt, (16.29)

where the inner products can be computed again using a matched filter:∫ ∞

−∞
Im
(
sBB(t)

)
Re
(
g(t− `Ts)

)
dt =

(
Im(sBB) ? Re(~g)

)
(`Ts),∫ ∞

−∞
Re
(
sBB(t)

)
Im
(
g(t− `Ts)

)
dt =

(
Re(sBB) ? Im(~g)

)
(`Ts).

Things become simpler when the pulse shape g is real. In this case (16.26) and
(16.29) simplify to

〈r,gI,`〉 =
√

2
∫

Re
(
sBB(t)

)
g(t− `Ts) dt, g real, (16.30a)

〈r,gQ,`〉 =
√

2
∫

Im
(
sBB(t)

)
g(t− `Ts) dt, g real. (16.30b)

Diagrams demonstrating how these inner products are computed are given in Fig-
ures 16.3 and 16.4. We have already discussed the first diagram, which includes the
front-end bandpass filter and the circuit for producing sBB. The second diagram
includes the matched filtering needed to compute the RHS of (16.30a) and the
RHS of (16.30b). Notice that we have accomplished our second objective in that
the first circuit depends only on the carrier frequency fc (and the bandwidth W)
and the second circuit depends on the pulse shape but not on the carrier frequency.

16.8.2 Computing Inner Products Directly

The astute reader may have noticed that neither the bandpass filtering of the
signal r nor the image rejection filters that produce sBB are needed for the com-
putation of the inner products. Indeed, starting from (16.8a)

〈r,gI,`〉 =
〈
r, t 7→ 2 Re

(
gI,`,BB(t) ei2πfct

)〉
= 2Re

(〈
r, t 7→ gI,`,BB(t) ei2πfct

〉)
= 2Re

(〈
t 7→ r(t) e−i2πfct,gI,`,BB

〉)
=
√

2 Re
(〈
t 7→ r(t) e−i2πfct, t 7→ g(t− `Ts)

〉)
, (16.31a)
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Im(sBB)

Re(sBB)

1√
2
〈r,gQ,`〉

1√
2
〈r,gI,`〉

~g

~g

`Ts

`Ts

Figure 16.4: QAM demodulation: matched filtering (g real).

where the second equality follows because r is real and the last equality from
(16.9a). Similarly, starting from (16.8b)

〈r,gQ,`〉 =
〈
r, t 7→ 2 Re

(
gQ,`,BB(t) ei2πfct

)〉
= 2Re

(〈
r, t 7→ gQ,`,BB(t) ei2πfct

〉)
= 2Re

(〈
t 7→ r(t) e−i2πfct,gQ,`,BB

〉)
=
√

2 Re
(〈
t 7→ r(t) e−i2πfct, t 7→ i g(t− `Ts)

〉)
=
√

2 Im
(〈
t 7→ r(t) e−i2πfct, t 7→ g(t− `Ts)

〉)
, (16.31b)

where the fourth equality follows from (16.9b). Notice that the RHS of (16.31a)
and the RHS of (16.31b) do not involve any filtering. To see how to implement
them with real operations we can write them more explicitly as:

〈r,gI,`〉 =
√

2 Re
(∫ ∞

−∞
r(t) e−i2πfct g∗(t− `Ts) dt

)
,

〈r,gQ,`〉 =
√

2 Im
(∫ ∞

−∞
r(t) e−i2πfct g∗(t− `Ts) dt

)
,

or even more explicitly in terms of real operations as:

〈r,gI,`〉 =
√

2
∫ ∞

−∞
r(t) cos(2πfct) Re

(
g(t− `Ts)

)
dt

−
√

2
∫ ∞

−∞
r(t) sin(2πfct) Im

(
g(t− `Ts)

)
dt, (16.32a)

〈r,gQ,`〉 = −
√

2
∫ ∞

−∞
r(t) cos(2πfct) Im

(
g(t− `Ts)

)
dt

−
√

2
∫ ∞

−∞
r(t) sin(2πfct) Re

(
g(t− `Ts)

)
dt. (16.32b)

The two approaches we discussed for computing the inner products are, of course,
mathematically equivalent. The former makes more engineering sense, because the
bandpass filter typically guarantees that the energy in s is significantly smaller
than in r, thus reducing the dynamic range required from the rest of the receiver.

The latter approach is mathematically cleaner because it requires less mathemat-
ical justification. One need not check that the various filters satisfy the required
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integrability conditions. Moreover, this approach is more useful when r is not
energy-limited and when this is compensated for by the fast decay of the pulse
shape. (See, for example, the situation addressed by Proposition 3.4.4.)

16.9 Exercises

Exercise 16.1 (Nyquist’s Criterion and Passband Signals). Corollary 11.3.4 provides con-
ditions under which the time shifts of a signal by integer multiples of Ts are orthonormal.
Discuss how these conditions apply to real passband signals of bandwidth W around the
carrier frequency fc. Specifically:

(i) Plot the function

f 7→
∞∑

`=−∞

∣∣∣ŷ(f +
`

Ts

)∣∣∣2
for the passband signal y of Figure 7.2. Pay attention to how the sum at positive
frequencies is influenced by the signal’s FT at negative frequencies.

(ii) Show that there exists a passband signal φ(·) whose bandwidth W around the
carrier frequency fc is 1/(2Ts) and whose time shifts by integer multiples of Ts are
orthonormal if, and only if, 4Tsfc is an odd integer. Show that such a signal must
satisfy (outside a set of frequencies of Lebesgue measure zero)∣∣φ̂(f)

∣∣ = √
Ts I
{∣∣|f | − fc

∣∣ ≤ 1

4Ts

}
, f ∈ R.

(iii) Let φ be an energy-limited baseband signal of bandwidth W/2 whose FT is a
symmetric function of frequency and whose time shifts by integer multiples of (2Ts)
are orthonormal. Let the carrier frequency fc be larger than W/2 and satisfy
that 4Tsfc is an odd integer. Show that the (possibly complex) passband signal
t 7→

√
2 cos(2πfct)φ(t) is of bandwidth W around the carrier fc, and its time shifts

by integer multiples of Ts are orthonormal.

Exercise 16.2 (How General is QAM?). Under what conditions on A, fc, φ, W, and Ts

can we view the signal

t 7→ A Re

(
ei(2πfct+φ)

n∑
`=1

C` sinc(Wt− `Ts)

)
as a QAM signal?

Exercise 16.3 (M-PSK). Consider a QAM signal XPB of the form (16.6) with the pulse
shape g : t 7→ I{−Ts/2 ≤ t < Ts/2} and symbols

(
C`
)

that are IID and uniformly dis-
tributed over the set

{ei2π/8, e2i2π/8, . . . , e7i2π/8, 1}.

(i) Plot a sample function of
(
XPB(t), t ∈ R

)
.

(ii) Are the sample paths continuous?

(iii) Express XPB(t) in the form 2A cos
(
2πfct+Φ(t)

)
and describe Φ(t). Plot a sample

path of
(
Φ(t)

)
.
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Exercise 16.4 (Transmission Rate, Encoder Rate, and Bandwidth). Data bits are to be
transmitted at rate Rb bits per second using QAM with a pulse shape φ satisfying the
orthonormality condition (16.11).

(i) Let W be the allotted bandwidth around the carrier frequency. What is the minimal
constellation size required for the data bits to be reliably communicated in the
absence of noise?

(ii) Repeat Part (i) if you are required to use a pulse shape of excess-bandwidth of
β = 15% or more.

Exercise 16.5 (Synthesis of 16-QAM). Let X1(·) and X2(·) be 4-QAM (QPSK) signals
that are given for every t ∈ R by

Xν(t) = 2A Re

( n∑
`=1

C
(ν)
`

g(t− `Ts) e
i2πfct

)
, ν = 1, 2,

where the symbols
(
C

(ν)
`

)
take on the values ±1± i. Show that for the right choice of the

constant α ∈ R, the signal

X(t) = αX1(t) +X2(t), t ∈ R

can be viewed as a 16-QAM signal with a square constellation.

Exercise 16.6 (Orthogonality of the In-Phase and Quadrature Components). Let the
pulse shape g be a real integrable signal that is bandlimited to W/2 Hz, and let the
carrier frequency fc be larger than W/2. Show that, even if the time shifts of g by
integer multiples of Ts are not orthonormal, the signals

t 7→ g(t− `Ts) cos(2πfct+ ϕ) and t 7→ g(t− `′Ts) sin(2πfct+ ϕ)

are orthogonal for all integers `, `′ (not necessarily distinct). Here ϕ ∈ [−π, π) is arbitrary.

Exercise 16.7 (The Importance of the Phase). Let x and y be real integrable signals
that are bandlimited to W/2 Hz. Let the transmitted signal s be

s(t) = Re
((
x(t) + iy(t)

)
ei(2πfct+φT)

)
= x(t) cos(2πfct+ φT)− y(t) sin(2πfct+ φT), t ∈ R,

where fc > W/2, and where φT denotes the phase of the transmitted carrier. The receiver
multiplies s(t) by 2 cos(2πfct+φR) (where φR denotes the phase of the receiver’s oscillator)
and passes the resulting product through a lowpass filter of cutoff frequency W/2 to
produce the signal x̃:

x̃(t) =
((
τ 7→ s(τ) 2 cos(2πfcτ + φR)

)
? LPFW

)
(t), t ∈ R.

Express x̃(·) in terms of x(·), y(·), φT and φR. Evaluate your expression in the following
cases: φT = φR, φT − φR = π, φT − φR = π/2, and φT − φR = π/4.

Exercise 16.8 (Phase Imprecision). Consider QAM with a real pulse shape and a receiver
that performs a conversion to baseband followed by matched filtering (Section 16.8.1).
Write an expression for the output of the receiver if its oscillator is at the right frequency
but lags the phase of the transmitter’s oscillator by ∆φ.
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Exercise 16.9 (Rotating a QAM Constellation). Show that rotating a QAM constellation
changes neither its second moment nor its minimum distance.

Exercise 16.10 (Optimal Rectangular Constellation). Consider all rectangular constella-
tions of the form

{a+ ib, a− ib,−a+ ib,−a− ib},
where a and b are real. Which of these constellations whose second moment is one has
the largest minimum distance?



Chapter 17

Complex Random Variables and Processes

17.1 Introduction

We first encountered complex random variables in Chapter 16 on QAM. There we
considered an encoder that maps k-tuples of bits into n-tuples of complex numbers,
and we then considered the result of applying this encoder to random bits. The
resulting symbols were therefore random and were taking value in the complex
field, i.e., they were complex random variables. Complex random variables are
functions that map “luck” into the complex field: they map every outcome of the
experiment ω ∈ Ω to a complex number. Thus, they are very much like regular
random variables, except that they take value in the complex field. They can
always be considered as pairs of real variables: their real and imaginary parts.

It is perfectly meaningful to discuss their expectation and variance. If C is a
complex random variable, then

E[C] = E
[
Re(C)

]
+ i E

[
Im(C)

]
,

E
[
|C|2

]
= E

[(
Re(C)

)2]+ E
[(

Im(C)
)2]

,

and

Var[C] = E
[∣∣C − E[C]

∣∣2]
= E

[
|C|2

]
−
∣∣E[C]

∣∣2.
In this chapter we shall make the above definition of complex random variables
more formal and also discuss complex random vectors and complex stochastic pro-
cesses.

Complex random variables can be avoided if one treats such variables as pairs
of real variables. However, we do not recommend this approach. Many of the
complex variables and processes encountered in Digital Communications possess
additional properties that simplify their manipulation, and complex variables are
better suited to take advantage of these simplifications.

We begin this chapter with some notation followed by some basic definitions for
complex random variables. We next introduce a property that simplifies their

283
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manipulation: properness. (Another such property, circular symmetry, is described
in Chapter 24.) Finally, we extend the discussion to complex random vectors and
conclude with a discussion of complex stochastic processes.

17.2 Notation

The notation we use in this chapter is fairly standard. The only issue that may
need clarification is the difference between three matrix/vector operations: trans-
position, conjugation, and Hermitian conjugation. These operations are described
next.

All vectors in this chapter are column vectors. Thus, a vector a whose components
are a(1), . . . , a(n) is the column vector

a =


a(1)

a(2)

...
a(n)

 . (17.1)

We shall sometimes refer to such a vector a as an n-vector to make the number of
its components explicit. For typesetting reasons, we shall usually use the notation

a =
(
a(1), . . . , a(n)

)T
, (17.2)

which is more space efficient. Here the operator (·)T denotes the matrix trans-
pose. Thus if we think of (a(1), . . . a(n)) as a 1× n matrix, then (a(1), . . . a(n))T is
this matrix’s transpose, i.e., an n × 1 matrix, or a vector. More generally, if A is
an n×m matrix, then AT is an m× n matrix whose Row-j Column-` component
is the Row-` Column-j component of A. We say that A is symmetric if AT = A.

We use (·)∗ to denote componentwise complex conjugation. Thus, if a is as
in (17.1), then

a∗ =


(
a(1)

)∗(
a(2)

)∗
...(

a(n)
)∗
 . (17.3)

We use (·)† to denote Hermitian conjugation, i.e., the componentwise conjugate
of the transposed matrix. Thus, if a is as in (17.1), then a† is the 1× n matrix

a† =
((
a(1)

)∗
, . . . ,

(
a(n)

)∗)
. (17.4)

The Hermitian conjugate A† of an n×m matrix A is an m×n matrix whose Row-j
Column-` component is the complex conjugate of the Row-` Column-j component
of the matrix A. We say that a matrix A is conjugate-symmetric or self-adjoint
or Hermitian if A† = A.



17.3 Complex Random Variables 285

Note that if a and b are n-vectors, then aTb is a scalar

aTb =
n∑
j=1

a(j)b(j), (17.5)

whereas abT is the n× n matrix

abT =



a(1)b(1) a(1)b(2) . . . a(1)b(n)

a(2)b(1) a(2)b(2) . . . a(2)b(n)

...
...

...
...

...
...

...
...

a(n)b(1) a(n)b(2) . . . a(n)b(n)

 .

17.3 Complex Random Variables

We say that C is a complex random variable (CRV) on the probability space
(Ω,F , P ) if C : Ω→ C is a mapping from Ω to the complex field C such that both
Re(C) and Im(C) are random variables on (Ω,F , P ).

Any CRV Z can be written in the form Z = X + iY , where X and Y are real
random variables. But there are some advantages to studying complex random
variables over pairs of real random variables. Those will become apparent when we
discuss analytic functions of complex random variables and when we discuss com-
plex random variables that have special properties such as that of being “proper”
or that of being “circularly-symmetric.”

Many of the definitions related to complex random variables are similar to the
analogous definitions for pairs of real random variables, but some are not. We
shall try to emphasize the latter.

17.3.1 Distribution and Density

Since it makes no sense to say that one complex number is smaller than another, we
cannot define the cumulative distribution function (CDF) of a CRV as in the real
case: an expression like “Pr[Z ≤ 1 + i]” is meaningless. We can, however, discuss
the joint distribution function of the real and imaginary parts of a CRV, which
specifies Pr[Re(Z) ≤ x, Im(Z) ≤ y] for all x, y ∈ R. We say that two complex
random variables W and Z are of equal law (or have the same distribution) and
write W L= Z, if the joint distribution of the pair (Re(W ), Im(W )) is identical to
the joint distribution of the pair (Re(Z), Im(Z)):

(
W

L= Z
)
⇔(

Pr
[
Re(W ) ≤ x, Im(W ) ≤ y

]
= Pr

[
Re(Z) ≤ x, Im(Z) ≤ y

]
, x, y ∈ R

)
. (17.6)
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Similarly, we can define the density function fZ(·) (if it exists) of a CRV Z at the
point z ∈ C as the joint density of the real pair (Re(Z), Im(Z)) at (Re(z), Im(z)):

fZ(z) , fRe(Z),Im(Z)

(
Re(z), Im(z)

)
, z ∈ C, (17.7)

which can also be written as

fZ(z) =
∂2

∂x ∂y
Pr
[
Re(Z) ≤ x, Im(Z) ≤ y

]∣∣∣∣
x=Re(z),y=Im(z)

, z ∈ C. (17.8)

The notions of distribution function and density of a CRV extend immediately to
pairs of complex variables and, more generally, to n-tuples.

17.3.2 The Expectation

The expectation of a CRV can be defined in terms of the expectations of its real
and imaginary parts:

E[Z] = E[Re(Z)] + i E[Im(Z)] , (17.9)

provided that the two real expectations E[Re(Z)] and E[Im(Z)] are finite. With
this definition one can readily verify that, whenever E[Z] is defined, conjugation
and expectation commute

E[Z∗] = (E[Z])∗, (17.10)

and

Re
(
E[Z]

)
= E
[
Re(Z)

]
, (17.11a)

Im
(
E[Z]

)
= E
[
Im(Z)

]
. (17.11b)

If the CRV Z has a density fZ(·), then the expectation E[g(Z)] for some measurable
function g : C→ C can be formally written as

E
[
g(Z)

]
=
∫
z∈C

fZ(z)g(z) dz (17.12)

or, in terms of real integrals, as

E
[
g(Z)

]
=
∫ ∞

−∞

∫ ∞

−∞
fZ(x+ iy) Re

(
g(x+ iy)

)
dx dy

+ i

∫ ∞

−∞

∫ ∞

−∞
fZ(x+ iy) Im

(
g(x+ iy)

)
dx dy. (17.13)

Thus, rather than computing the distribution of g(Z) and of then computing the
expectations of its real and imaginary parts, one can use (17.12).
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17.3.3 The Variance

The definition of the variance of a CRV is not consistent with viewing the CRV as
a pair of real random variables. The variance Var[Z] of a CRV Z is defined as

Var[Z] , E
[
|Z − E[Z]|2

]
(17.14a)

= E
[
|Z|2

]
− |E[Z]|2 (17.14b)

= Var
[
Re(Z)

]
+ Var

[
Im(Z)

]
. (17.14c)

This definition should be contrasted with the definition of the covariance matrix
of the pair (Re(Z), Im(Z))(

Var
[
Re(Z)

]
Cov

[
Re(Z), Im(Z)

]
Cov

[
Re(Z), Im(Z)

]
Var
[
Im(Z)

] )
.

One can compute the variance of Z from the covariance matrix of (Re(Z), Im(Z)),
but not the other way around. Indeed, the variance of Z is just the trace of the
covariance matrix of (Re(Z), Im(Z)).

To derive (17.14b) from (17.14a) we note that

E
[
|Z − E[Z]|2

]
= E
[
(Z − E[Z])(Z − E[Z])∗

]
= E
[
(Z − E[Z])(Z∗ − E[Z∗])

]
= E
[
(Z − E[Z])Z∗

]
− E
[
(Z − E[Z])

]
E
[
Z∗
]

= E
[
(Z − E[Z])Z∗

]
= E[ZZ∗]− E[Z]E[Z∗]

= E
[
|Z|2

]
− |E[Z]|2,

where we only used the linearity of expectation and (17.10). Here the first equality
follows by writing |w|2 as ww∗; the second by (17.10); the third by simple algebra;
the fourth because the expectation of Z − E[Z] is zero; and the final by (17.10).

To derive (17.14c) from (17.14b) we write E
[
|Z|2

]
as E

[
(Re(Z))2 + (Im(Z))2

]
and

express |E[Z]|2 using (17.9) as E[Re(Z)]2 + E[Im(Z)]2.

17.3.4 Proper Complex Random Variables

Many of the complex random variables that appear in Digital Communications
are proper. This is a concept that has no natural counterpart for real random
variables.

Definition 17.3.1 (Proper CRV). We say that the CRV Z is proper if the following
three conditions are all satisfied: it is of zero-mean; it is of finite-variance; and

E
[
Z2
]

= 0. (17.15)

Notice that the LHS of (17.15) is, in general, a complex number, so (17.15) is
equivalent to two real equations:

E
[
Re(Z)2

]
= E

[
Im(Z)2

]
(17.16a)
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and
E
[
Re(Z) Im(Z)

]
= 0. (17.16b)

This leads to the following characterization of proper complex random variables.

Proposition 17.3.2. A CRV Z is proper if, and only if, all three of the following
conditions are satisfied: Z is of zero mean; Re(Z) & Im(Z) have the same finite
variance; and Re(Z) & Im(Z) are uncorrelated.

An example of a proper CRV is one taking on the four values {±1,±i} equiprobably.

We mentioned earlier in Section 17.3.3 that the variance of a CRV is not the
same as the covariance matrix of the tuple consisting of its real and imaginary
parts. While the covariance matrix determines the variance, the variance does not
uniquely determine the covariance matrix. However, if a CRV is proper, then its
variance uniquely determines the covariance matrix of its real and imaginary parts.
Indeed, by Proposition 17.3.2, a zero-mean finite-variance CRV is proper if, and
only if, the covariance matrix of the pair (Re(Z), Im(Z)) is given by(

1
2Var[Z] 0

0 1
2Var[Z]

)
.

17.3.5 The Covariance

The covariance Cov[Z,W ] between the complex random variables Z and W is
defined by

Cov[Z,W ] , E
[(
Z − E[Z]

)(
W − E[W ]

)∗]
. (17.17)

Again, this definition is different from the one for pairs of real random variables:
the covariance between two pairs of real random variables is a real matrix, whereas
the covariance between two CRVs is a complex scalar.

Some of the key properties of the covariance are listed next. They hold whenever
the α’s and β’s are deterministic complex numbers and the covariances on the RHS
are defined.

(i) Conjugate Symmetry:

Cov[Z,W ] =
(
Cov[W,Z]

)∗
. (17.18)

(ii) Sesquilinearity:
Cov[αZ,W ] = αCov[Z,W ] , (17.19)

Cov[Z1 + Z2,W ] = Cov[Z1,W ] + Cov[Z2,W ] , (17.20)

Cov[Z, βW ] = β∗Cov[Z,W ] , (17.21)

Cov[Z,W1 +W2] = Cov[Z,W1] + Cov[Z,W2] , (17.22)

and, more generally,

Cov

[ n∑
j=1

αjZj ,

n′∑
j′=1

βj′Wj′

]
=

n∑
j=1

n′∑
j′=1

αjβ
∗
j′Cov[Zj ,Wj′ ] . (17.23)
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(iii) Relation with Variance:

Var[Z] = Cov[Z,Z] . (17.24)

(iv) Variance of Linear Functionals:

Var

[ n∑
j=1

αjZj

]
=

n∑
j=1

n∑
j′=1

αjα
∗
j′Cov[Zj , Zj′ ] . (17.25)

17.3.6 The Characteristic Function

The definition of the characteristic function of a CRV is consistent with viewing it as
a pair of real random variables. Recall that the characteristic function ΦX : R→ C
of a real random variable X is defined by

ΦX : $ 7→ E
[
ei$X

]
, $ ∈ R. (17.26)

For a pair of real random variables X,Y the joint characteristic function is the
mapping ΦX,Y : R2 → C defined by

ΦX,Y : ($1, $2) 7→ E
[
ei($1X+$2Y )

]
, $1, $2 ∈ R. (17.27)

Note that the expectations in (17.26) and (17.27) are always defined, because the
argument to the expectation operator is of modulus one (| eir | = 1, whenever r is
real). This motivates us to define the characteristic function for a complex random
variable as follows.

Definition 17.3.3 (Characteristic Function of a CRV). The characteristic func-
tion ΦZ : C→ C of a complex random variable Z is defined as

ΦZ($) , E
[
ei Re($∗Z)

]
, $ ∈ C

= E
[
ei(Re($) Re(Z)+Im($) Im(Z))

]
, $ ∈ C.

Here we can think of Re($) and Im($) as playing the role of $1 and $2 in (17.27).

17.3.7 Transforming Complex Variables

We next calculate the density of the result of applying a (deterministic) transfor-
mation to a CRV. The key to the calculation is to treat the CRV as a pair of real
random variables and to then apply the analogous result regarding the transfor-
mation of a random real tuple. To that end we recall the following basic theorem
regarding the transformation of real random vectors. In the theorem’s statement
we encounter the notion of an open subset of Rn. Loosely speaking, D ⊆ Rn is an
open subset of Rn if to each x ∈ D there corresponds some ε > 0 such that the
ball of radius ε and center x is fully contained in D.1

1Thus, D is an open subset of Rn if D ⊆ Rn and if to each x ∈ D there corresponds some
ε > 0 such that each y ∈ Rn satisfying (x− y)T(x− y) ≤ ε2 is in D.
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Theorem 17.3.4 (Transforming Real Random Vectors). Let g : D → R be a one-
to-one mapping from an open subset D of Rn onto a subset R of Rn. Assume
that g has continuous partial derivatives in D and that the Jacobian determinant
det (∂g(x)/∂x) is at no point of D zero. Let the real random n-vector X have
the density function fX(·) and satisfy Pr[X ∈ D] = 1. Then the random n-vector
Y = g(X) is of density

fY(y) =
fX(x)∣∣∣det ∂g(x)

∂x

∣∣∣
∣∣∣∣∣∣
x=g−1(y)

· I{y ∈ R}. (17.28)

Using Theorem 17.3.4 we can relate the density of a CRV Z and the joint distri-
bution of its phase and magnitude.

Lemma 17.3.5 (The Joint Density of the Magnitude and Phase of a CRV). Let Z
be a CRV of density fZ(·), and let R = |Z| and Θ ∈ [−π, π) be the magnitude and
argument of Z:

Z = ReiΘ, Z ≥ 0, Θ ∈ [−π, π).

Then the joint distribution of the pair (R,Θ) is of density

fR,Θ(r, θ) = rfZ
(
r eiθ

)
, r > 0, θ ∈ [−π, π). (17.29)

Proof. This result follows directly from Theorem 17.3.4 by computing the absolute
value of the Jacobian determinant of the transformation2 (x, y) 7→ (r, θ) where
r =

√
x2 + y2 and θ = tan−1(y/x):∣∣∣∣∣det

(
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

)∣∣∣∣∣ = 1√
x2 + y2

=
1
r
.

For the next change-of-variables result we recall some basic concepts from Complex
Analysis. Given some z0 ∈ C and some nonnegative real number r ≥ 0, we denote
by D(z0, r) the disc of radius r that is centered at z0:

D(z0, r) , {z ∈ C : |z − z0| < r}.

We say that a subset D of the complex plane is open if to each z ∈ D there
corresponds some ε > 0 such that D(z0, ε) ⊆ D. Let g : D → C be some function
from an open set D ⊆ C to C. Let z0 be in D. We say that g(·) is differentiable
at z0 ∈ D and that its derivative at z0 is the complex number g′(z0), if for every
ε > 0 there exists some δ > 0 such that∣∣∣∣∣g

(
z0 + h

)
− g
(
z0
)

h
− g′

(
z0
)∣∣∣∣∣ ≤ ε, (17.30)

2Here D is the set R2 without the origin.
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whenever the complex number h ∈ C satisfies 0 < |h| ≤ δ. It is important to note
that here h is complex. If g is differentiable at every z ∈ D, then we say that g is
holomorphic or analytic in D.3

Define the mappings

u,v : {x, y ∈ R : x+ iy ∈ D} → R (17.31a)

by
u(x, y) = Re

(
g(x+ iy)

)
, (17.31b)

and
v(x, y) = Im

(
g(x+ iy)

)
. (17.31c)

Proposition 17.3.6 (The Cauchy-Riemann Equations). Let D ⊆ C be open and
let g : D → C be analytic in D. Let u,v be defined by (17.31). Then u and v
satisfy the Cauchy-Riemann equations

∂u(x, y)
∂x

=
∂v(x, y)
∂y

, (17.32a)

∂u(x, y)
∂y

= −∂v(x, y)
∂x

(17.32b)

at every x, y ∈ R such that x+ iy ∈ D, and

g′(z) =
(
∂u(x, y)
∂x

+ i
∂v(x, y)
∂x

)∣∣∣∣
(x,y)=(Re(z),Im(z))

, z ∈ D. (17.33)

Moreover, the partial derivatives in (17.32) are continuous in the subset of R2

defined by {x, y ∈ R : x+ iy ∈ D}.

Proof. See (Rudin, 1974, Chapter 11, Theorem 11.2 & Theorem 11.4) or (Nehari,
1975, Chapter II, Section 5 & Chapter III, Section 3).

We can now state the change-of-variables theorem for CRVs.

Theorem 17.3.7 (Transforming Complex Random Variables). Let g : D → R be
a one-to-one mapping from an open subset D of C onto a subset R of C. Assume
that g is analytic in D and that at no point of D is the derivative of g zero. Let
the CRV have the density function fZ(·) and satisfy Pr[Z ∈ D] = 1. Then the CRV
defined by W = g(Z) is of density

fW (w) =
fZ(z)
|g′(z)|2

∣∣∣∣
z=g−1(w)

I{w ∈ R}. (17.34)

Here g−1(w) denotes the point in D that is mapped by g to w.

3There is some confusion in the literature about the terms analytic, holomorphic, and
regular. We are following here (Rudin, 1974).
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Note 17.3.8. The square in (17.34) does not appear in dealing with real random
variables. It appears here because a mapping of complex numbers is essentially
two-dimensional: scaling by α ∈ C translates to a scaling of area by |α|2.

Proof. To prove (17.34) we begin by expressing the function g(·) as

g(x+ iy) = u(x, y) + iv(x, y),
(
x, y ∈ R, x+ iy ∈ D

)
,

where u(x, y) = Re(g(x + iy)) and v(x, y) = Im(g(x + iy)) are defined in (17.31b)
and (17.31c). The density of g(Z) is, by definition, the joint density of the pair
u(Re(Z), Im(Z)), v(Re(Z), Im(Z)). And the joint density of the pair(Re(Z), Im(Z))
is just the density of Z. Thus, if we could relate the joint density of the pair
u(Re(Z), Im(Z)), v(Re(Z), Im(Z)) to the joint density of the pair (Re(Z), Im(Z)),
then we could relate the density of g(Z) to the density of Z.

To relate the joint density of the pair u(Re(Z), Im(Z)), v(Re(Z), Im(Z)) to the
joint density of the pair (Re(Z), Im(Z)) we employ Theorem 17.3.4. To that end
we need to compute the absolute value of the Jacobian determinant. This we do
as follows: ∣∣∣∣∣det

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)∣∣∣∣∣ =
∣∣∣∣det

(
∂u
∂x − ∂v

∂x
∂v
∂x

∂u
∂x

)∣∣∣∣
=
(
∂u

∂x

)2

+
(
∂v

∂x

)2

= |g′(x+ iy)|2, (17.35)

where the first equality follows from the Cauchy-Riemann equations (17.32); the
second from a direct calculation of the determinant of a 2 × 2 matrix; and where
the last equality follows from (17.33). The theorem now follows from (17.35) and
Theorem 17.3.4.

17.4 Complex Random Vectors

We say that Z = (Z(1), . . . , Z(n))T is a complex random vector on the probability
space (Ω,F , P ) if it is a mapping from the outcome set Ω to Cn such that the real
vector (

Re
(
Z(1)

)
, Im

(
Z(1)

)
, . . . ,Re

(
Z(n)

)
, Im

(
Z(n)

))T

comprising the real and imaginary parts of its components is a real random vector
on (Ω,F , P ), i.e., if each of the components of Z is a CRV.

We say that the complex random vector Z = (Z(1), . . . , Z(n))T and the complex
random vector W = (W (1), . . . ,W (n))T are of equal law (or have the same distri-
bution) and write Z L= W, if the real vector taking value in R2n whose components
are the real and imaginary parts of the components of Z has the same distribution
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as the analogous vector for W, i.e., if for all x1, . . . , xn, y1, . . . , yn ∈ R

Pr
[
Re
(
Z(1)

)
≤ x1, Im

(
Z(1)

)
≤ y1, . . . ,Re

(
Z(n)

)
≤ xn, Im

(
Z(n)

)
≤ yn

]
= Pr

[
Re
(
W (1)

)
≤ x1, Im

(
W (1)

)
≤ y1, . . . ,Re

(
W (n)

)
≤ xn, Im

(
W (n)

)
≤ yn

]
.

The expectation of a complex random vector is the vector consisting of the ex-
pectation of each of its components. We say that a complex random vector is of
finite variance if each of its components is a CRV of finite variance.

17.4.1 The Covariance Matrix

The discussion in Section 17.3.5 can be generalized to random complex vectors.
The covariance matrix KZZ of a finite-variance complex random n-vector Z is
defined as the conjugate-symmetric n× n matrix

KZZ , E
[
(Z− E[Z])(Z− E[Z])†

]
. (17.36)

Once again, this definition is not consistent with viewing the random complex
vector as a vector of length 2n of real random variables. The latter would have a
real symmetric 2n× 2n covariance matrix.

The reader may wonder why we have chosen to define the covariance and the covari-
ance matrix with the conjugation sign. Why not look at E

[
(Z− E[Z])(Z− E[Z])T

]
?

The reason is that (17.36) is simply much more useful in applications. For example,
for any deterministic α1, . . . , αn ∈ C the variance of

∑n
j=1 αjZj can be computed

from KZZ (using (17.25)) but not from E
[
(Z− E[Z])(Z− E[Z])T

]
.

17.4.2 Proper Complex Random Vectors

The notion of proper random variables extends to vectors:

Definition 17.4.1 (Proper Complex Random Vector). A complex random vector Z
is said to be proper if the following three conditions are all met: it is of zero mean;
it is of finite variance; and

E
[
ZZT

]
= 0. (17.37)

An alternative definition can be given based on linear functionals:

Proposition 17.4.2. The complex random n-vector Z is proper if, and only if, for
every deterministic vector α ∈ Cn the CRV αTZ is proper.

Proof. We begin by noting that Z is of zero mean if, and only if, αTZ is of zero
mean for all α ∈ Cn. This can be seen from the relation

E
[
αTZ

]
= αTE[Z] , α ∈ Cn. (17.38)

Indeed, (17.38) demonstrates that if Z is of zero mean then so is αTZ for every
α ∈ Cn. Conversely, if αTZ is of zero mean for all α ∈ Cn, then, a fortiori, it must
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also be of zero mean for the choice of α = E[Z]∗, which yields that 0 = E[Z]† E[Z]
and hence that E[Z] must be zero (because E[Z]† E[Z] is the sum of the squared
magnitudes of the components of E[Z]).

We next note that Z is of finite variance if, and only if, αTZ is of finite variance
for every α ∈ Cn. The proof is not difficult and is omitted.

We thus continue with the proof under the assumption that Z is of zero mean and
of finite variance. We note that for any deterministic complex vector α ∈ Cn

E
[
(αTZ)2

]
= E

[
(αTZ)(αTZ)

]
= E

[
(αTZ)(αTZ)T

]
= E

[
αTZZTα

]
= αTE

[
ZZT

]
α, α ∈ Cn, (17.39)

where the first equality follows by writing the square of a random variable as the
product of the variable by itself; the second because the transpose of a scalar is
the original scalar; the third by the transpose rule

(AB)T = BTAT, (17.40)

and the final equality because α is deterministic.

From (17.39) it follows that if Z is proper, then so is αTZ for all α ∈ Cn. Actually,
(17.39) also proves the reverse implication by substituting A = E

[
ZZT

]
in the

following fact from Matrix Theory:(
αTAα = 0, α ∈ Cn

)
⇒
(
A = 0

)
, A symmetric. (17.41)

To prove this fact from Matrix Theory assume that A is symmetric, i.e., that

a(j,`) = a(`,j), j, ` ∈ {1, . . . , n}. (17.42)

Let α = e` where e` is all-zero except for its `-th component, which is one. The
equality eT

` Ae` = 0 for every ` ∈ {1, . . . , n} is equivalent to

a(`,`) = 0, ` ∈ {1, . . . , n}. (17.43)

Next choose α = ej + e`. The equality

(ej + e`)TA(ej + e`) = 0

for every j, ` ∈ {1, . . . , n} is then equivalent to

a(j,`) + a(j,j) + a(`,j) + a(`,`) = 0, j, ` ∈ {1, . . . , n}. (17.44)

Equations (17.42), (17.43), and (17.44) guarantee that the matrix A is all-zero.

An important observation regarding complex random vectors is that a linearly-
transformed proper vector is also proper:
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Proposition 17.4.3 (Linear Transformation of a Proper Random Vector). If the
complex random n-vector Z is proper, then so is the complex random m-vector AZ
for every deterministic m× n complex matrix A.

Proof. We leave it to the reader to verify that the hypothesis that Z is proper
implies that AZ must be of zero mean and of finite variance. To show that AZ
is proper, it thus remains to show that E

[
(AZ)(AZ)T

]
= 0. This we do by direct

calculation:

E
[
(AZ)(AZ)T

]
= E

[
AZZTAT

]
= AE

[
ZZT

]
AT

= 0,

where the first equality follows from the rule for the transpose of a product, namely,
(AB)T = BTAT; the second because A is deterministic; and the last from the
hypothesis that Z is proper, so E

[
ZZT

]
= 0.

17.4.3 The Characteristic Function

The definition we gave in Section 17.3.6 for the characteristic function of a CRV
extends naturally to vectors: the characteristic function ΦZ : Cn → C of a complex
random n-vector Z is defined as

ΦZ($) , E
[
ei Re($†Z)

]
, $ ∈ Cn.

Invoking the analogous result for tuples of real random variables we have:

Theorem 17.4.4. The complex random vectors Z and W are of equal law if, and
only if, their characteristic functions are identical:(

Z L= W
)
⇔
(
ΦZ($) = ΦW($), $ ∈ Cn

)
. (17.45)

Corollary 17.4.5. The complex random n-vectors Z and W are of equal law if, and
only if, for every deterministic vector α ∈ Cn the complex random variables αTZ
and αTW are of equal law:(

Z L= W
)
⇔
(
αTZ L= αTW, α ∈ Cn

)
. (17.46)

Proof. The direction that needs proof is that equality in law of all linear combi-
nations implies equality in law between the vectors. But this readily follows from
the theorem because equality in law of the linear combinations implies that the
law of $†Z is equal to the law of $†W for every $ ∈ Cn. This in turn implies
ei Re($†Z) L= ei Re($†W), from which, upon taking expectations, we obtain that Z
and W have identical characteristic functions. Thus, by the theorem, they are
equal in law.
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17.4.4 Transforming Complex Random Vectors

The change of density rule (17.34) can be generalized to analytic multi-variable
mappings (Exercise 17.6). But here we shall only present a version of this result
for linear mappings:

Lemma 17.4.6 (Linearly Transforming Complex Random Vectors). Let the com-
plex random n-vector W be given by

W = AZ,

where A is a nonsingular deterministic complex n×n matrix, and where the complex
random n-vector Z has the density fZ(·). Then W is of density

fW(w) =
1

|det A|2
fZ(A−1w), w ∈ Cn. (17.47)

Proof. The proof is based on viewing the complex n × n linear transformation
from Z to W as a 2n×2n real transformation, and on then applying Theorem 17.3.4.

Stack the real parts of the components of Z on top of the imaginary parts in a real
random 2n-vector S:

S =
(
Re
(
Z(1)

)
, . . . ,Re

(
Z(n)

)
, Im

(
Z(1)

)
, . . . , Im

(
Z(n)

))T

. (17.48)

Similarly, stack the real parts of the components of W on top of the imaginary
parts in a real random 2n-vector T:

T =
(
Re
(
W (1)

)
, . . . ,Re

(
W (n)

)
, Im

(
W (1)

)
, . . . , Im

(
W (n)

))T

.

We can then express T as the result of multiplying the random vector S by a
2n× 2n real matrix:

T =
(

Re(A) − Im(A)
Im(A) Re(A)

)
S,

where Re(A) and Im(A) denote the componentwise real and imaginary parts of A.

The result will follow from Theorem 17.3.4 once we show that the absolute value
of the Jacobian determinant of this transformation is |det A|2. Using elementary
row and column operations we compute:

det
(

Re(A) − Im(A)
Im(A) Re(A)

)
= det

(
A − Im(A)
−iA Re(A)

)
= det

(
A − Im(A)
0 A∗

)
= (det A) (det A∗)

= |det A|2,

where the first equality follows by the elementary column operations of multiplying
the right columns by (−i) and adding the result to the left columns; the second
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from the elementary row operations of multiplying the top rows by i and adding
the result to the bottom rows; the third from the identity

det
(

B C
0 D

)
= (det B) (det D);

and the last by noting that for any square matrix B

det(B∗) = (det B)∗.

17.5 Discrete-Time Complex Stochastic Processes

Definition 12.2.1 of a real stochastic process extends to the complex case as follows.

Definition 17.5.1 (Complex Stochastic Process). A complex stochastic pro-
cess (CSP)

(
Z(t), t ∈ T

)
is a collection of complex random variables that are

defined on a common probability space (Ω,F , P ) and that are indexed by some
set T .

A CSP
(
Z(t), t ∈ T

)
is said to be centered if for each t ∈ T the CRV Z(t) is of

zero mean. Similarly, the CSP is said to be of finite variance if for each t ∈ T the
CRV Z(t) is of finite variance. A discrete-time CSP corresponds to the case where
the index set T is the set of integers Z. Discrete-time complex stochastic processes
are not very different from the real-valued ones we encountered in Chapter 13.
Consequently, we shall present the main definitions and results succinctly with
an emphasis on the issues where the complex and real processes differ. As in
Chapter 13, when dealing with a discrete-time CSP we shall use subscripts to
index the complex random variables and denote the process by

(
Zν , ν ∈ Z

)
or,

more succinctly, by
(
Zν
)
.

A discrete-time CSP
(
Zν , ν ∈ Z

)
is said to be stationary, or strict-sense sta-

tionary, or strongly stationary if for every positive integer n and for every
η, η′ ∈ Z, the joint distribution of the n-tuple (Zη, . . . Zη+n−1) is identical to the
joint distribution of the n-tuple (Zη′ , . . . , Zη′+n−1). This definition is essentially
identical to the analogous definition for real processes (Definition 13.2.1). Similarly,
Proposition 13.2.2 holds verbatim also for complex stochastic processes. Proposi-
tion 13.2.3 also holds for complex stochastic processes with the slight modification
that the deterministic coefficients α1, . . . , αn are now allowed to be arbitrary com-
plex numbers:

Proposition 17.5.2. A discrete-time CSP
(
Zν
)

is stationary if, and only if, for
every n ∈ N, all η, ν1, . . . , νn ∈ Z, and all α1, . . . , αn ∈ C,

n∑
j=1

αjZνj
L=

n∑
j=1

αjZνj+η. (17.49)

The definition of a wide-sense stationary CSP is very similar to the analogous
definition for real processes (Definition 13.3.1).



298 Complex Random Variables and Processes

Definition 17.5.3 (Wide-Sense Stationary Discrete-Time CSP). We say that
a discrete-time CSP

(
Zν
)

is wide-sense stationary or weakly stationary or
covariance stationary if the following three conditions all hold:

1) For every ν ∈ Z the CRV Zν is of finite variance.

2) The mean of Zν does not depend on ν.

3) The expectation E[ZνZ∗ν′ ] depends on ν′ and ν only via their difference ν−ν′:

E[ZνZ∗ν′ ] = E
[
Zν+ηZ

∗
ν′+η

]
, ν, ν′, η ∈ Z. (17.50)

Note the conjugation in (17.50). We do not require that E[Zν′Zν ] be computable
from ν − ν′; it may or may not be. Thus, we do not require that the matrix(

E[Re(Zν′) Re(Zν)] E[Re(Zν′) Im(Zν)]
E[Im(Zν′) Re(Zν)] E[Im(Zν′) Im(Zν)]

)
be computable from ν− ν′. This matrix is, however, computable from ν− ν′ if the
process is proper:

Definition 17.5.4 (Proper CSP). A discrete-time CSP
(
Zν
)

is said to be proper
if the following three conditions all hold: it is centered; it is of finite variance; and

E[ZνZν′ ] = 0, ν, ν′ ∈ Z. (17.51)

Equivalently, a discrete-time CSP
(
Zν
)

is proper if, and only if, for every positive
integer n and all ν1, . . . , νn ∈ Z the complex random vector (Zν1 , . . . , Zνn)T is
proper. Equivalently,

(
Zν
)

is proper if, and only if, for every positive integer n, all
α1, . . . , αn ∈ C, and all ν1, . . . , νn ∈ Z

n∑
j=1

αjZνj is proper (17.52)

(Proposition 17.4.2).

The alternative definition of WSS real processes in terms of the variance of linear
functionals of the process (Proposition 13.3.3) requires little change:

Proposition 17.5.5. A finite-variance discrete-time CSP
(
Zν
)

is WSS if, and only
if, for every n ∈ N, all η, ν1, . . . , νn ∈ Z, and all α1, . . . , αn ∈ C

n∑
j=1

αjZνj and
n∑
j=1

αjZνj+η have the same mean & variance. (17.53)

Proof. We begin by assuming that
(
Zν
)

is WSS and prove (17.53). The equality
of expectations follows directly from the linearity of expectation and from the fact
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that because
(
Zν
)

is WSS the mean of Zν does not depend on ν. In proving the
equality of the variances we use (17.25):

Var

[ n∑
j=1

αjZνj+η

]
=

n∑
j=1

n∑
j′=1

αjα
∗
j′Cov

[
Zνj+η, Zνj′+η

]
=

n∑
j=1

n∑
j′=1

αjα
∗
j′Cov

[
Zνj , Zνj′

]
= Var

[ n∑
j=1

αjZνj

]
,

where the second equality follows from the wide-sense stationarity of
(
Zν
)

and the
last equality again from (17.25).

We next turn to proving that (17.53) implies that
(
Zν
)

is WSS. Choosing n = 1 and
α1 = 1 we obtain, by considering the equality of the means, that E[Zν ] = E[Zν+η]
for all η ∈ Z, i.e., that the mean of the process is constant. And, by considering
the equality of the variances, we obtain that the random variables

(
Zν
)

all have
the same variance

Var[Zν ] = Var[Zν+η] , ν, η ∈ Z. (17.54)

Choosing n = 2 and α1 = α2 = 1 we obtain from the equality of the variances

Var[Zν1 + Zν2 ] = Var[Zν1+η + Zν2+η] . (17.55)

But, by (17.25) and (17.54),

Var[Zν1 + Zν2 ] = 2Var[Z1] + 2 Re
(
Cov[Zν1 , Zν2 ]

)
(17.56)

and similarly

Var[Zν1+η + Zν2+η] = 2Var[Z1] + 2 Re
(
Cov[Zν1+η, Zν2+η]

)
. (17.57)

By (17.55), (17.56), and (17.57)

Re
(
Cov[Zν1+η, Zν2+η]

)
= Re

(
Cov[Zν1 , Zν2 ]

)
, η, ν1, ν2 ∈ Z. (17.58)

We now repeat the argument with α1 = 1 and α2 = i:

Var[Zν1 + iZν2 ] = Var[Zν1 ] + Var[Zν2 ] + 2 Re
(
Cov[Zν1 , iZν2 ]

)
= 2Var[Z1] + 2 Im

(
Cov[Zν1 , Zν2 ]

)
and similarly

Var[Zν1+η + iZν2+η] = 2Var[Z1] + 2 Im
(
Cov[Zν1+η, Zν2+η]

)
,

so the equality of the variances implies

Im
(
Cov[Zν1+η, Zν2+η]

)
= Im

(
Cov[Zν1 , Zν2 ]

)
, η, ν1, ν2 ∈ Z,

which combines with (17.58) to prove Cov[Zν1+η, Zν2+η] = Cov[Zν1 , Zν2 ].
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As with real processes, a comparison of Propositions 17.5.5 and 17.5.2 yields that
any finite-variance stationary CSP is also WSS. The reverse is not true.

Definition 17.5.6 (Autocovariance Function). We define the autocovariance func-
tion KZZ : Z→ C of a discrete-time WSS CSP

(
Zν
)

as4

KZZ(η) , Cov[Zν+η, Zν ] (17.59)

= E
[(
Zν+η − E[Z1]

)(
Zν − E[Z1]

)∗]
, η ∈ Z.

By mimicking the derivations of (13.12) (taking into account the conjugate symme-
try (17.18)) we obtain that the autocovariance function KZZ of every discrete-time
WSS CSP

(
Zν
)

satisfies the conjugate-symmetry condition

KZZ(−η) = K∗ZZ(η) , η ∈ Z. (17.60)

Similarly, by mimicking the derivation of (13.13) (i.e., from the nonnegativity of
the variance and from (17.25)), we obtain that the autocovariance function of such
a process satisfies

n∑
ν=1

n∑
ν′=1

ανα
∗
ν′ KZZ(ν − ν′) ≥ 0, α1, . . . , αn ∈ C. (17.61)

In analogy to the real case, (17.60) and (17.61) fully characterize the possible
autocovariance functions in the sense that any function K : Z→ C satisfying

K(−η) = K∗(η), η ∈ Z (17.62)

and
n∑
ν=1

n∑
ν′=1

ανα
∗
ν′K(ν − ν′) ≥ 0, α1, . . . , αn ∈ C (17.63)

is the autocovariance function of some discrete-time WSS CSP.5 If K : Z → C
satisfies (17.62) and (17.63), then we say that K(·) is a positive definite function
from the integers to the complex field.

Definition 13.16 of the power spectral density SZZ requires no change. We
require that SZZ be integrable on the interval [−1/2, 1/2) and that

KZZ(η) =
∫ 1/2

−1/2

SZZ(θ) e−i2πηθ dθ, η ∈ Z. (17.64)

Proposition 13.6.3 does require some alteration. Indeed, for complex stochastic
processes the PSD need not be a symmetric function. However, the main result
(that the PSD is real and nonnegative) remains true:

4Some authors, e.g., (Grimmett and Stirzaker, 2001), define KZZ(m) as Cov[Zν , Zν+m]. Our
definition follows (Doob, 1990).

5In fact, it is the autocovariance function of some proper Gaussian stochastic process. Com-
plex Gaussian random processes will be discussed in Chapter 24.
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Proposition 17.5.7 (PSDs of Complex Processes Are Nonnegative).

(i) If the discrete-time WSS CSP
(
Zν
)

is of PSD SZZ , then

SZZ(θ) ≥ 0, (17.65)

except possibly on a subset of the interval [−1/2, 1/2) of Lebesgue measure
zero.

(ii) If a function S : [−1/2, 1/2) → R is integrable and nonnegative, then there
exists a proper discrete-time WSS CSP6

(
Zν
)

whose PSD SZZ is given by

SZZ(θ) = S(θ), θ ∈ [−1/2, 1/2).

As in the real case, by possibly changing the value of SZZ on the set of Lebesgue
measure zero where (17.65) is violated, we can obtain a power spectral density that
is nonnegative for all θ ∈ [−1/2, 1/2). Consequently, we shall always assume that
the PSD, if it exists, is nonnegative for all θ ∈ [−1/2, 1/2).

Proof. We begin with Part (i) where we need to prove the nonnegativity of the
PSD. We shall only sketch the proof. We recommend reading the appendix through
Theorem A.2.2 before reading this proof.

Let KZZ denote the autocovariance function of the WSS CSP
(
Zν
)
. Applying

(17.61) with
αν = ei2πνθ, ν ∈ {1, . . . , n}

and thus
ανα

∗
ν′ = ei2π(ν−ν′)θ, ν, ν′ ∈ {1, . . . , n},

we obtain

0 ≤
n∑
ν=1

n∑
ν′=1

ανα
∗
ν′ KZZ(ν − ν′)

=
n∑
ν=1

n∑
ν′=1

ei2π(ν−ν′)θ KZZ(ν − ν′)

=
n−1∑

η=−(n−1)

(
n− |η|

)
ei2πηθ KZZ(η), θ ∈ [−1/2, 1/2).

Dividing by n we obtain

0 ≤
n−1∑

η=−(n−1)

(
1− |η|

n

)
ei2πηθ KZZ(η)

=
n−1∑

η=−(n−1)

(
1− |η|

n

)
ei2πηθ ŜZZ(η)

=
(
kn−1 ? SZZ

)
(θ), θ ∈ [−1/2, 1/2),

6The process can be taken to be Gaussian; see Chapter 24.
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where in the equality on the second line ŜZZ(η) denotes the η-th Fourier Series
Coefficient of SZZ and we use (17.64); and in the subsequent equality on the third
line kn denotes the degree-n Fejér kernel (Definition A.1.3).

We have thus established that kn−1 ? SZZ is nonnegative. The result now follows
from Theorem A.2.2 which guarantees that

lim
n→∞

∫ 1/2

−1/2

∣∣SZZ(θ)−
(
kn ? SZZ

)
(θ)
∣∣ dθ = 0.

The proof of Part (ii) is very similar to the proof of the analogous result for real
processes. As in (13.21), we define

K(η) ,
∫ 1/2

−1/2

S(θ) e−i2πηθ dθ, η ∈ Z, (17.66)

and we prove that this function satisfies (17.62) and (17.63). To prove (17.62) we
compute

K(−η) =
∫ 1/2

−1/2

S(θ) e−i2π(−η)θ dθ

=
∫ 1/2

−1/2

S∗(θ) ei2πηθ dθ

=
(∫ 1/2

−1/2

S(θ) e−i2πηθ dθ
)∗

= K∗(η), η ∈ Z,

where the first equality follows from the definition of K(·) (17.66); the second
because S(·) is, by assumption, real; the third because conjugating the integrand
is equivalent to conjugating the integral; and the final equality again by (17.66).

To prove (17.63) we mimic the derivation of (13.22) with the constants α1, . . . , αn
now being complex:

n∑
ν=1

n∑
ν′=1

ανα
∗
ν′K(ν − ν′) =

n∑
ν=1

n∑
ν′=1

ανα
∗
ν′

∫ 1/2

−1/2

S(θ) e−i2π(ν−ν′)θ dθ

=
∫ 1/2

−1/2

S(θ)
( n∑
ν=1

n∑
ν′=1

ανα
∗
ν′ e

−i2π(ν−ν′)θ
)

dθ

=
∫ 1/2

−1/2

S(θ)
( n∑
ν=1

n∑
ν′=1

αν e
−i2πνθ α∗ν′ e

i2πν′θ

)
dθ

=
∫ 1/2

−1/2

S(θ)
( n∑
ν=1

αν e
−i2πνθ

)( n∑
ν′=1

αν′ e
−i2πν′θ

)∗
dθ

=
∫ 1/2

−1/2

S(θ)
∣∣∣∣ n∑
ν=1

αν e
−i2πνθ

∣∣∣∣2 dθ

≥ 0.
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Proposition 13.6.6 needs very little alteration. We only need to drop the symmetry
property:

Proposition 17.5.8 (PSD when KZZ Is Absolutely Summable). If the autocovari-
ance function KZZ of a discrete-time WSS CSP is absolutely summable, i.e.,

∞∑
η=−∞

∣∣KZZ(η)
∣∣ <∞, (17.67)

then the function

S(θ) =
∞∑

η=−∞
KZZ(η) ei2πηθ, θ ∈ [−1/2, 1/2] (17.68)

is continuous, nonnegative, and satisfies∫ 1/2

−1/2

S(θ) e−i2πηθ dθ = KZZ(η), η ∈ Z. (17.69)

The Spectral Distribution Function that we encountered in Section 13.7 has a
natural extension to discrete-time WSS CSPs:

Theorem 17.5.9.

(i) If
(
Zν
)

is a WSS CSP of autocovariance function KZZ , then

KZZ(η) = KZZ(0)E
[
ei2πηΘ

]
, η ∈ Z, (17.70)

for some random variable Θ taking value in the interval [−1/2, 1/2). In
the nontrivial case where KZZ(0) > 0 the distribution function of Θ is fully
specified by KZZ .

(ii) If Θ is any random variable taking value in [−1/2, 1/2) and if α > 0, then
there exists a proper discrete-time WSS CSP

(
Zν
)

whose autocovariance func-
tion KZZ is given by

KZZ(η) = αE
[
ei2πηΘ

]
, η ∈ Z (17.71)

and whose variance is consequently given by KZZ(0) = α.

Proof. See (Shiryaev, 1996, Chapter VI, Section § 1 Theorem 3), (Doob, 1990,
Chapter X § 3 Theorem 3.2), or (Feller, 1971, Chapter XIX, Section 6, Theorem 3).

Some authors refer to the mapping θ 7→ Pr[Θ ≤ θ] as the spectral distribution func-
tion of

(
Zν
)
, but others refer to θ 7→ KZZ(0) Pr[Θ ≤ θ] as the spectral distribution

function. The latter is more common.
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17.6 On the Eigenvalues of Large Toeplitz Matrices

Although it will not be used in this book, we cannot resist stating the following
classic result, which is sometimes called “Szegő’s Theorem.” Let the function
s : [−1/2, 1/2]→ [0,∞) be Lebesgue integrable. Define

cη =
∫ 1/2

−1/2

s(θ) e−i2πηθ dθ, η ∈ Z. (17.72)

(In some applications s(·) is the PSD of a discrete-time real or complex stochastic
process and cη is the value of the corresponding autocovariance function at η.)

The n× n matrix 
c0 c1 . . . cn−1

c−1 c0 . . . cn−2

...
...

. . .
...

c−n+1 . . . . . . c0


is positive semidefinite and conjugate-symmetric. Consequently, is has n nonneg-
ative eigenvalues (counting multiplicity), which we denote by

λ(1)
n ≤ λ(2)

n ≤ · · · ≤ λ(n)
n . (17.73)

As n increases (with s(·) fixed), the number of eigenvalues increases. It turns out
that we can say something quite precise about the distribution of these eigenvalues.

Theorem 17.6.1. Let s : [−1/2, 1/2] → [0,∞) be integrable, and let λ(j)
n be as in

(17.73). Let g : [0,∞)→ R be a continuous function such that the limit limξ→∞
g(ξ)
ξ

exists and is finite. Then

lim
n→∞

1
n

n∑
j=1

g
(
λ(j)
n

)
=
∫ 1/2

−1/2

g
(
s(θ)

)
dθ. (17.74)

Proof. For a proof of a more general statement of this theorem see (Simon, 2005,
Chapter 2, Section 7, Theorem 2.7.13).

17.7 Exercises

Exercise 17.1 (The Distribution of Re(Z) and |Z|). Let the CRV Z be uniformly dis-
tributed over the unit disc {z ∈ C : |z| ≤ 1}.

(i) What is the density of its real part Re(Z)?

(ii) What is the density of its magnitude |Z|?

Exercise 17.2 (The Density of Z2). Let Z be a CRV of density fZ(·). Express the density
of Z2 in terms of fZ(·).
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Exercise 17.3 (The Conjugate of a Proper CRV). Must the complex conjugate of a proper
CRV be proper?

Exercise 17.4 (Product of Proper CRVs). Show that the product of independent proper
complex random variables is proper. Is the assumption of independence essential?

Exercise 17.5 (Sums of Proper CRVs). Show that the sum of independent proper complex
random variables is proper. Is the assumption of independence essential?

Exercise 17.6 (Transforming Complex Random Vectors). Let Z be a complex n-vector
of PDF fZ(·). Let W = g(Z), where g : D → R is a one-to-one function from an open
subset D of Cn to R ⊆ Cn. Let the mappings u,v : R2n → Rn be defined for x,y ∈ Rn
as

u : (x,y) 7→ Re
(
g(x + iy)

)
and v : (x,y) 7→ Im

(
g(x + iy)

)
.

Assume that g is differentiable in D in the sense that for all j, ` ∈ {1, . . . , n} the partial
derivatives

∂u(j)(x,y)

∂x(`)
,
∂u(j)(x,y)

∂y(`)
,
∂v(j)(x,y)

∂x(`)
,
∂v(j)(x,y)

∂y(`)

exist and are continuous in D, and that they satisfy

∂u(j)(x,y)

∂x(`)
=
∂v(j)(x,y)

∂y(`)
and

∂u(j)(x,y)

∂y(`)
= −∂v

(j)(x,y)

∂x(`)
,

where a(j) denotes the j-th component of the vector a. Further assume that the determi-
nant of the Jacobian matrix

det g′(z) = det


∂u(1)(x,y)

∂x(1)
+ i

∂v(1)(x,y)

∂x(1)
. . .

∂u(1)(x,y)

∂x(n)
+ i

∂v(1)(x,y)

∂x(n)

...
. . .

...

∂u(n)(x,y)

∂x(1)
+ i

∂v(n)(x,y)

∂x(1)
. . .

∂u(n)(x,y)

∂x(n)
+ i

∂v(n)(x,y)

∂x(n)


is at no point in D zero. Show that the density fW(·) of W is given by

fW(w) =
fZ(z)

|det g′(z)|2

∣∣∣∣
z=g−1(w)

· I{w ∈ R}.

Exercise 17.7 (The Cauchy-Schwarz Inequality Revisited). Let
(
Z`
)

be a discrete-time
WSS CSP. Show that (17.61) implies∣∣Cov[Z`, Z`′ ]

∣∣ ≤ Var[Z1] , `, `′ ∈ Z.

Exercise 17.8 (On the Autocovariance Function of a Discrete-Time CSP). Show that
if KZZ is the autocovariance function of a discrete-time WSS CSP, then for every n ∈ N,
the matrix 

KZZ(0) KZZ(1) . . . KZZ(n− 1)
KZZ(−1) KZZ(0) . . . KZZ(n− 2)

...
...

. . .
...

KZZ(−n+ 1) KZZ(−n+ 2) . . . KZZ(0)


is positive semidefinite.
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Exercise 17.9 (Reversing the Direction of Time). Let KZZ be the autocovariance function
of some discrete-time WSS CSP

(
Zν
)
. For every ν ∈ Z define Yν = Z−ν . Show that the

time-reversed CSP
(
Yν
)

is also a WSS CSP, and express its autocovariance function KYY
in terms of KZZ .

Exercise 17.10 (The Sum of Autocovariance Functions). Show that the sum of the
autocovariance functions of two discrete-time WSS complex stochastic processes is the
autocovariance function of some discrete-time WSS CSP.

Exercise 17.11 (The Real Part of an Autocovariance Function). Let KZZ be the au-
tocovariance function of some discrete-time WSS CSP

(
Zν
)
. Show that the mapping

m 7→ Re
(
KZZ(m)

)
is the autocovariance function of some real SP. Is this also true for the

mapping m 7→ Im
(
KZZ(m)

)
?

Exercise 17.12 (Rotating a WSS CSP). Let
(
Z`
)

be a zero-mean WSS discrete-time CSP,

and let α ∈ C be fixed. Define the new CSP
(
W`

)
as W` = α`Z` for every ` ∈ Z.

(i) Show that if |α| = 1 then
(
W`

)
is WSS. Compute its autocovariance function.

(ii) Does your answer change if α is not of unit magnitude?



Chapter 18

Energy, Power, and PSD in QAM

18.1 Introduction

The calculations of the power and of the operational power spectral density in
QAM are not just repetitions of the analogous PAM calculations with complex
notation. They contain two new elements that we shall try to highlight. The
first is the relationship between the power (as opposed to energy) in passband and
baseband, and the second is the fact that the energy and power in transmitting
the complex symbols {C`} are only related to expectations of the form E[C`C∗

`′ ];
they are uninfluenced by those of the form E[C`C`′ ].

The signal
(
X(t), t ∈ R

)
(or X for short) that we consider is given by

X(t) = 2 Re
(
XBB(t) ei2πfct

)
, t ∈ R, (18.1)

where
XBB(t) = A

∑
`

C` g(t− `Ts), t ∈ R. (18.2)

Here A > 0 is real; the symbols {C`} are complex random variables; the pulse
shape g is an integrable complex function that is bandlimited to W/2 Hz; Ts is
positive; and fc > W/2. The range of the summation will depend on the modes
we discuss.

Our focus in this chapter is on X’s energy, power, and operational PSD. These
quantities are studied in Sections 18.2–18.4, albeit without all the fine mathemat-
ical details. Those are provided in Sections 18.5 & 18.6, which are recommended
for the more mathematical readers. The definition of the operational PSD of com-
plex stochastic processes is very similar to the one of real stochastic processes
(Definition 15.3.1). It is given in Section 18.4 (Definition 18.4.1).

18.2 The Energy in QAM

As in our treatment in Chapter 14 of PAM, we begin with an analysis of the energy
in transmitting K IID random bits D1, . . . , DK. We assume that the data bits
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are mapped to N complex symbols C1, . . . , CN using a (K,N) binary-to-complex
block-encoder

enc : {0, 1}K → CN (18.3)

of rate
K

N

[
bit

complex symbol

]
.

The transmitted signal is then:

X(t) = 2 Re
(
XBB(t) ei2πfct

)
(18.4)

= 2Re

(
A

N∑
`=1

C` g(t− `Ts) ei2πfct
)
, t ∈ R, (18.5)

where the baseband representation of the transmitted signal is

XBB(t) = A

N∑
`=1

C` g(t− `Ts), t ∈ R. (18.6)

Our interest is in the energy E in X, which is defined by

E , E

[∫ ∞

−∞
X2(t) dt

]
. (18.7)

Our assumption that the pulse shape g is bandlimited to W/2 Hz implies that
for every realization of the symbols {C`}, the signal XBB(·) is also bandlimited
to W/2 Hz. And since we assume that fc > W/2, it follows from Theorem 7.6.10
that the energy in the passband signal X(·) is twice the energy in its baseband
representation XBB(·), i.e.,

E = 2E

[∫ ∞

−∞

∣∣XBB(t)
∣∣2 dt

]
. (18.8)

We can thus compute the energy in X(·) by computing the energy in XBB(·) and
doubling the result. The energy of the baseband signal can be computed in much
the same way that the energy was computed in Section 14.2 for PAM. The only
difference is that the baseband signal is now complex:

E

[∫ ∞

−∞

∣∣XBB(t)
∣∣2 dt

]
=
∫ ∞

−∞
E

[∣∣∣∣A N∑
`=1

C` g(t− `Ts)
∣∣∣∣2
]

dt

=
∫ ∞

−∞
E

[(
A

N∑
`=1

C` g(t− `Ts)
)(

A

N∑
`′=1

C`′ g(t− `′Ts)
)∗]

dt

= A2
N∑
`=1

N∑
`′=1

E[C`C∗
`′ ]
∫ ∞

−∞
g(t− `Ts) g∗(t− `′Ts) dt

= A2
N∑
`=1

N∑
`′=1

E[C`C∗
`′ ]Rgg

(
(`′ − `)Ts

)
, (18.9)
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where Rgg is the self-similarity function of the pulse shape g (Definition 11.2.1),
i.e.,

Rgg(τ) =
∫ ∞

−∞
g(t+ τ) g∗(t) dt, τ ∈ R. (18.10)

This expression for the energy in XBB(·) is greatly simplified if the symbols {C`}
are of zero mean and uncorrelated:

E

[∫ ∞

−∞

∣∣XBB(t)
∣∣2 dt

]
= A2 ‖g‖22

N∑
`=1

E
[
|C`|2

]
,(

E[C`C∗
`′ ] = E

[
|C`|2

]
I{` = `′}, `, `′ ∈ {1, . . . ,N}

)
, (18.11)

or if the time shifts of the pulse shape by integer multiples of Ts are orthonormal

E

[∫ ∞

−∞

∣∣XBB(t)
∣∣2 dt

]
= A2

N∑
`=1

E
[
|C`|2

]
,(∫ ∞

−∞
g(t− `Ts)g∗(t− `′Ts) dt = I{` = `′}, `, `′ ∈ {1, . . . ,N}

)
. (18.12)

Since g is an integrable function that is bandlimited to W/2 Hz, it is also energy-
limited (Note 6.4.12). Consequently, by Proposition 11.2.2 (iv), we can express
the self-similarity function Rgg in (18.9) as the Inverse Fourier Transform of the
mapping f 7→ |ĝ(f)|2:

Rgg(τ) =
∫ ∞

−∞
|ĝ(f)|2 ei2πfτ df, τ ∈ R. (18.13)

With this representation of Rgg we obtain from (18.9) an equivalent representation
of the energy as

E

[∫ ∞

−∞

∣∣XBB(t)
∣∣2 dt

]
= A2

∫ ∞

−∞

N∑
`=1

N∑
`′=1

E[C`C∗
`′ ] e

i2πf(`′−`)Ts |ĝ(f)|2 df. (18.14)

Using (18.8), (18.9), and (18.14) we obtain:

Theorem 18.2.1 (Energy in QAM). Assume that A ≥ 0, that Ts > 0, that g : R→
C is an integrable signal that is bandlimited to W/2 Hz, and that fc > W/2. Then
the energy E in the QAM signal X(·) of (18.5) is given by

E = 2A2
N∑
`=1

N∑
`′=1

E[C`C∗
`′ ]Rgg

(
(`′ − `)Ts

)
(18.15)

= 2A2

∫ ∞

−∞

N∑
`=1

N∑
`′=1

E[C`C∗
`′ ] e

i2πf(`′−`)Ts |ĝ(f)|2 df, (18.16)

whenever all the complex random variables C1, . . . , CN are of finite variance

E
[
|C`|2

]
<∞, ` = 1, . . . ,N. (18.17)
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In analogy to PAM, we define the energy per bit Eb by

Eb ,
E

K
(18.18)

and the energy per complex symbol Es by

Es ,
E

N
. (18.19)

Using Theorem 18.2.1, we obtain

Es =
2
N

A2
N∑
`=1

N∑
`′=1

E[C`C∗
`′ ]Rgg

(
(`′ − `)Ts

)
(18.20)

=
2
N

A2

∫ ∞

−∞

N∑
`=1

N∑
`′=1

E[C`C∗
`′ ] e

i2πf(`′−`)Ts |ĝ(f)|2 df. (18.21)

Notice that, as promised, only terms of the form E[C`C∗
`′ ] influence the energy;

terms of the form E[C`C`′ ] do not appear in this analysis.

18.3 The Power in QAM

In order to discuss the power in QAM we must consider the transmission of an
infinite sequence of complex symbols

(
C`
)
. To guarantee convergence, we shall

assume that the pulse shape g—in addition to being an integrable signal that is
bandlimited to W/2 Hz—also satisfies the decay condition

|g(t)| ≤ β

1 + |t/Ts|1+α
, t ∈ R (18.22)

for some α, β > 0. Also, we shall only consider the transmission of bi-infinite
sequences

(
C`
)

that are bounded in the sense that there exists some γ > 0 such
that every realization of

(
C`
)

satisfies∣∣C`∣∣ ≤ γ, ` ∈ Z. (18.23)

As for PAM, we shall treat three different scenarios for the generation of
(
C`
)
. In

the first, we simply ignore the mechanism by which the sequence
(
C`
)

is generated
and assume that it forms a wide-sense stationary complex stochastic process. In
the second, we assume bi-infinite block encoding. And in the third we relax the
statistical assumptions and consider the case where the time shifts of g by integer
multiples of Ts are orthonormal. In all these cases the transmitted waveform is
given by

X(t) = 2 Re
(
XBB(t) ei2πfct

)
, t ∈ R, (18.24)

where

XBB(t) = A

∞∑
`=−∞

C` g(t− `Ts), t ∈ R. (18.25)
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It is tempting to derive the power in X(·) by using the complex version of the
PAM results of Section 14.5 to compute the power in XBB(·) and then doubling
the result. This turns out to be a valid approach, but its justification requires some
work. The difficulty is that the powers are defined as

lim
T→∞

1
2T

E

[∫ T

−T

X2(t) dt

]

and

lim
T→∞

1
2T

E

[∫ T

−T

∣∣XBB(t)
∣∣2 dt

]
,

and—Theorem 7.6.10 notwithstanding—

1
2T

E

[∫ T

−T

X2(t) dt

]
6= 2

1
2T

E

[∫ T

−T

∣∣XBB(t)
∣∣2 dt

]
. (18.26)

The reason we cannot claim equality in (18.26) is that t 7→ X(t) I{|t| ≤ T} is not
bandlimited around fc, so Theorem 7.6.10, which relates energies in passband and
baseband, is not applicable. Nevertheless, it turns out that the limits as T→∞ of
the RHS and the LHS of (18.26) do agree:

lim
T→∞

1
2T

E

[∫ T

−T

X2(t) dt

]
= 2 lim

T→∞

1
2T

E

[∫ T

−T

∣∣XBB(t)
∣∣2 dt

]
. (18.27)

Thus, the power in a QAM signal is, indeed, twice the power in its baseband
representation. This is stated more precisely in Theorem 18.5.2 and is proved in
Section 18.5. With the aid of (18.27) we can now readily compute the power in
QAM.

18.3.1
(
C`
)

Is Zero-Mean and WSS

We next ignore the mechanism by which the symbols
(
C`
)

are generated and merely
assume that they form a zero-mean WSS discrete-time CSP of autocovariance
function KCC :

E[C`] = 0, ` ∈ Z, (18.28a)

E[C`+mC∗
` ] = KCC(m) , m, ` ∈ Z. (18.28b)

The calculation of the RHS of (18.27) is very similar to the analogous computation
in Section 14.5.1 for PAM. The only difference is that here XBB(·) is complex. As
in Section 14.5.1, we begin by computing the energy in a length-Ts interval:

E

[∫ τ+Ts

τ

∣∣XBB(t)
∣∣2 dt

]
= A2

∫ τ+Ts

τ

E

[ ∣∣∣∣ ∞∑
`=−∞

C` g(t− `Ts)
∣∣∣∣2
]

dt
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= A2

∫ τ+Ts

τ

E

[ ∞∑
`=−∞

∞∑
`′=−∞

C`C
∗
`′
g(t− `Ts) g∗(t− `′Ts)

]
dt

= A2

∫ τ+Ts

τ

∞∑
`=−∞

∞∑
`′=−∞

E[C`C∗
`′ ] g(t− `Ts) g∗(t− `′Ts) dt

= A2

∫ τ+Ts

τ

∞∑
m=−∞

∞∑
`′=−∞

E[C`′+mC∗
`′ ] g

(
t− (`′ +m)Ts

)
g∗(t− `′Ts) dt

= A2

∫ τ+Ts

τ

∞∑
m=−∞

KCC(m)
∞∑

`′=−∞

g
(
t− (`′ +m)Ts

)
g∗(t− `′Ts) dt

= A2
∞∑

m=−∞
KCC(m)

∞∑
`′=−∞

∫ τ+Ts−`′Ts

τ−`′Ts

g(t′ −mTs) g∗(t′) dt′

= A2
∞∑

m=−∞
KCC(m)

∫ ∞

−∞
g∗(t′) g(t′ −mTs) dt′

= A2
∞∑

m=−∞
KCC(m) R∗gg(mTs), (18.29)

where we have substituted `′ +m for ` (fourth equality) and t′ for t − `′Ts (sixth
equality).

As in the analogous analysis for real PAM signals, we lower-bound the energy of
XBB(·) in the interval [−T,+T ] by⌊

2T

Ts

⌋
E

[∫ τ+Ts

τ

∣∣XBB(t)
∣∣2 dt

]
and upper-bound it by ⌈

2T

Ts

⌉
E

[∫ τ+Ts

τ

∣∣XBB(t)
∣∣2 dt

]
,

so, by the Sandwich Theorem,

lim
T→∞

1
2T

E

[∫ +T

−T

∣∣XBB(t)
∣∣2 dt

]
=

1
Ts

E

[∫ τ+Ts

τ

∣∣XBB(t)
∣∣2 dt

]
. (18.30)

It thus follows from (18.30) and (18.29) that the power PBB in XBB(·) is

PBB =
A2

Ts

∞∑
m=−∞

KCC(m) R∗gg(mTs) (18.31)

=
A2

Ts

∫ ∞

−∞

∞∑
m=−∞

KCC(m) e−i2πfmTs |ĝ(f)|2 df, (18.32)

where the second equality follows from (18.13).

Since the power in passband is twice the power in baseband, we conclude:
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Theorem 18.3.1. Let the QAM SP
(
X(t)

)
be given by (18.24) & (18.25), where

A, Ts, g, W, and fc are as in Theorem 18.2.1. Further assume that g satisfies the
decay condition (18.22) and that the discrete-time SP

(
C`
)

is bounded in the sense
of (18.23). If

(
C`
)

satisfies (18.28), then
(
X(t)

)
is a measurable SP,

lim
T→∞

1
2T

E

[∫ T

−T

X2(t) dt

]
=

2A2

Ts

∞∑
m=−∞

KCC(m) R∗gg(mTs), (18.33)

and

lim
T→∞

1
2T

E

[∫ T

−T

X2(t) dt

]
=

2A2

Ts

∫ ∞

−∞

∞∑
m=−∞

KCC(m) e−i2πfmTs |ĝ(f)|2 df.

(18.34)

Proof. Follows by combining (18.27) (Theorem 18.5.2) and Theorem 14.6.4 (which
extends to the case where the pulse shape and the symbols are complex).

18.3.2 Bi-Infinite Block-Mode

The second scenario we consider is when
(
C`
)

is generated, as in Section 14.5.2, by
applying a binary-to-complex block-encoder enc : {0, 1}K → CN to bi-infinite IID
random bits

(
Dj

)
. As in Section 14.5.2, we assume that the encoder, when fed IID

random bits, produces symbols of zero mean.

By extending the results of Section 14.5.2 to complex pulse shapes and complex
symbols, we obtain that the power in XBB(·) is given by:

PBB =
1

NTs
E

[ ∣∣∣∣A N∑
`=1

C`g(t− `Ts)
∣∣∣∣2
]

(18.35)

=
A2

N

∫ ∞

−∞

N∑
`=1

N∑
`′=1

E[C`C∗
`′ ] e

i2πf(`′−`)Ts |ĝ(f)|2 df. (18.36)

Using the relationship between power in baseband and passband (18.27) and using
the definitions of E (18.8) and of Es (18.19), we obtain:

Theorem 18.3.2. Under the assumptions of Theorem 18.3.1, if the symbols
(
C`
)

are generated from IID random bits
(
Dj

)
in bi-infinite block-mode using the encoder

enc(·), where enc(·) produces zero-mean symbols when fed IID random bits, then(
X(t)

)
is a measurable SP, and

lim
T→∞

1
2T

E

[∫ T

−T

X2(t) dt

]
=

Es

Ts
, (18.37)

where the energy per symbol Es is defined in (18.19) and is given by (18.20) or
(18.21).
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Proof. Follows from Theorem 18.5.2 and by noting that Theorem 14.6.5 also ex-
tends to the case where the pulse shape and the symbols are complex.

18.3.3 Time Shifts of Pulse Shape Are Orthonormal

We finally address the third scenario where the time shifts of the pulse shape by
integer multiples of Ts are orthonormal. This situation is very prevalent in Digital
Communications and allows for significant simplifications. In this setting we denote
the pulse shape by φ(·) and state the orthonormality as∫ ∞

−∞
φ(t− `Ts)φ∗(t− `′Ts) dt = I{` = `′}, `, `′ ∈ Z. (18.38)

The transmitted signal
(
X(t), t ∈ R

)
is thus given as in (18.24) but with

XBB(t) = A

∞∑
`=−∞

C` φ(t− `Ts), t ∈ R, (18.39)

where we assume that the discrete-time CSP
(
C`
)

satisfies the boundedness con-
dition (18.23) and that the complex pulse shape φ(·) satisfies the orthogonality
condition (18.38) and the decay condition

|φ(t)| ≤ β

1 + |t/Ts|1+α
, t ∈ R, (18.40)

for some α, β > 0.

Computing the power in
(
XBB(t), t ∈ R

)
using Theorem 14.5.2, which easily

extends to the complex case, we obtain from (18.27):

Theorem 18.3.3. Let the SP
(
X(t), t ∈ R

)
be given by

X(t) = 2 Re
(

A

∞∑
`=−∞

C` φ(t− `Ts) ei2πfct
)
, t ∈ R, (18.41)

where A ≥ 0; Ts > 0; the pulse shape φ : R → C is an integrable function that is
bandlimited to W/2 Hz, is Borel measurable, satisfies the orthogonality condition
(18.38), and satisfies the decay condition (18.40); the carrier frequency fc satisfies
fc > W/2 > 0; and where the CSP

(
C`
)

satisfies the boundedness condition (18.23).
Then

(
X(t), t ∈ R

)
is a measurable stochastic process, and

lim
T→∞

1
2T

E

[∫ T

−T

X2(t) dt

]
=

2A2

Ts
lim

L→∞

1
2L + 1

L∑
`=−L

E
[
|C`|2

]
, (18.42)

whenever the limit on the RHS exists.
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18.4 The Operational PSD of QAM Signals

We shall compute the operational PSD of the QAM signal
(
X(t), t ∈ R

)
(18.24) by

relating it to the operational PSD of the complex signal
(
XBB(t), t ∈ R

)
(18.25)

and by then computing the operational PSD of the latter using techniques similar
to the ones we employed in Chapter 15 in our study of the operational PSD of real
PAM signals. But first we must define the operational PSD of complex stochastic
processes. The definition is very similar to that for real stochastic processes (Defi-
nition 15.3.1), but there are two issues to note. The first is that we do not require
that the operational PSD be a symmetric function, and the second is that we allow
for filters of complex impulse response.

Definition 18.4.1 (Operational PSD of a CSP). We say that a CSP
(
Z(t), t ∈ R

)
is of operational power spectral density SZZ if

(
Z(t), t ∈ R

)
is a measurable

CSP;1 the mapping SZZ : R → R is integrable; and for every integrable complex-
valued function h : R → C the average power of the convolution of

(
Z(t), t ∈ R

)
and h is given by

Power in Z ? h =
∫ ∞

−∞
SZZ(f) |ĥ(f)|2 df. (18.43)

By Lemma 15.3.2 (i) the PSD is unique:

Note 18.4.2 (The Operational PSD Is Unique). The operational PSD of a CSP
is unique in the sense that if a CSP is of two different operational power spectral
densities, then the two must be indistinguishable.

The relationship between the operational PSD of the real QAM signal
(
X(t)

)
(18.24) and of the CSP

(
XBB(t)

)
(18.25) turns out to be very simple. Indeed,

subject to the conditions that are made precise in Theorem 18.6.6, if the baseband
CSP

(
XBB(t)

)
is of operational PSD SBB, then the real QAM SP

(
X(t)

)
is of

operational PSD SXX , where

SXX(f) = SBB

(
|f | − fc

)
, f ∈ R. (18.44)

This result is proved in Section 18.6 and relies heavily on the fact that g is band-
limited to W/2 Hz and that fc > W/2. Here we shall only derive it heuristically
and then see how to apply it.

Recalling the definition of the operational PSD of a real SP (Definition 15.3.1), we
note that in order to derive (18.44) we need to show that its RHS is an integrable
symmetric function and that

Power in X ? h =
∫ ∞

−∞

∣∣ĥ(f)
∣∣2 SBB

(
|f | − fc

)
df, (18.45)

1A complex stochastic processes is said to be measurable if its real and imaginary parts are
measurable real stochastic processes.
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whenever h : R → R is integrable. The integrability of f 7→ SBB(|f | − fc) follows
directly from the integrability of SBB(·). The symmetry is obvious because the RHS
of (18.44) depends on f only via |f |. Our plan for computing the power in X ? h
is to first use the results of Section 7.6.7 to express the baseband representation
of X ? h in the form XBB ? h′BB, where h′BB is the baseband representation of the
result of passing h through a unit-gain bandpass filter of bandwidth W around
the carrier frequency fc. Using the relationship between power in passband and
baseband, this will allow us to express the power in X ? h as twice the power in
XBB ? h′BB. Expressing the power in the latter using the operational PSD SBB(·)
of XBB will allow us to complete the calculation of the power in X ? h.

Before executing this plan, we pause here to heuristically argue that, loosely speak-
ing, the condition that g is bandlimited to W/2 Hz implies that we may assume
that

SBB(f) = 0, |f | > W

2
. (18.46)

For a precise statement of this result, see Proposition 18.6.3 in Section 18.6.2. The
intuition behind this statement is that, since g is bandlimited to W/2 Hz, in some
loose sense, all the power of the signal XBB is contained in the band |f | ≤ W/2.
To heuristically justify (18.46), we shall show that if SBB(·) is an operational PSD
for
(
XBB(t)

)
, then so is the mapping f 7→ SBB(f) I{|f | ≤ W/2}. This follows by

noting that for every h : R→ C in L1

Power in XBB ? h = Power in
(
t 7→ A

∑
`∈Z

C` g(t− `Ts)
)
? h

= Power in t 7→ A
∑
`∈Z

C` (g ? h)(t− `Ts)

= Power in t 7→ A
∑
`∈Z

C`
(
(g ? LPFW/2) ? h

)
(t− `Ts)

= Power in t 7→ A
∑
`∈Z

C`
(
g ? (h ? LPFW/2)

)
(t− `Ts)

= Power in
(
t 7→ A

∑
`∈Z

C` g(t− `Ts)
)
? (h ? LPFW/2)

=
∫ ∞

−∞
SBB(f)

∣∣ĥ(f) I{|f | ≤W/2}
∣∣2 df

=
∫ ∞

−∞

(
SBB(f) I{|f | ≤W/2}

) ∣∣ĥ(f)
∣∣2 df,

from which the result follows from the uniqueness (to within indistinguishability)
of the operational PSD (Note 18.4.2). Here the first equality follows from the
definition of XBB (18.25); the second because convolving a PAM signal of pulse
shape g (in our case complex) with h is tantamount to replacing the pulse shape g
with the new pulse shape g ?h (see the derivation of (15.16) in Section 15.4 which
extends verbatim to the complex case); the third because, by assumption, g is
bandlimited to W/2 Hz; the fourth by the associativity of convolution (see Theo-
rem 5.6.1, which, strictly speaking, is not applicable here because LPFW/2 is not
integrable); the fifth because replacing the pulse shape g by g ?

(
h ? LPFW/2

)
is
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tantamount to convolving the PAM signal with (h ? LPFW/2); the sixth from our
assumption that SBB(·) is an operational PSD for XBB (and by ignoring the fact
that h ? LPFW/2 need not be integrable); and the seventh by trivial algebra.

Having established (18.46), we are now ready to compute the power in X ? h.
Using the results of Section 7.6.7 we obtain that for every integrable h : R → R,
the baseband representation of X ?h is given by XBB ?h′BB where h′BB : R→ C is
the baseband representation of the result of passing h through a unit-gain bandpass
filter of bandwidth W around the carrier frequency fc:

ĥ′BB(f) = ĥ(f + fc) I{|f | ≤W/2}, f ∈ R. (18.47)

And since the power in passband is twice the power in baseband, we conclude that

Power in X ? h = 2Power in XBB ? h′BB

= 2
∫ ∞

−∞
SBB(f)

∣∣ĥ′BB(f)
∣∣2 df

= 2
∫ ∞

−∞
SBB(f)

∣∣ĥ(f + fc)
∣∣2 I{|f | ≤W/2}df

= 2
∫ ∞

−∞
SBB(f)

∣∣ĥ(f + fc)
∣∣2 df

= 2
∫ ∞

−∞
SBB(f̃ − fc)

∣∣ĥ(f̃)
∣∣2 df̃

=
∫ ∞

−∞
SBB(f̃ − fc)

∣∣ĥ(f̃)
∣∣2 df̃ +

∫ ∞

−∞
SBB(f̃ − fc)

∣∣ĥ(−f̃)
∣∣2 df̃

=
∫ ∞

−∞
SBB(f̃ − fc)

∣∣ĥ(f̃)
∣∣2 df̃ +

∫ ∞

−∞
SBB(−f ′ − fc)

∣∣ĥ(f ′)∣∣2 df ′

=
∫ ∞

−∞

(
SBB(f − fc) + SBB(−f − fc)

) ∣∣ĥ(f)
∣∣2 df

=
∫ ∞

−∞
SBB(|f | − fc)

∣∣ĥ(f)
∣∣2 df,

where the first equality follows because the power in passband is twice the power
in baseband; the second because XBB is of operational PSD SBB(·); the third by
(18.47); the fourth by (18.46); the fifth by changing the integration variable to
f̃ , f + fc; the sixth because h is real so its Fourier Transform must be conjugate-
symmetric; the seventh by changing the integration variable in the second integral
to f ′ , −f̃ ; the eighth by the linearity of integration; and the final equality by
(18.46) and the assumption that fc > W/2. This establishes (18.45) and thus
concludes the proof of (18.44).

We next apply (18.44) to calculate the operational PSD of QAM in two scenarios:
when the complex symbols

(
C`
)

form a bounded, zero-mean, WSS, CSP and when
they are generated in bi-infinite block-mode.
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18.4.1
(
C`
)

Zero-Mean WSS and Bounded

We next use (18.44) to derive the operational PSD of QAM when the discrete-time
CSP

(
C`
)

is of zero mean and of autocovariance function KCC ; see (18.28). To use
(18.44) we first need to compute the operational PSD of the CSP XBB. This is
straightforward. As in Section 15.4.2, we note that XBB ? h has the same form as
(18.25) with the pulse shape g replaced by g ? h. Consequently, by substituting
the FT of g ? h for the FT of g in (18.32),2 we obtain that

Power in XBB ? h =
A2

Ts

∫ ∞

−∞

∞∑
m=−∞

KCC(m) e−i2πfmTs |ĝ(f)|2 |ĥ(f)|2 df (18.48)

and the operational PSD of XBB is thus

SBB(f) =
A2

Ts

∞∑
m=−∞

KCC(m) e−i2πfmTs |ĝ(f)|2, f ∈ R. (18.49)

This is the complex analog of (15.21). From (18.49) and (18.44) we now obtain:

Theorem 18.4.3. Under the assumptions of Theorem 18.3.1, the operational PSD
of the QAM signal

(
X(t), t ∈ R

)
is given by

SXX(f) =
A2

Ts

∞∑
m=−∞

KCC(m) ei2π(|f |−fc)mTs
∣∣ĝ(|f | − fc)∣∣2, f ∈ R. (18.50)

Proof. The justification of (18.44) is in Theorem 18.6.6. A formal derivation of
the operational PSD of

(
XBB(t), t ∈ R

)
can be found in Section 18.6.5. We draw

the reader’s attention to the fact that the proof that we gave for the real case in
Section 15.5 is not directly applicable to the complex case because that proof relied
on Theorem 25.14.1 (Wiener-Khinchin), which we prove in Section 25.14 only for
real WSS stochastic processes.3

Figure 18.1 depicts the relationship between the pulse shape g and the operational
PSD of the QAM signal for the case where KCC(m) = I{m = 0} for every m ∈ Z.

18.4.2 The Operational PSD of QAM in Bi-Infinite Block-Mode

The operational PSD of QAM in bi-infinite block-mode can also be computed
using (18.44). All we need is the operational PSD of

(
XBB(t)

)
, which can be

computed from (18.36) as follows. As in Section 15.4.2, we note that XBB ? h has
the same form as (18.25) with the pulse shape g replaced by g ? h. Consequently,

2We are ignoring here the fact that g ? h need not satisfy the required decay condition.
3The extension to the complex case is not as trivial as one might think because the real and

imaginary parts of a WSS complex SP need not be WSS.
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f

f

f
fc−fc

ĝ(f)

|ĝ(f)|2

∣∣ĝ(|f | − fc
)∣∣2

Figure 18.1: The relationship between the Fourier Transform of the pulse shape
g(·) and the operational PSD of a QAM signal. The symbols

(
C`
)

are assumed to
be of zero mean and uncorrelated.

by substituting the FT of g ? h for the FT of g in (18.36), we obtain that

Power in XBB ? h

=
∫ ∞

−∞

(
A2

N

N∑
`=1

N∑
`′=1

E[C`C∗
`′ ] e

i2πf(`′−`)Ts
∣∣ĝ(f)

∣∣2) ∣∣ĥ(f)
∣∣2 df, (18.51)

and the operational PSD of XBB is thus

SBB(f) =
A2

N

N∑
`=1

N∑
`′=1

E[C`C∗
`′ ] e

i2πf(`′−`)Ts
∣∣ĝ(f)

∣∣2, f ∈ R. (18.52)

This is the complex analog of (15.23). (But note that, in our present case, SBB(·)
need not be a symmetric function.) From (18.52) and (18.44) we now obtain:
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Theorem 18.4.4 (Operational PSD of QAM in Bi-Infinite Block-Mode). Under
the assumptions of Theorem 18.3.2, the operational PSD SXX of the QAM signal(
X(t), t ∈ R

)
is given for every f ∈ R by

SXX(f) =
A2

NTs

N∑
`=1

N∑
`′=1

E[C`C∗
`′ ] e

i2π(|f |−fc)(`−`′)Ts
∣∣ĝ(|f | − fc)∣∣2. (18.53)

Proof. The justification of (18.44) is in Theorem 18.6.6, and a formal derivation
of the operational PSD of

(
XBB(t)

)
is given in Section 18.6.5.

18.5 A Formal Account of Power in Passband and Baseband

In this section we formulate conditions under which (18.27) holds, i.e., under which
the power in passband is twice the power in baseband. We first extend the Triangle
Inequality (4.14) to stochastic processes.

Proposition 18.5.1 (Triangle Inequality for Stochastic Processes). Let
(
X(t)

)
and

(
Y (t)

)
be (real or complex) measurable stochastic processes, and let a < b be

arbitrary real numbers. Suppose further that

E

[∫ b

a

∣∣X(t)
∣∣2 dt

]
,E

[∫ b

a

∣∣Y (t)
∣∣2 dt

]
<∞. (18.54)

Then√E

[∫ b

a

∣∣X(t)
∣∣2 dt

]
−

√
E

[∫ b

a

∣∣Y (t)
∣∣2 dt

]2

≤ E

[∫ b

a

∣∣X(t) + Y (t)
∣∣2 dt

]
≤

√E

[∫ b

a

∣∣X(t)
∣∣2 dt

]
+

√
E

[∫ b

a

∣∣Y (t)
∣∣2 dt

]2

. (18.55)

This also holds when a is replaced with −∞ and/or b is replaced with +∞.

Proof. Replace all integrals in the proof of (4.14) with expectations of integrals.

We can now state the main result of this section relating power in passband and
baseband.
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Theorem 18.5.2. Let Ts, g, W, and fc be as in Theorem 18.2.1 and, addition-
ally, assume that g satisfies the decay condition (18.22) and that the CSP

(
C`
)

is
bounded in the sense of (18.23). Then the condition

lim
T→∞

1
2T

E

[∫ T

−T

∣∣∣∣∑
`∈Z

C` g(t− `Ts)
∣∣∣∣2 dt

]
= P (18.56)

is equivalent to the condition

lim
T→∞

1
2T

E

[∫ T

−T

(
2 Re

(∑
`∈Z

C` g(t− `Ts) ei2πfct
))2

dt

]
= 2P. (18.57)

The rest of this section is dedicated to proving this theorem. To simplify the
notation we begin by showing that it suffices to prove the result for the case where
Ts = 1. If Ts > 0 is not necessarily equal to 1, then we define for every t ∈ R,

g̃(t) = g(tTs),
W̃ = W Ts,

f̃c = fcTs,

and note that g is bandlimited to W/2 Hz if, and only if, g̃ is bandlimited to W Ts/2
Hz; that (

fc ≥W/2
)
⇔
(
f̃c ≥ W̃/2

)
;

and that g satisfies the decay condition (18.22) if, and only if,

|g̃(t)| ≤ β

1 + |t|1+α
, t ∈ R.

By defining τ , t/Ts we obtain that

1
2T

∫ T

−T

∣∣∣∣∑
`∈Z

C` g(t− `Ts)
∣∣∣∣2 dt =

1
2(T/Ts)

∫ T/Ts

−T/Ts

∣∣∣∣∑
`∈Z

C` g̃(τ − `)
∣∣∣∣2 dτ

so the power in the mapping t 7→
∑
C` g(t − `Ts) is the same as in the mapping

τ 7→
∑
C` g̃(τ − `). Similarly,

1
2T

∫ T

−T

(
2 Re

(∑
`

C` g(t− `Ts) ei2πfct
))2

dt

=
1

2(T/Ts)

∫ T/Ts

−T/Ts

(
2 Re

(∑
`

C` g̃(τ − `) ei2πf̃cτ
))2

dτ

so the power in the mapping t 7→ 2 Re
(∑

` C` g(t−`Ts) ei2πfct
)

is the same as in the
mapping τ 7→ 2 Re

(∑
` C` g̃(t− `) ei2πf̃cτ

)
. Thus, if we establish that the inequality

f̃c > W̃/2 implies that the power in the baseband signal τ 7→
∑
C` g̃(τ−`) is equal

to half the power in τ 7→ 2 Re
(∑

` C` g̃(t − `) ei2πf̃cτ
)
, then it will also follow that
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the inequality fc > W/2 implies that the power in t 7→
∑
C` g(t− `Ts) is equal to

half the power in t 7→ Re
(∑

` C` g(t− `Ts) ei2πfct
)
.

Having established that it suffices to prove the theorem for Ts = 1, we assume for
the remainder of this section that Ts = 1, so the decay condition (18.22) can be
rewritten as

|g(t)| ≤ β

1 + |t|1+α
, t ∈ R. (18.58)

As in the proof of Theorem 14.5.2, we shall simplify notation and assume that—in
calculating power as the limiting ratio of the energy in the interval [−T, T ] to the
length of the interval—T is restricted to the positive integers. The justification is
identical to the one we gave in proving Theorem 14.5.2; see (14.52).

We shall find it convenient to introduce an additional subscript “w” to indicate
“windowing.” Thus, if we define XBB(·) as

XBB(t) =
∑
`∈Z

C` g(t− `), t ∈ R,

then its windowed version XBB,w(·) is given by

XBB,w(t) =
∑
`∈Z

C` g(t− `) I{|t| ≤ T}, t ∈ R.

Similarly XPB,w(·) is the windowed version of the SP

XPB(t) = 2 Re
(∑
`∈Z

C` g(t− `) ei2πfct
)
, t ∈ R,

and g`,w is the windowed version of

g` : t 7→ g(t− `), ` ∈ Z. (18.59)

We can now express the power in baseband as the limit, as T tends to infinity, of
E
[
‖XBB,w‖22

]
/(2T), and the power in passband as the limit of E

[
‖XPB,w‖22

]
/(2T).

Note that, since the function I{·} is real-valued,

XPB,w(t) = 2 Re
(
XBB,w(t) ei2πfct

)
, t ∈ R. (18.60)

But (18.60) notwithstanding, the energy in XPB,w need not be twice the en-
ergy in XBB,w because the signal XBB,w—unlike its unwindowed version XBB—is
not bandlimited. It is time-limited, and as such cannot be bandlimited (Theo-
rem 6.8.2).

The difficulty in proving the theorem is in relating the energy in XPB,w to the
energy in XBB,w and, specifically, in showing that the difference between half the
energy in XPB,w and the energy in XBB,w, when normalized by 2T, tends to zero.
Aiding us in this is the following lemma relating the energy in passband to the
energy in baseband for signals that are not bandlimited.
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Lemma 18.5.3. Let z be a complex energy-limited signal that is not necessarily
bandlimited, and consider the real signal x : t 7→ 2 Re

(
z(t) ei2πfct

)
, where fc > 0 is

arbitrary. Then, (
‖z‖2 −

√
2ε
)2

≤ 1
2
‖x‖22 ≤

(
‖z‖2 +

√
2ε
)2

, (18.61)

where

ε2 =
∫ −fc

−∞

∣∣ẑ(f)
∣∣2 df. (18.62)

Proof. Expressing the FT of x in terms of the FT of z, we obtain that for every
f ∈ R outside a set of frequencies of Lebesgue measure zero,

x̂(f) I{f ≥ 0}
= ẑ(f − fc) I{f ≥ 0}+ ẑ∗(−f − fc) I{f ≥ 0}
= ẑ(f − fc) + ẑ∗(−f − fc) I{f ≥ 0} − ẑ(f − fc) I{f < 0}. (18.63)

We next consider the integral over f of the squared magnitude of the LHS and of
the RHS of (18.63). Since x is real, its FT is conjugate-symmetric so, by Parseval’s
Theorem, the integral of the squared magnitude of the LHS of (18.63) is 1

2 ‖x‖
2
2 .

The integral of the squared magnitude of the first term on the RHS of (18.63) is
given by ‖z‖22 . Finally, the integral of the squared magnitude of each of the last
two terms on the RHS of (18.63) is ε2 and, since they are orthogonal, the integral
of the squared magnitude of their sum is 2ε2. The result now follows from the
Triangle Inequality (4.14).

Applying Lemma 18.5.3 with the substitution of xBB,w for z and of xPB,w for x
we obtain upon noting that fc > W/2 that, in order to establish the theorem, it
suffices to show that the “out-of-band energy” term

e2 ,
∫
|f |≥W/2

∣∣x̂BB,w(f)
∣∣2 df (18.64)

satisfies
lim

T→∞

1
T
e2 = 0, (18.65)

with the convergence being uniform. That is, we need to show that e2/T is upper-
bounded by some function of α, β, γ, and T that converges to zero as T tends to
infinity with α, β, γ held fixed. Aiding us in the calculation of the out-of-band
energy is the following lemma.

Lemma 18.5.4. Let x be an energy-limited signal and let W ≥ 0.

(i) If u is any energy-limited signal that is bandlimited to W/2 Hz, then∫
|f |≥W/2

|x̂(f)|2 df ≤ ‖x− u‖22 . (18.66)
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(ii) In particular, ∫
|f |≥W/2

|x̂(f)|2 df ≤ ‖x‖22 . (18.67)

Proof. Part (ii) follows from Parseval’s Theorem. Part (i) follows by noting that
if u is an energy-limited signal that is bandlimited to W/2 Hz, then the Fourier
Transforms of x and x − u are indistinguishable for frequencies f that satisfy
|f | ≥W/2. Consequently,∫

|f |≥W/2

|x̂(f)|2 df =
∫
|f |≥W/2

|x̂(f)− û(f)|2 df

≤ ‖x− u‖22 ,

where the inequality follows by applying Part (ii) to the signal x− u.

To prove (18.65) fix some integer ν ≥ 2 and express xBB,w as

xBB,w = s0,w + s1,w + s2,w, (18.68)

where

s0,w =
∑

0≤|`|≤T−ν

c` g`,w, (18.69)

s1,w =
∑

T−ν<|`|≤T+ν

c` g`,w, (18.70)

s2,w =
∑

T+ν<|`|<∞

c` g`,w, (18.71)

are of corresponding out-of-band energies

e2κ =
∫
|f |≥W/2

∣∣ŝκ,w(f)
∣∣2 df, κ = 0, 1, 2. (18.72)

Note that by (18.64), (18.68), and the Triangle Inequality

e2 ≤
(
e0 + e1 + e2

)2
. (18.73)

Since the integer ν ≥ 2 is arbitrary, it follows from (18.73) that, to establish (18.65)
and to thus complete the proof of the theorem, it suffices to show that for every
fixed integer ν ≥ 2,

lim
T→∞

1
T
e20 = 0, (18.74)

lim
T→∞

1
T
e21 = 0, (18.75)

and that
lim
ν→∞

(
lim

T→∞

1
T
e22

)
= 0. (18.76)

We thus conclude the theorem’s proof by establishing (18.74), (18.75), and (18.76).
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We begin with the easiest, namely (18.75). To establish (18.75) we recall the
definition of e1 (18.72) & (18.70) and use the Triangle Inequality to obtain

e1 ≤
∑

T−ν<|`|≤T+ν

(∫
|f |≥W/2

∣∣c` ĝ`,w(f)
∣∣2 df

)1/2

≤ γ
∑

T−ν<|`|≤T+ν

‖g`,w‖2

≤ 4γν ‖g‖2 , (18.77)

where the second inequality follows from (18.23) and from Lemma 18.5.4 (ii), and
where the final inequality follows because windowing can only reduce energy so
‖g`,w‖2 ≤ ‖g`‖2 = ‖g‖2 . Inequality (18.77) establishes (18.75).

Having established (18.75), we next turn to proving (18.74). The proof is quite
similar except that, instead of using Part (ii) of Lemma 18.5.4, we use Part (i) with
the substitutions of g`,w for x and of g` for u to obtain∫

|f |≥W/2

∣∣ĝ`,w(f)
∣∣2 df ≤ ‖g`,w − g`‖22 , ` ∈ Z. (18.78)

We further upper-bound the RHS of (18.78) using the decay condition (18.58) as

‖g`,w − g`‖22 =
∫ ∞

−∞

∣∣g`(f)
∣∣2 I{|t| > T}dt

=
∫ −T

−∞
|g(t− `)|2 dt+

∫ ∞

T

|g(t− `)|2 dt

=
∫ −T−`

−∞
|g(τ)|2 dt+

∫ ∞

T−`
|g(τ)|2 dτ

≤
∫ −T−`

−∞

β2

|τ |2+2α
dτ +

∫ ∞

T−`

β2

|τ |2+2α
dτ

≤ 2
∫ ∞

T−|`|

β2

|τ |2+2α
dτ

=
2β2

1 + 2α
1

(T− |`|)1+2α
, |`| < T,

to obtain(∫
|f |≥W/2

∣∣ĝ`,w(f)
∣∣2 df

)1/2

≤
√

2β2

1 + 2α
1

(T− |`|)1/2+α
, |`| < T. (18.79)

Using (18.72), (18.69), (18.79), (18.23), and the Triangle Inequality we thus obtain

e0 ≤
∑

0≤|`|≤T−ν

|c`|
(∫

|f |≥W/2

∣∣ĝ`,w(f)
∣∣2 df

)1/2

≤
√

2γ2β2

1 + 2α

∑
0≤|`|≤T−ν

1
(T− |`|)1/2+α
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≤ 2

√
2γ2β2

1 + 2α

T−ν∑
`=0

1
(T− `)1/2+α

= 2

√
2γ2β2

1 + 2α

T∑
˜̀=ν

1
˜̀1/2+α

≤ 2

√
2γ2β2

1 + 2α

∫ T

ν−1

1
ξ1/2+α

dξ

=

{√
γ2β2

1+2α
4

1−2α

(
T1/2−α − (ν − 1)1/2−α

)
if α 6= 1/2

2γβ
(
ln T− ln(ν − 1)

)
if α = 1/2

, (18.80)

where the inequality in the first line follows from (18.72) and from the Triangle
Inequality; the inequality in the second line from (18.79); the inequality in the
third line by counting the term ` = 0 twice; the equality in the fourth line by
changing the summation variable to ˜̀, T− `; the inequality in the fifth line from
the monotonicity of the function ξ 7→ ξ−1/2−α, which implies that

˜̀−1/2−α ≤
∫ ˜̀

˜̀−1

1
ξ1/2+α

dξ;

and where the final equality on the sixth line follows by direct calculation. Inequal-
ity (18.80) combines with our assumption that α is positive to prove (18.74).

We now conclude the proof of the theorem by establishing (18.76). To that end, we
begin by using Lemma 18.5.4 (ii) and the fact that s2,w is zero outside the interval
[−T, T ] to obtain

e22 ≤
∫ T

−T

∣∣s2,w(t)
∣∣2 dt. (18.81)

We next upper-bound the RHS of (18.81) using the boundedness of the symbols
(18.23) and the decay condition (18.58):

∣∣s2,w(t)
∣∣ = ∣∣∣∣ ∑

T+ν<|`|<∞

c` g`,w(t)
∣∣∣∣

≤ γ
∑

T+ν<|`|<∞

|g(t− `)| I{|t| ≤ T}

≤ γ
∑

T+ν<|`|<∞

β

|t− `|1+α
I{|t| ≤ T}

≤ γ
∑

T+ν<|`|<∞

β∣∣|`| − |t|∣∣1+α I{|t| ≤ T}

≤ γ
∑

T+ν<|`|<∞

β

(|`| − T)1+α

= 2γβ
∞∑

`=T+ν+1

1
(`− T)1+α
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= 2γβ
∞∑

˜̀=ν+1

1
˜̀1+α

≤ 2γβ
∫ ∞

ν

ξ−1−α dξ

=
2γβ
α
ν−α, (18.82)

where the equality in the first line follows from the definition of s2,w (18.71); the
inequality in the second line from the Triangle Inequality for Complex Numbers
(2.12), the boundedness of

(
C`
)

(18.23), and from the definition of g` (18.59); the
inequality in the third line from (18.58); the inequality in the fourth line because
|ξ − ζ| ≥

∣∣|ξ| − |ζ|∣∣ whenever ξ, ζ ∈ R; the inequality in the fifth line because for
|t| > T the LHS is zero and the RHS is positive, and because for |t| ≤ T we have
that |`| − |t| ≥ |`| − T throughout the range of summation; the equality in the
sixth line from the symmetry of the summand and from the assumption that T is
an integer; the equality in the seventh line by changing the summation variable to
˜̀ = ` − T; the inequality in the eighth line from the monotonicity of the function
ξ 7→ ξ−1−α, which implies that

1
˜̀1+α ≤

∫ ˜̀

˜̀−1

1
ξ1+α

dξ;

and the final equality in the ninth line by evaluating the integral.

It follows from (18.82) and (18.81) that

e22 ≤ 2T
4γ2β2

α2
ν−2α (18.83)

and hence that

lim
T→∞

1
T
e22 ≤

8γ2β2

α2
ν−2α, ν ≥ 2,

which proves (18.76).

18.6 A Formal Account of the PSD in Baseband and Passband

In this section we justify the derivations of Section 18.4.

18.6.1 On Limits of Convolutions

We begin with a lemma that justifies the swapping of infinite summation and
convolution. As a corollary we establish conditions under which feeding a (real or
complex) PAM signal of pulse shape g to a stable filter of impulse response h is
tantamount to replacing its pulse shape g with the new pulse shape g ? h.

Lemma 18.6.1. Let s1, s2, . . . be a sequence of measurable functions from R to C
satisfying the following two conditions:
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1) The sequence is uniformly bounded in the sense that there exists some positive
number σ∞ such that∣∣s`(t)∣∣ ≤ σ∞, (

t ∈ R, ` = 1, 2, . . .
)
. (18.84)

2) The sequence converges to some function s uniformly over compact sets in
the sense that for every fixed ξ > 0

lim
`→∞

sup
|t|≤ξ

∣∣s(t)− s`(t)∣∣ = 0. (18.85)

Then for every h ∈ L1 ,

lim
`→∞

(
s` ? h

)
(t) =

(
s ? h

)
(t), t ∈ R. (18.86)

Proof. Fix some epoch t0 ∈ R and some h ∈ L1 . We will show that for every
ε > 0 there exists some L0 ∈ N (depending on ε) such that∣∣(s` ? h

)
(t0)− (s ? h

)
(t0)

∣∣ < ε, ` ≥ L0. (18.87)

To that end note that our assumption that h is integrable implies that there exists
some ξ > 0 such that ∫

|τ |≥ξ
|h(τ)|dτ < ε

3σ∞
. (18.88)

And when we apply our assumption that the sequence s1, s2, . . . converges to s
uniformly over compact sets to the compact interval [t0− ξ, t0 + ξ], we obtain that
there exists some L0 (depending on ε, t0, and ξ) such that

‖h‖1 sup
t0−ξ≤τ≤t0+ξ

∣∣s(τ)− s`(τ)∣∣ < ε

3
, ` ≥ L0. (18.89)

We can now derive (18.87) as follows:∣∣∣(s` ? h
)
(t0)− (s ? h

)
(t0)

∣∣∣
=
∣∣∣∣∫ ∞

−∞
s`(t0 − τ)h(τ) dτ −

∫ ∞

−∞
s(t0 − τ)h(τ) dτ

∣∣∣∣
≤
∣∣∣∣∫ ξ

−ξ
s`(t0 − τ)h(τ) dτ −

∫ ξ

−ξ
s(t0 − τ)h(τ) dτ

∣∣∣∣
+
∣∣∣∣∫
|τ |>ξ

s(t0 − τ)h(τ) dτ
∣∣∣∣+ ∣∣∣∣∫

|τ |>ξ
s`(t0 − τ)h(τ) dτ

∣∣∣∣
≤
∫ ξ

−ξ

∣∣s`(t0 − τ)− s(t0 − τ)∣∣ |h(τ)|dτ
+
∫
|τ |>ξ

∣∣s(t0 − τ)h(τ)∣∣ dτ +
∫
|τ |>ξ

∣∣s`(t0 − τ)h(τ)∣∣ dτ
≤ ‖h‖1

(
sup

t0−ξ≤τ≤t0+ξ

∣∣s(τ)− s`(τ)∣∣)+ 2σ∞
∫
|τ |>ξ

|h(τ)|dτ

< ε,

where the last equality follows from (18.88) and (18.89).
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Corollary 18.6.2. If the sequence
(
C`
)

is bounded in the sense of (18.23) and if the
measurable function g satisfies the decay condition (18.22), then for every h ∈ L1

and every epoch t0 ∈ R((
t 7→

∑
`∈Z

C` g(t− `Ts)
)
? h
)

(t0) =
∑
`∈Z

C`
(
g ? h

)(
t0 − `Ts

)
. (18.90)

Proof. Follows by applying Lemma 18.6.1 to the functions

sL : t 7→
L∑

`=−L

C` g(t− `Ts), L = 1, 2, . . .

18.6.2 On the Support of the Operational PSD of XBB

We next prove that if the pulse shape g is bandlimited to W/2 Hz, then the
operational PSD of XBB is zero at frequencies outside the band [−W/2,W/2].
That is, we justify (18.46).

Proposition 18.6.3. Assume that A, Ts, g, W, and fc are as in Theorem 18.2.1
and, additionally, that g satisfies the decay condition (18.22) and that the CSP(
C`
)

is bounded in the sense of (18.23). If the CSP
(
XBB(t), t ∈ R

)
of (18.25) is

of operational PSD SBB(·), then SBB(f) is zero for all |f | > W/2 outside a set of
Lebesgue measure zero, and consequently

f 7→ SBB(f) I
{
|f | ≤ W

2

}
is also an operational PSD for

(
XBB(t), t ∈ R

)
.

Proof. We shall show that the proposition’s hypotheses imply that if h ∈ L1 is
such that ĥ(f) = 0 at all frequencies f satisfying |f | ≤ W/2, then the power in
XBB ?h is zero, irrespective of the values of ĥ(f) at other frequencies. That is, we
shall show that(

ĥ(f) = 0, |f | ≤W/2
)
⇒
(
Power in XBB ? h = 0

)
, h ∈ L1 . (18.91)

Since XBB is, by assumption, of operational PSD SBB(·), it will then follow from
(18.91) that(

ĥ(f) = 0, |f | ≤W/2
)
⇒
(∫ ∞

−∞
SBB(f) |ĥ(f)|2 df = 0

)
, h ∈ L1 . (18.92)

From (18.92) it is just a technicality to show that the nonnegative function SBB(·)
must be zero at all frequencies |f | > W/2 outside a set of Lebesgue measure
zero. Indeed, if, in order to reach a contradiction, we assume that SBB(·) is not
indistinguishable from the all-zero function in some interval [a, b], where a and b
are such that W/2 < a < b, then picking h as an integrable function such that
ĥ(f) is zero for |f | ≤ W/2 and such that ĥ(f) = 1 for a ≤ f ≤ b would yield
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a contradiction to (18.92). (An example of such a function h is the IFT of the
shifted-trapezoid mapping

f 7→


1 if a ≤ f ≤ b,
0 if f ≤W/2 or f ≥ b+ (a−W/2),
1− |f−(a+b)/2|−(b−a)/2

a−W/2 otherwise,
f ∈ R,

which is a frequency shifted version of the function we encountered in (7.15) and
(7.17).) The assumption that SBB(·) is not indistinguishable from the all-zero
function in some interval [a, b] where a < b < −W/2 can be similarly contradicted.

To complete the proof we thus need to justify (18.91). This follows from two
observations. The first is that, by Corollary 18.6.2, for every h ∈ L1

Power in XBB ? h = Power in t 7→ A
∑
`∈Z

C`
(
g ? h

)
(t− `Ts). (18.93)

The second is that, because g is an integrable function that is bandlimited to W/2
Hz, it follows from Proposition 6.5.2 that

(
g ? h

)
(t) =

∫ W/2

−W/2

ĝ(f) ĥ(f) ei2πft df, t ∈ R

and, in particular,(
ĥ(f) = 0, |f | ≤W/2

)
⇒
(
g ? h = 0

)
, h ∈ L1 . (18.94)

Combining (18.93) and (18.94) establishes (18.91).

18.6.3 On the Definition of the Operational PSD

In order to demonstrate that
(
Z(t), t ∈ R

)
is of operational PSD SZZ , one has

to show that (18.43) holds for every function h : R→ C in L1 (Definition 18.4.1).
It turns out that it suffices to establish (18.43) only for functions that are in a
subset of L1 , provided that the subset is sufficiently rich. This result will allow
us to consider only functions h of compact support. To make this result precise
we need the following definition. We say that the set H is a dense subset of L1

if H is a subset of L1 such that for every h ∈ L1 there exists a sequence h1,h2, . . .
of elements of H such that limν→∞ ‖h− hν‖1 = 0. An example of a dense subset
of L1 is the subset of functions of compact support, where a function h : R→ C is
said to be of compact support if there exists some ∆ > 0 such that

h(t) = 0, |t| ≥ ∆. (18.95)

Lemma 18.6.4 (On Functions of Compact Support).

(i) The set of integrable functions of compact support is a dense subset of L1 .

(ii) If h is of compact support and if g satisfies the decay condition (18.22) with
parameters α, β, Ts > 0, then g ?h also satisfies this decay condition with the
same parameters α and Ts but with a possibly different parameter β′.
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Proof. We begin with Part (i). Given any integrable function h (not necessarily
of compact support) we define the sequence of integrable functions of compact
support h1,h2, . . . by hν : t 7→ h(t) I{|t| ≤ ν} for every ν ∈ N. It is then just a
technicality to show that ‖h− hν‖1 converges to zero. (This can be shown using
the Dominated Convergence Theorem because |hν(t)| ≤ |h(t)| for all t ∈ R and
because h is integrable.)

We next prove Part (ii). Let g satisfy the decay condition (18.22) with the positive
parameters α, β, Ts, and let ∆ > 0 be such that (18.95) is satisfied. We shall prove
the lemma by showing that∣∣(g ? h)(t)

∣∣ ≤ β′

1 + (|t|/Ts)1+α
, t ∈ R, (18.96)

where
β′ = β ‖h‖1 21+α

(
1 + (2∆/Ts)1+α

)
. (18.97)

To that end we shall first show that∣∣(g ? h)(t)
∣∣ ≤ β ‖h‖1 , t ∈ R (18.98)

and ∣∣(g ? h)(t)
∣∣ ≤ β ‖h‖1 21+α 1

1 + (|t|/Ts)1+α
, |t| ≥ 2∆. (18.99)

We shall then proceed to show that the RHS of (18.96) is larger than the RHS of
(18.98) for |t| ≤ 2∆ and that it is larger than the RHS of (18.99) for |t| > 2∆.

Both (18.98) and (18.99) follow from the bound

|(g ? h)(t)| =
∣∣∣∣∫ t+∆

t−∆

g(τ)h(t− τ) dτ
∣∣∣∣

≤
∫ t+∆

t−∆

|g(τ)| |h(t− τ)|dτ

≤
∫ t+∆

t−∆

(
sup

t−∆≤σ≤t+∆
|g(σ)|

)
|h(t− τ)|dτ

= ‖h‖1 sup
t−∆≤σ≤t+∆

|g(σ)|

as follows. Bound (18.98) simply follows by using (18.22) to upper-bound |g(t)|
by β. And Bound (18.99) follows by using (18.22) to upper-bound |g(t)| for |t| ≥ ∆
by β/

(
1 + ((|t| − ∆)/Ts)1+α

)
, and by then upper-bounding this latter expression

in the range |t| > 2∆ by β21+α/
(
1 + (|t|/Ts)1+α

)
because in this range

1 +
(
(|t| −∆)/Ts

)1+α = 1 +
( |t|

Ts

)1+α( |t| −∆
|t|

)1+α

≥ 1 +
( |t|

Ts

)1+α(1
2

)1+α

≥ 2−(1+α) + 2−(1+α)
( |t|

Ts

)1+α

, |t| ≥ 2∆.
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Having established (18.98) and (18.99) we now complete the proof by showing that
the RHS of (18.96) upper-bounds the RHS of (18.98) whenever |t| ≤ 2∆, and
that it upper-bounds the RHS of (18.99) for |t| ≥ 2∆. That the RHS of (18.96)
upper-bounds the RHS of (18.98) whenever |t| ≤ 2∆ follows because

β ‖h‖1 21+α
(
1 + (2∆/Ts)1+α

)
1 + (|t|/Ts)1+α

≥ β ‖h‖1 21+α ≥ β ‖h‖1 , |t| ≤ 2∆.

And that the RHS of (18.96) upper-bounds the RHS of (18.99) whenever |t| > 2∆
follows because the term 1 + (2∆/Ts)1+α is larger than one.

Proposition 18.6.5. Assume that H is a dense subset of L1 and that the (real or
complex) measurable stochastic process

(
Z(t), t ∈ R

)
is bounded in the sense that

for some σ∞
|Z(t)| ≤ σ∞, t ∈ R. (18.100)

If S(·) is a nonnegative integrable function such that the relation

Power in Z ? h =
∫ ∞

−∞
S(f)

∣∣ĥ(f)
∣∣2 df (18.101)

holds for every h ∈ H, then it holds for all h ∈ L1 .

Proof. Let h be an element of L1 (but not necessarily of H) for which we would
like to prove (18.101). Since H is a dense subset of L1 , there exists a sequence
h1,h2, . . . of elements of H

hν ∈ H, ν = 1, 2, . . . (18.102)

such that
lim
ν→∞

‖h− hν‖1 = 0. (18.103)

We shall prove that (18.101) holds for h by justifying the calculation

Power in Z ? h = lim
ν→∞

Power in Z ? hν (18.104)

= lim
ν→∞

∫ ∞

−∞
S(f)

∣∣ĥν(f)
∣∣2 df (18.105)

=
∫ ∞

−∞
S(f)

∣∣ĥ(f)
∣∣2 df. (18.106)

The justification of (18.105) is that, by (18.102), each of the functions hν is in H,
and the proposition’s hypothesis guarantees that (18.101) holds for such functions.

The justification of (18.106) is a bit technical. It is based on noting that (18.103)
implies (by Theorem 6.2.11 (i) with the substitution of h− hν for x) that

lim
ν→∞

ĥν(f) = ĥ(f), f ∈ R (18.107)

and by then using the Dominated Convergence Theorem to justify the swapping of
the limit and integral. Indeed, (by Theorem 6.2.11 (i)) for every ν ∈ N, the function



18.6 A Formal Account of the PSD in Baseband and Passband 333

f 7→ S(f) ĥν(f) is bounded by the function f 7→
(
supν ‖hν‖1

)
S(f), which is

integrable because S(·) is integrable (by the proposition’s hypothesis) and because
the integrability of h and (18.103) imply that the supremum is finite as can be
verified using the Triangle Inequality by writing hν as h− (h− hν).

We now complete the proof by justifying (18.104). Since Z?hν = Z?h−Z?(h−hν),
it follows from the Triangle Inequality for Stochastic Processes (Proposition 18.5.1)
that for every T > 0∣∣∣∣∣∣

√
E

[∫ T

−T

∣∣Z ? hν(t)
∣∣2 dt

]
−

√
E

[∫ T

−T

∣∣Z ? h(t)
∣∣2 dt

]∣∣∣∣∣∣
≤

√
E

[∫ T

−T

∣∣(Z ? (h− hν)
)
(t)
∣∣2 dt

]
≤
√

2Tσ∞ ‖h− hν‖1 , (18.108)

where the second inequality follows from (18.100) using (5.8c). Upon dividing by√
2T and taking the limit of T→∞ , it now follows from (18.108) that∣∣∣√Power in Z ? hν −

√
Power in Z ? h

∣∣∣ ≤ σ∞ ‖h− hν‖1 ,

from which (18.104) follows by (18.103).

18.6.4 Relating the Operational PSD in Passband and Baseband

We next make the relationship (18.44) between the operational PSD of X and the
operational PSD of XBB formal.

Theorem 18.6.6. Under the assumptions of Proposition 18.6.3, if the complex
stochastic process

(
XBB(t), t ∈ R

)
of (18.25) is of operational PSD SBB(·) in

the sense that SBB(·) is an integrable function satisfying that for every complex
hc ∈ L1 ,

lim
T→∞

1
2T

E

[∫ T

−T

∣∣∣(XBB ? hc

)
(t)
∣∣∣2 dt

]
=
∫ ∞

−∞
SBB(f)

∣∣ĥc(f)
∣∣2 df, (18.109)

then the QAM real SP
(
X(t), t ∈ R

)
of (18.24) is of operational PSD

SPB(f) , SBB

(
f − fc

)
+ SBB

(
−f − fc

)
, f ∈ R (18.110)

in the sense that SPB(·) is an integrable symmetric function such that for every
real hr ∈ L1

lim
T→∞

1
2T

E

[∫ T

−T

∣∣∣(X ? hr

)
(t)
∣∣∣2 dt

]
=
∫ ∞

−∞
SPB(f) |ĥr(f)|2 df. (18.111)

Proof. The hypothesis that SBB(·) is integrable clearly implies that SPB(·), as
defined in (18.110), is integrable and symmetric. It remains to show that if (18.109)
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holds for every complex hc ∈ L1 , then (18.111) must hold for every real hr ∈ L1 .
Since the set of integrable functions of compact support is a dense subset of L1

(Lemma 18.6.4 (i)), it follows from Proposition 18.6.5 that it suffices to establish
(18.111) for real functions hr that are of compact support. Let hr be such a
function. The following calculation demonstrates that passing the QAM signal X
through a filter of impulse response hr is tantamount to replacing its pulse shape g
with the pulse shape consisting of the convolution of g with the complex signal
τ 7→ e−i2πfcτ hr(τ):(

X ? hr

)
(t) =

((
τ 7→ 2 Re

(
XBB(τ) ei2πfcτ

))
? hr

)
(t)

= 2Re
(((

τ 7→ XBB(τ) ei2πfcτ
)
? hr

)
(t)
)

= 2Re
(
ei2πfct

(
XBB ?

(
τ 7→ e−i2πfcτ hr(τ)

))
(t)
)

= 2Re
(
ei2πfct A

∞∑
`=−∞

C`

(
g ?
(
τ 7→ e−i2πfcτ hr(τ)

))
(t− `Ts)

)

= 2Re
(

A

∞∑
`=−∞

C`
(
g ? hc

)
(t− `Ts) ei2πfct

)
, (18.112)

where the first equality follows from the definition of X in terms of XBB; the second
because hr is real (see (7.38) on the convolution between a real and a complex
signal); the third from Proposition 7.8.1; the fourth from Corollary 18.6.2; and
where the fifth equality follows by defining the mapping

hc : t 7→ e−i2πfct hr(t). (18.113)

Note that by (18.113)
ĥc(f) = ĥr(f + fc), f ∈ R. (18.114)

It follows from (18.112) that X?hr has the form of a QAM signal with pulse shape
g?hc. We note that, because g (by hypothesis) satisfies the decay condition (18.22)
and because the fact that hr is of compact support implies by (18.113) that hc is
also of compact support, it follows from Lemma 18.6.4 (ii) that the pulse shape
g ? hc satisfies the decay condition

∣∣(g ? hc)(t)
∣∣ ≤ β′

1 + (|t|/Ts)1+α
, t ∈ R (18.115)

for some positive β′. Consequently, we can apply Theorem 18.5.2 to obtain that
the power of X ? hr is given by

Power in X ? hr = 2 Power in t 7→ A

∞∑
`=−∞

C` (g ? hc)(t− `Ts)

= 2 Power in
(
t 7→ A

∞∑
`=−∞

C` g(t− `Ts)
)
? hc
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= 2 Power in (XBB ? hc)

= 2
∫ ∞

−∞
SBB(f)

∣∣ĥc(f)
∣∣2 df

= 2
∫ ∞

−∞
SBB(f)

∣∣ĥr(f + fc)
∣∣2 df

= 2
∫ ∞

−∞
SBB(f̃ − fc)

∣∣ĥr(f̃)
∣∣2 df̃

=
∫ ∞

−∞

(
SBB(f̃ − fc) + SBB(−f̃ − fc)

) ∣∣ĥr(f̃)
∣∣2 df̃ , (18.116)

where the second equality follows from Corollary 18.6.2; the third by the definition
of XBB; the fourth because, by hypothesis, XBB is of operational PSD SBB(·); the
fifth from (18.114); the sixth by changing the integration variable to f̃ , f + fc;
and the seventh from the conjugate symmetry of ĥr(·).
Since hr was an arbitrary integrable real function of compact support, (18.116)
establishes (18.111) for all such functions.

Corollary 18.6.7. Under the assumptions of Theorem 18.6.6, the QAM signal(
X(t), t ∈ R

)
is of operational PSD

SXX(f) = SBB

(
|f | − fc

)
, f ∈ R. (18.117)

Proof. Follows from the theorem by noting that, by Proposition 18.6.3 and by the
assumption that fc > W/2,

SBB

(
f − fc

)
+ SBB

(
−f − fc

)
= SBB

(
|f | − fc

)
at all frequencies f outside a set of frequencies of Lebesgue measure zero.

18.6.5 On the Operational PSD in Baseband

In the calculation of the operational PSD of the QAM signal
(
X(t)

)
via (18.44)

(which is formally stated as Corollary 18.6.7) we needed the operational PSD of
the CSP

(
XBB(t)

)
of (18.25). In this section we justify the calculations of this

operational PSD that lead to Theorems 18.4.3 and 18.4.4. Specifically, we show:

Proposition 18.6.8 (Operational PSD of a Complex PAM Signal). Let the CSP(
XBB(t), t ∈ R

)
be given by (18.25), where A ≥ 0, Ts > 0, and where g is a

complex Borel measurable function satisfying the decay condition (18.22) for some
constants α, β > 0.

(i) If
(
C`
)

is a bounded, zero-mean, WSS CSP of autocovariance function KCC ,
i.e., if it satisfies (18.23) and (18.28), then the CSP

(
XBB(t), t ∈ R

)
is of

operational PSD SBB(·) as given in (18.49).

(ii) If
(
C`
)

is produced in bi-infinite block-mode from IID random bits using an
encoder enc : {0, 1}K → CN that produces zero-mean symbols from IID ran-
dom bits, then

(
XBB(t), t ∈ R

)
is of operational PSD SBB(·) as given in

(18.52).
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Proof. We have all the ingredients that are needed to justify our derivations of
(18.49) and (18.52). All that remains is to piece them together. Let h be any
complex integrable function of compact support. Then

Power in XBB ? h = Power in
((

t 7→ A
∑
`∈Z

C` g(t− `Ts)
)
? h
)

= Power in t 7→ A
∑
`∈Z

C` (g ? h)(t− `Ts), (18.118)

where the first equality follows from the definition of XBB (18.25), and where the
second equality follows from Corollary 18.6.2. Note that by Lemma 18.6.4 (ii) the
function g ? h satisfies the decay condition (18.96) for some β′ > 0.

To prove Part (i) we now employ Theorem 14.6.4 (which extends to the case where
the pulse shape and the symbols are complex) with the pulse shape g ?h to obtain
from (18.118) that

Power in XBB ? h =
A2

Ts

∫ ∞

−∞

∞∑
m=−∞

KCC(m) e−i2πfmTs |ĝ(f)|2|ĥ(f)|2 df, (18.119)

for every integrable complex h of compact support. It follows from the fact
that the set of integrable functions of compact support is a dense subset of L1

(Lemma 18.6.4 (i)) and from Proposition 18.6.5 that (18.119) must hold for all
integrable functions. Recalling the definition of the operational PSD (Defini-
tion 18.4.1), it follows that

(
XBB(t), t ∈ R

)
is of operational PSD SBB(·) as

given in (18.49).

The proof of Part (ii) is very similar except that we compute the RHS of (18.118)
using (18.36) with the substitution of g ? h for the pulse shape.

18.7 Exercises

Exercise 18.1 (The Second Moment of the Square QAM Constellation).

(i) Show that picking X and Y IID uniformly over the set in (10.19) results in X + iY
being uniformly distributed over the set in (16.19).

(ii) Compute the second moment of the square 2ν × 2ν QAM constellation (16.19).

Exercise 18.2 (Optimal Constellations). Let C denote a QAM constellation, and define
for every z ∈ C the constellation C′ = {c− z : c ∈ C}.

(i) Relate the minimum distance of C′ to that of C.
(ii) Relate the second moment of C′ to that of C.
(iii) How would you choose z to minimize the second moment of C′?

Exercise 18.3 (The Power in Baseband Is Real). Show that the RHS of (18.29) is real.
Which properties of the autocovariance function KCC and of the self-similarity func-
tion Rgg are you exploiting?
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Exercise 18.4 (π/4-QPSK). In QPSK or 4-QAM the data bits are mapped to complex
symbols

(
C`
)

which take value in set {±1± i} and which are then transmitted using the
signal

(
X(t)

)
defined in (18.24). Consider now π/4-QPSK where, prior to transmission,

the complex symbols
(
C`
)

are rotated to form the complex symbols

C̃` = α` C`, ` ∈ Z,

where α = eiπ/4. The transmitted signal is then

2A Re
( ∞∑
`=−∞

C̃` g(t− `Ts) e
i2πfct

)
, t ∈ R.

Compute the power and the operational PSD of the π/4-QPSK signal when
(
C`
)

is a zero-
mean WSS CSP of autocovariance function KCC . Compare the power and operational
PSD of π/4-QPSK with those of QPSK. How do they compare when the symbols

(
C`
)

are IID?

Hint: See Exercise 17.12.

Exercise 18.5 (The Bandwidth of the QAM Signal). Formulate and prove a result anal-
ogous to Theorem 15.4.1 for QAM.

Exercise 18.6 (Bandwidth and Power in PAM and QAM). Data bits
(
Dj
)

are generated
at rate Rb bits per second.

(i) The bits are mapped to real symbols using a (K,N) binary-to-reals block-encoder
of rate K/N bits per real symbol. The symbols are mapped to a PAM signal
of pulse shape φ whose time shifts by integer multiples of Ts are orthonormal
and whose excess bandwidth is η. Find the bandwidth of the transmitted signal
(Definition 15.3.4).

(ii) Repeat for the bandwidth around the carrier frequency fc in QAM when the bits
are mapped to complex symbols using a (K,N) binary-to-complex block-encoder
of rate K/N bits per complex symbol. (As in Part (i), the pulse shape is of excess
bandwidth η.)

(iii) Show that if we express the rate ρ of the block-encoder in both cases in bits per
complex symbol, then in the former case ρ = 2K/N; in the latter case ρ = K/N;
and in both cases the bandwidth can be expressed as the same function of Rb, ρ,
and η.

(iv) Show that for both PAM and QAM the transmitted power is given by

P =
EsRb

ρ

provided that the energy per symbol Es and the rate ρ are computed in both cases
per complex symbol.

Hint: Exercise 18.5 is useful for Part (ii).

Exercise 18.7 (Operational PSD of Differential PSK). Let the bi-infinite sequence of IID
random bits

(
Dj , j ∈ Z

)
be mapped to the complex symbols

(
C`, ` ∈ Z

)
as follows:

C`+1 = C` exp
(
i
2π

8
(4D3` + 2D3`+1 +D3`+2)

)
, ` = 0, 1, 2, . . .

C` = C`+1 exp
(
−i

2π

8
(4D3` + 2D3`+1 +D3`+2)

)
, ` = . . . ,−2,−1,
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where C0 is independent of
(
Dj
)

and uniformly distributed over the set

C =
{
1, ei 2π8 , e2i 2π8 , e3i 2π8 , . . . , e7i 2π8

}
.

Find the operational PSD of the QAM signal under the assumptions of Section 18.3 on
the pulse shape.

Exercise 18.8 (PAM/QAM). Let D1, . . . , Dk be IID random bits. These bits are mapped
by a mapping ϕQAM : {0, 1}k → Cn to the complex symbols C1, . . . , Cn, which are then
mapped to the QAM signal

XQAM(t;D1, . . . , Dk) = 2A Re

( n∑
`=1

C` φQAM

(
t− `Ts,QAM

)
ei2πfct

)
, t ∈ R,

where the time shifts of φQAM by integer multiples of Ts,QAM are orthonormal.

Define the real symbols X1, . . . , X2n by

X2`−1 = Re(C`), X2` = Im(C`), ` ∈ {1, . . . , n}

and the corresponding PAM signal

XPAM(t;D1, . . . , Dk) = A

2n∑
`=1

X` φPAM

(
t− `Ts,PAM

)
, t ∈ R,

where φPAM is real and its time shifts by integer multiples of Ts,PAM are orthonormal.

(i) Relate the expected energy in XQAM to that in XPAM.

(ii) Relate the minimum squared distance

min
(d1,...,dk) 6=(d′1,...,d

′
k)

∫ ∞

−∞

(
XQAM

(
t; d1, . . . , dk

)
−XQAM

(
t; d′1, . . . , d

′
k

))2

dt,

to

min
(d1,...,dk) 6=(d′1,...,d

′
k)

∫ ∞

−∞

(
XPAM

(
t; d1, . . . , dk

)
−XPAM

(
t; d′1, . . . , d

′
k

))2

dt.

Exercise 18.9 (The Operational PSD is Nonnegative). Show that if the CSP
(
Z(t), t ∈ R

)
is of operational PSD SZZ , then SZZ(f) must be nonnegative outside a set of frequencies
of Lebesgue measure zero.

Hint: See Exercise 15.5.



Chapter 19

The Univariate Gaussian Distribution

19.1 Introduction

In many communication scenarios the noise is modeled as a Gaussian stochastic
process. This is sometimes justified by invoking a Central Limit Theorem, which
demonstrates that many small independent disturbances add up to a stochastic
process that is approximately Gaussian. Another justification is mathematical
convenience: while Gaussian processes may seem daunting at first, they are actually
well understood and often amenable to analysis. Finally, particularly in wireline
communications, the Gaussian model is justified because it leads to robust results
and to good engineering design. For other scenarios, e.g., fast-moving wireless
mobile communications, more intricate models are needed.

Rather than starting immediately with the definition and analysis of Gaussian
stochastic processes, we shall take the more moderate approach and start by first
discussing Gaussian random variables. Building on that, we shall later discuss
Gaussian random vectors in Chapter 23, and only then introduce continuous-time
Gaussian stochastic processes in Chapter 25.

19.2 Standard Gaussian Random Variables

We begin with a special kind of Gaussian: the standard Gaussian.

Definition 19.2.1 (Standard Gaussian). We say that the random variable W is a
standard Gaussian or that it has a standard Gaussian distribution, if its
density function fW (·) is given by

fW (w) =
1√
2π

e−
w2
2 , w ∈ R. (19.1)

This density is depicted in Figure 19.1. For this definition to be meaningful, the
RHS of (19.1) had better be a valid density function, i.e., be nonnegative and
integrate to one. This is indeed the case. In fact, the RHS of (19.1) is positive,

339
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w

fW (w)

Figure 19.1: The standard Gaussian density function

and it integrates to one because, as we next show,∫ ∞

−∞
e−w

2/2 dw =
√

2π. (19.2)

This integral can be verified by computing its square as follows:(∫ ∞

−∞
e−

w2
2 dw

)2

=
∫ ∞

−∞
e−

w2
2 dw

∫ ∞

−∞
e−

v2
2 dv

=
∫ ∞

−∞

∫ ∞

−∞
e−

w2+v2
2 dw dv

=
∫ ∞

0

∫ π

−π
r e−

r2
2 dϕ dr

= 2π
∫ ∞

0

r e−
r2
2 dr

= 2π
(
− e−r

2/2
)∣∣∣∞

0

= 2π,

where the first equality follows by writing a2 as a times a; the second by writing
the product of the integrals as a double integral over R2; the third by changing
from Cartesian to polar coordinates:

w = r cosϕ, v = r sinϕ, r ≥ 0, −π ≤ ϕ < π,

dw dv = r dr dϕ;

the fourth because the integrand does not depend on ϕ; the fifth because the
derivative of − e−r2/2 is r e−r

2/2; and where the final equality follows by direct
evaluation.

Note that the density of a standard Gaussian random variable is symmetric (19.1).
Consequently, if W is a standard Gaussian, then so is −W . This symmetry also
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establishes that the expectation of a standard Gaussian is zero. The variance of a
standard Gaussian can be computed using integration by parts:∫ ∞

−∞
w2 1√

2π
e−

w2
2 dw =

1√
2π

∫ ∞

−∞
w

(
− d

dw
e−

w2
2

)
dw

=
1√
2π

(
−w e−w2

2

∣∣∣∞
−∞

+
∫ ∞

−∞
e−

w2
2 dw

)
=

1√
2π

∫ ∞

−∞
e−

w2
2 dw

= 1,

where the last equality follows from (19.2).

19.3 Gaussian Random Variables

We next define a Gaussian (not necessarily standard) random variable as the result
of applying an affine transformation to a standard Gaussian.

Definition 19.3.1 (Centered Gaussians and Gaussians). We say that a random
variable X is a centered Gaussian or that it has a centered Gaussian distri-
bution if it can be written in the form

X = aW (19.3)

for some deterministic a ∈ R and for some standard Gaussian W . We say that
the random variable X is Gaussian or that it has a Gaussian distribution if

X = aW + b (19.4)

for some deterministic a, b ∈ R and for some standard Gaussian W .

Note 19.3.2. We do not preclude a from being zero. The case a = 0 leads to X
being deterministically equal to b. We thus include the deterministic random vari-
ables in the family of Gaussian random variables.

Note 19.3.3. The family of Gaussian random variables is closed with respect to
affine transformations: if X is Gaussian and α, β ∈ R are deterministic, then
αX + β is also Gaussian.

Proof. Since X is Gaussian, it can be written as X = aW + b, where W is a
standard Gaussian. Consequently

αX + β = α(aW + b) + β

= (αa)W + (αb+ β),

which has the form a′W + b′ for some deterministic a′, b′ ∈ R.

If (19.4) holds, then the random variables on its RHS and LHS must have the same
mean. The mean of a standard Gaussian is zero, so the mean of the RHS of (19.4)
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is b. The LHS is of mean E[X], and we thus conclude that in the representation
(19.4) the deterministic constant b is uniquely determined by the mean of X, and
in fact,

b = E[X] .

Similarly, since the variance of a standard Gaussian is one, the variance of the RHS
of (19.4) is a2. And since the variance of the LHS is Var[X], we conclude that

a2 = Var[X] .

Up to its sign, the deterministic constant a in the representation (19.4) is thus also
unique.

Based on the above, one might mistakenly think that for any given mean µ and
variance σ2 there are two different Gaussian distributions corresponding to

σW + µ, and − σW + µ, (19.5)

where W is a standard Gaussian. This, however, is not the case:

Note 19.3.4. There is only one Gaussian distribution of a given mean and variance.

Proof. This can be seen in two different ways. The first is to note that the two
representations in (19.5) lead to the same distribution, because the standard Gaus-
sian W has a symmetric distribution, so σW and −σW have the same distribution.
The second is based on computing the density of σW + µ and showing that it is a
symmetric function of σ; see (19.6) ahead.

Having established that there is only one Gaussian distribution of a given mean µ
and variance σ2, we denote it by

N
(
µ, σ2

)
and set out to study its density. Since the distribution does not depend on the
sign of σ, it is customary to require that σ be nonnegative and to refer to it as the
standard deviation. Thus, σ2 is the variance and σ is the standard deviation.
If σ2 = 0, then the Gaussian distribution is deterministic with mean µ and has
no density.1 If σ2 > 0, then the density can be computed from the density of
the standard Gaussian distribution as follows. If X ∼ N

(
µ, σ2

)
, then X has the

same distribution as µ + σW , where W is a standard Gaussian, because both X
and µ + σW are of mean µ and variance σ2 (W is zero-mean and unit-variance);
both are Gaussian (Note 19.3.3); and Gaussians of identical means and variances
have identical distributions (Note 19.3.4). The density of X is thus identical to the
density of µ + σW . The density of the latter can be computed from the density
of W (19.1) to obtain that the density of a N

(
µ, σ2

)
Gaussian random variable of

positive variance is
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R. (19.6)

This density is depicted in Figure 19.2. To derive the density of µ + σW from

1Some would say that the density of a deterministic random variable is given by Dirac’s Delta,
but we prefer not to use generalized functions in this book.
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µ

2σ

µ+ σµ− σ

e−1/2

√
2πσ2

1√
2πσ2

Figure 19.2: The Gaussian density function with mean µ and variance σ2.

that of W , we have used the fact that if X = g(W ), where g(·) is a deterministic
continuously differentiable function whose derivative never vanishes (in our case
g(w) = µ + σw) and where W is of density fW (·) (in our case (19.1)), then the
density fX(·) of X is given by:

fX(x) =

{
0 if for no ξ is x = g(ξ),

1
|g′(ξ)|fW

(
ξ
)

if ξ satisfies x = g(ξ),
(19.7)

where g′(ξ) denotes the derivative of g(·) at ξ. (For a more formal multivariate
version of this fact see Theorem 17.3.4.)

Since the family of Gaussian random variables is closed under deterministic affine
transformations (Note 19.3.3), it follows that if X ∼ N

(
µ, σ2

)
with σ2 > 0, then

(X − µ)/σ is also a Gaussian random variable. Since it is of zero mean and of
unit variance, it follows that it must be a standard Gaussian, because there is only
one Gaussian distribution of zero mean and unit variance (Note 19.3.4). We thus
conclude that for σ2 > 0 and arbitrary µ ∈ R,(

X ∼ N
(
µ, σ2

))
⇒
(
X − µ
σ

∼ N (0, 1)
)
. (19.8)

Recall that the Cumulative Distribution Function FX(·) of a RV X is defined
for x ∈ R as

FX(x) = Pr[X ≤ x],

=
∫ x

−∞
fX(ξ) dξ,

where the second equality holds if X has a density function fX(·). If W is a
standard Gaussian, then its CDF is thus given by

FW (w) =
∫ w

−∞

1√
2π

e−
ξ2
2 dξ, w ∈ R.
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α

Q(α)

Figure 19.3: Q(α) is the area to the right of α under the standard Gaussian density
plot. Here it is represented by the shaded area.

There is, alas, no closed-form expression for this integral. To handle such expres-
sions we next introduce the Q-function.

19.4 The Q-Function

The Q-function maps every α ∈ R to the probability that a standard Gaussian
exceeds it:

Definition 19.4.1 (The Q-Function). The Q-function is defined by

Q(α) ,
1√
2π

∫ ∞

α

e−ξ
2/2 dξ, α ∈ R. (19.9)

For a graphical interpretation of this integral see Figure 19.3.

Since theQ-function is a well-tabulated function, we are usually happy when we can
express answers to various questions using this function. The CDF of a standard
Gaussian W can be expressed using the Q-function as follows:

FW (w) = Pr[W ≤ w]
= 1− Pr[W ≥ w]
= 1−Q(w), w ∈ R, (19.10)

where the second equality follows because the standard Gaussian has a density,
so Pr[W = w] = 0. Similarly, with the aid of the Q-function we can express the
probability that a standard Gaussian W lies in some given interval [a, b]:

Pr[a ≤W ≤ b] = Pr[W ≥ a]− Pr[W ≥ b]
= Q(a)−Q(b), a ≤ b.
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More generally, if X ∼ N
(
µ, σ2

)
with σ > 0, then

Pr[a ≤ X ≤ b] = Pr[X ≥ a]− Pr[X ≥ b], a ≤ b

= Pr
[
X − µ
σ

≥ a− µ
σ

]
− Pr

[
X − µ
σ

≥ b− µ
σ

]
, σ > 0

= Q
(a− µ

σ

)
−Q

(b− µ
σ

)
,
(
a ≤ b, σ > 0

)
, (19.11)

where the last equality follows because (X − µ)/σ is a standard Gaussian; see
(19.8). Letting b tend to +∞ in (19.11), we obtain the probability of a half ray:

Pr[X ≥ a] = Q
(a− µ

σ

)
, σ > 0. (19.12a)

And letting a tend to −∞ we obtain

Pr[X ≤ b] = 1−Q
(b− µ

σ

)
, σ > 0. (19.12b)

The Q-function is usually only tabulated for nonnegative arguments, because the
standard Gaussian density (19.1) is symmetric: if W ∼ N (0, 1) then, by the sym-
metry of its density,

Pr[W ≥ −α] = Pr[W ≤ α]
= 1− Pr[W ≥ α], α ∈ R.

Consequently, as illustrated in Figure 19.4,

Q(α) +Q(−α) = 1, α ∈ R, (19.13)

and it suffices to tabulate the Q-function for nonnegative arguments. Note that,
by (19.13),

Q(0) =
1
2
. (19.14)

An alternative expression for the Q-function as an integral with fixed integration
limits is known as Craig’s formula:

Q(α) =
1
π

∫ π/2

0

e
− α2

2 sin2 ϕ dϕ, α ≥ 0. (19.15)

This expression can be derived by computing a two-dimensional integral in two
different ways as follows. Let X ∼ N (0, 1) and Y ∼ N (0, 1) be independent.
Consider the probability of the event “X ≥ 0 and Y ≥ α” where α ≥ 0. Since the
two random variables are independent, it follows that

Pr[X ≥ 0 and Y ≥ α] = Pr[X ≥ 0] Pr[Y ≥ α]

=
1
2
Q(α), (19.16)
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α

−α

−α

−α

Q(α)

Q(α)

Q(−α)

Q(−α)Q(α)

Figure 19.4: The identity Q(α) +Q(−α) = 1.
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y

x

α

ϕ

α

sin
ϕ

area of integration

Figure 19.5: Use of polar coordinates to compute 1
2Q(α).

where the second equality follows from (19.14). We now proceed to compute the
LHS of the above in polar coordinates centered at the origin (Figure 19.5):

Pr[X ≥ 0 and Y ≥ α] =
∫ ∞

0

∫ ∞

α

1
2π

e−
x2+y2

2 dy dx

=
∫ π/2

0

∫ ∞

α
sinϕ

1
2π

e−r
2/2 r dr dϕ, α ≥ 0

=
1
2π

∫ π/2

0

∫ ∞

α2
2 sin2 ϕ

e−t dtdϕ

=
1
2π

∫ π/2

0

e
− α2

2 sin2 ϕ dϕ, α ≥ 0, (19.17)

where we have performed the change of variable t , r2/2. The integral represen-
tation (19.15) now follows from (19.16) & (19.17).

We next describe various approximations for the Q-function. We are particularly
interested in its value for large arguments.2 Since Q(α) is the probability that
a standard Gaussian exceeds α, it follows that limα→∞Q(α) = 0. Thus, large
arguments to the Q-function correspond to small values of the Q-function. The
following bounds justify the approximation

Q(α) ≈ 1√
2πα2

e−
α2
2 , α� 1. (19.18)

Proposition 19.4.2 (Estimates for the Q-function). The Q-function is bounded
by

1√
2πα2

e−α
2/2

(
1− 1

α2

)
< Q(α) <

1√
2πα2

e−α
2/2, α > 0 (19.19)

2In Digital Communications this corresponds to scenarios with low probability of error.
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and
Q(α) ≤ 1

2
e−α

2/2, α ≥ 0. (19.20)

Proof. The proof of (19.19) is omitted (but see Exercise 19.3). Inequality (19.20)
is proved by replacing the integrand in (19.15) with its maximal value, namely, its
value at ϕ = π/2. We shall see an alternative proof in Section 20.10.

19.5 Integrals of Exponentiated Quadratics

The fact that (19.6) is a density and hence integrates to one, i.e.,∫ ∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx = 1, (19.21)

can be used to compute seemingly complicated integrals. Here we shall show how
(19.21) can be used to derive the identity

∫ ∞

−∞
e−αx

2±βx dx =
√
π

α
e
β2
4α , β ∈ R, α > 0. (19.22)

Note that this identity is meaningless when α ≤ 0, because in this case the inte-
grand is not integrable. For exmples, if α < 0, then the integrand tends to infinity
as |x| tends to ∞. If α = 0 and β 6= 0, then the integrand tends to infinity either
as x tends to +∞ or as x tends to −∞ (depending on the sign of β). Finally, if
both α and β are zero, then the integrand is 1, which is not integrable. Note also
that, by considering the change of variable u , −x, one can verify that the sign
of β on the LHS of this identity is immaterial.

The trick to deriving (19.22) is to complete the exponent to a square and to then
apply (19.21):∫ ∞

−∞
e−αx

2+βx dx =
∫ ∞

−∞
exp
(
−

x2 − β
αx

2(1/
√

2α)2

)
dx

=
∫ ∞

−∞
exp

(
−
(
x− β

2α

)2
2(1/
√

2α)2
+
β2

4α

)
dx

= e
β2
4α

∫ ∞

−∞
exp

(
−
(
x− β

2α

)2
2(1/
√

2α)2

)
dx

= e
β2
4α

√
2π
(
1/
√

2α
)2∫ ∞

−∞

1√
2π
(
1/
√

2α
)2 exp

(
−
(
x− β

2α

)2
2(1/
√

2α)2

)
dx

= e
β2
4α

√
2π
(
1/
√

2α
)2

=
√
π

α
e
β2
4α ,
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where the first equality follows by rewriting the integrand so that the term x2 in
the numerator is of coefficient one and so that the denominator has the form 2σ2

for σ which turns out here to be given by σ , 1/
√

2α; the second follows by
completing the square; the third by taking the multiplicative constant out of the
integral; the fourth by multiplying and dividing the integral by

√
2πσ2 so as to

bring the integrand to the form of the density of a Gaussian; the fifth by (19.21);
and the sixth equality by trivial algebra.

19.6 The Moment Generating Function

As an application of (19.22) we next derive the Moment Generating Function
(MGF) of a Gaussian RV. Recall that the MGF of a RV X is denoted by MX(·)
and is given by

MX(θ) , E
[
eθX

]
(19.23)

for all θ ∈ R for which this expectation is finite. If X has density fX(·), then its
MGF can be written as

MX(θ) =
∫ ∞

−∞
fX(x) eθx dx, (19.24)

thus highlighting the connection between the MGF of X and the double-sided
Laplace Transform of its density.

If X ∼ N
(
µ, σ2

)
where σ2 > 0, then

MX(θ) =
∫ ∞

−∞
fX(x) eθx dx

=
∫ ∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 eθx dx

=
∫ ∞

−∞

1√
2πσ2

e−
ξ2

2σ2 eθ(ξ+µ) dξ

= eθµ
1√

2πσ2

∫ ∞

−∞
e−

ξ2

2σ2 +θξ dξ

= eθµ
1√

2πσ2

√
π

1/(2σ2)
e

θ2

4/(2σ2)

= eθµ+ 1
2 θ

2σ2
, θ ∈ R,

where the first equality follows from (19.24); the second from (19.6); the third by
changing the integration variable to ξ , x − µ; the fourth by rearranging terms;
the fifth from (19.22) with the substitution of 1/(2σ2) for α and of θ for β; and the
final by simple algebra. This can be verified to hold also when σ2 = 0. Thus,

(
X ∼ N

(
µ, σ2

))
⇒
(
MX(θ) = eθµ+ 1

2 θ
2σ2

, θ ∈ R
)
. (19.25)
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19.7 The Characteristic Function of Gaussians

19.7.1 The Characteristic Function

Recall that the Characteristic Function ΦX(·) of a random variable X is defined
for every $ ∈ R by

ΦX($) = E
[
ei$X

]
=
∫ ∞

−∞
fX(x) ei$x dx,

where the second equality holds ifX has density fX(·). The second equality demon-
strates that the characteristic function is related to the Fourier Transform of the
density function but, by convention, there are no 2π’s, and the complex exponential
is not conjugated. If we allow for complex arguments to the MGF (by performing
an analytic continuation), then the characteristic function can be viewed as the
MGF evaluated on the imaginary axis:

ΦX($) = MX(i$), $ ∈ R. (19.26)

Some of the properties of the characteristic function are summarized next.

Proposition 19.7.1 (On the Characteristic Function). Let X be a random variable
of characteristic function ΦX(·).

(i) If E[Xn] < ∞ for some n ∈ N, then ΦX(·) is differentiable n times and the
ν-th moment of X is related to the ν-th derivative of ΦX(·) at zero via the
relation

E[Xν ] =
1
iν

dνΦX($)
d$ν

∣∣∣∣
$=0

, ν = 1, . . . , n. (19.27)

(ii) Two random variables of identical characteristic functions must have the
same distribution.

(iii) If X and Y are independent random variables of characteristic functions
ΦX(·) and ΦY (·), then the characteristic function ΦX+Y (·) of their sum is
given by the product of their characteristic functions:

(
X & Y independent

)
⇒
(
ΦX+Y ($) = ΦX($) ΦY ($), $ ∈ R

)
. (19.28)

Proof. For a proof of Part (i) see (Shiryaev, 1996, Chapter II, § 12.3, Theorem 1).
For Part (ii) see (Shiryaev, 1996, Chapter II, § 12.4, Theorem 2). For Part (iii) see
(Shiryaev, 1996, Chapter II, § 12.5, Theorem 4).
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For X ∼ N
(
µ, σ2

)
we obtain from (19.26) and (19.25) that3

(
X ∼ N

(
µ, σ2

))
⇒
(
ΦX($) = ei$µ−

1
2$

2σ2
, $ ∈ R

)
. (19.29)

19.7.2 Moments

Since the standard Gaussian density decays faster than exponentially, it possesses
moments of all orders. Those can be computed from the characteristic function
(19.29) using Proposition 19.7.1 (i) by repeated differentiation. Using this approach
we obtain that the moments of a standard Gaussian are

E
[
W ν
]

=

{
1× 3× · · · × (ν − 1) if ν is even,
0 if ν is odd,

W ∼ N (0, 1) . (19.30)

We mention here in passing that4

E
[
|W |ν

]
=

{
1× 3× · · · × (ν − 1) if ν is even,√

2
π 2(ν−1)/2

(
ν−1
2

)
! if ν is odd,

W ∼ N (0, 1) (19.31)

(Johnson, Kotz, and Balakrishnan, 1994a, Chapter 18, Section 3, Equation (18.13)).

19.7.3 Sums of Independent Gaussians

Using the characteristic function we next show:

Proposition 19.7.2 (The Sum of Two Independent Gaussians Is Gaussian). The
sum of two independent Gaussian random variables is a Gaussian RV.5

Proof. Let X ∼ N
(
µx, σ

2
x

)
and Y ∼ N

(
µy, σ

2
y

)
be independent. By (19.29),

ΦX($) = ei$µx−
1
2$

2σ2
x , $ ∈ R,

ΦY ($) = ei$µy−
1
2$

2σ2
y , $ ∈ R.

3It does require a (small) leap of faith to accept that (19.25) also holds for complex θ. This can
be justified using analytic continuation. But there are also direct ways of deriving (19.29); see, for
example, (Williams, 1991, Chapter E, Exercise E16.4) or (Shiryaev, 1996, Chapter II, Section 12,
Paragraph 2, Example 2). Another approach is to express dΦX($)/ d$ as E

[
iX ei$X

]
and to

use integration by parts to verify that the latter’s expectation is equal to −$ΦX($) and to
then solve the differential equation dΦX($)/ d$ = −$ΦX($) with the condition ΦX(0) = 1 to
obtain that lnΦX($) = − 1

2
$2.

4The distribution of |W | is sometimes called half-normal. It is the positive square root of
the central chi-squared distribution with one degree of freedom.

5More generally, as we shall see in Chapter 23, X + Y is Gaussian whenever X and Y are
jointly Gaussian. And independent Gaussians are jointly Gaussian.
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Since the characteristic function of the sum of two independent random variables
is equal to the product of their characteristic functions (19.28),

ΦX+Y ($) = ΦX($) ΦY ($)

= ei$µx−
1
2$

2σ2
x ei$µy−

1
2$

2σ2
y

= ei$(µx+µy)− 1
2$

2(σ2
x+σ

2
y), $ ∈ R.

By (19.29), this is also the characteristic function of a N
(
µx + µy, σ

2
x + σ2

y

)
RV.

Since the characteristic function of a random variable fully determines its law
(Proposition 19.7.1 (ii)), X + Y must be N

(
µx + µy, σ

2
x + σ2

y

)
.

Using induction one can generalize this proposition to any finite number of ran-
dom variables: if X1, . . . , Xn are independent Gaussian random variables, then
their sum is Gaussian. Applying this to α1X1, . . . , αnXn, which are independent
Gaussians whenever X1, . . . , Xn are independent Gaussians, we obtain:

Proposition 19.7.3 (Linear Combinations of Independent Gaussians). If the ran-
dom variables X1, . . . , Xn are independent Gaussians, and if α1, . . . , αn ∈ R are
deterministic, then the RV Y =

∑n
`=1 α`X` is Gaussian with mean and variance

E[Y ] =
n∑
`=1

α` E[X`] ,

Var[Y ] =
n∑
`=1

α2
` Var[X`] .

19.8 Central and Noncentral Chi-Square Random Variables

We summarize here some of the definitions and main properties of the central and
noncentral χ2 distributions and of some related distributions. We shall only use
three results from this section: that the sum of the squares of two independent
N (0, 1) random variables has a mean-2 exponential distribution; that the distri-
bution of the sum of the squares of n independent Gaussian random variables of
unit-variance and possibly different means depends only on n and on the sum of
the squared means; and that the MGF of this latter sum has a simple explicit form.

These results can be derived quite easily from the MGF of a squared Gaussian RV,
an MGF which, using (19.22), can be shown to be given by(
X∼N

(
µ, σ2

))
⇒
(
MX2(θ) =

1√
1− 2σ2θ

e−
µ2

2σ2 e
µ2

2σ2(1−2σ2θ) , θ <
1

2σ2

)
. (19.32)

With a small leap of faith we can assume that (19.32) also holds for complex
arguments whose real part is smaller than 1/(2σ2) so that upon substituting i$
for θ we can obtain the characteristic function(
X∼N

(
µ, σ2

))
⇒
(
ΦX2($) =

1√
1− i2σ2$

e−
µ2

2σ2 e
µ2

2σ2(1−i2σ2$) , $ ∈ R
)
. (19.33)
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19.8.1 The Central χ2 Distribution and Related Distributions

The central χ2 distribution with n degrees of freedom is denoted by χ2
n

and is defined as the distribution of the sum of the squares of n IID zero-mean
unit-variance Gaussian random variables:(

X1, . . . , Xn ∼ IID N (0, 1)
)
⇒
( n∑
j=1

X2
j ∼ χ2

n

)
. (19.34)

Using the fact that the MGF of the sum of independent random variables is the
product of their MGFs and using (19.32) with µ = 0 and σ2 = 1, we obtain that
the MGF of the central χ2 distribution with n degrees of freedom is given by

E
[
eθχ

2
n

]
=

1
(1− 2θ)n/2

, θ <
1
2
. (19.35)

Similarly, by (19.33) and the fact that the characteristic function of the sum of
independent random variables is the product of their characteristic functions, (or
by substituting i$ for θ in (19.35)), we obtain that the characteristic function of
the central χ2 distribution with n degrees of freedom is given by

E
[
ei$χ

2
n

]
=

1
(1− 2i$)n/2

, $ ∈ R. (19.36)

Notice that for n = 2 this characteristic function is given by $ 7→ 1/(1 − i2$),
which is the characteristic function of the mean-2 exponential density

1
2
e−x/2 I{x > 0}, x ∈ R.

Since two random variables of identical characteristic functions must be of equal
law (Proposition 19.7.1 (ii)), we conclude:

Note 19.8.1. The central χ2 distribution with two degrees of freedom χ2
2 is the

mean-2 exponential distribution.

From (19.36) and the relationship between the moments of a distribution and the
derivatives at zero of its characteristic function (19.27), one can verify that the
ν-th moment of a χ2

n RV is given by

E
[(
χ2
n

)ν] = n× (n+ 2)× · · · ×
(
n+ 2(ν − 1)

)
, ν ∈ N, (19.37)

so the mean is n; the second moment is n(n+ 2); and the variance is 2n.

Since the sum of the squares of random variables must be nonnegative, the density
of the χ2

n distribution is zero on the negative numbers. It is given by

fχ2
n
(x) =

1
2n/2 Γ(n/2)

e−x/2 x(n/2)−1 I{x > 0}, (19.38)

where Γ(·) is the Gamma function, which is defined by

Γ(ξ) ,
∫ ∞

0

e−t tξ−1 dt, ξ > 0. (19.39)
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If the number of degrees of freedom is even, then the density has a particularly
simple form:

fχ2
2k

(x) =
1

2k(k − 1)!
e−x/2 xk−1 I{x > 0}, k ∈ N, (19.40)

thus demonstrating again that when the number of degrees of freedom is two, the
central χ2 distribution is the mean-2 exponential distribution (Note 19.8.1).

A related distribution is the generalized Rayleigh distribution, which is the
distribution of the square root of a random variable having a χ2

n distribution. The
density of the generalized Rayleigh distribution is given by

f√
χ2
n
(x) =

2
2n/2 Γ(n/2)

xn−1 e−x
2/2 I{x > 0}, (19.41)

and its moments by

E
[(√

χ2
n

)ν] =
2ν/2 Γ

(
(n+ ν)/2

)
Γ(n/2)

, ν ∈ N. (19.42)

The Rayleigh distribution is the distribution of the square root of a χ2
2 random

variable, i.e., the distribution of the square root of a mean-2 exponential random
variable. The density of the Rayleigh distribution is obtained by setting n = 2 in
(19.41):

f√
χ2

2
(x) = x e−x

2/2 I{x > 0}. (19.43)

19.8.2 The Noncentral χ2 Distribution and Related Distributions

Using (19.32) and the fact that the MGF of the sum of independent random vari-
ables is the product of their MGFs, we obtain that if X1, . . . , Xn are independent
with Xj ∼ N

(
µj , σ

2
)
, then the MGF of

∑
j X

2
j is given by(

1√
1− 2σ2θ

)n
e−

∑n
j=1 µ

2
j

2σ2 e

∑n
j=1 µ

2
j

2σ2(1−2σ2θ) , θ <
1

2σ2
. (19.44)

Noting that this MGF depends on the individual means µ1, . . . , µn only via the
sum of their squares

∑
µ2
j , we obtain:

Note 19.8.2. The distribution of the sum of the squares of independent equivari-
ance Gaussians is determined by their number, their common variance, and by the
sum of the squares of their means.

The distribution of the sum of n independent unit-variance Gaussians whose squared
means sum to λ is called the noncentral χ2 distribution with n degrees of
freedom and noncentrality parameter λ. This distribution is denoted by χ2

n,λ.
Substituting σ2 = 1 in (19.44) we obtain that the MGF of the χ2

n,λ distribution is

E
[
eθχ

2
n,λ

]
=
(

1√
1− 2θ

)n
e−

λ
2 e

λ
2(1−2θ) , θ <

1
2
. (19.45)
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A special case of this distribution is the central χ2 distribution, which corresponds
to the case where the noncentrality parameter λ is zero.

Explicit expressions for the density of the noncentral χ2 distribution can be found
in (Johnson, Kotz, and Balakrishnan, 1994b, Chapter 29, Equation (29.4)) and in
(Simon, 2002, Chapter 2). An interesting representation of this density in terms
of the density fχ2

ν,0
of the central χ2 distribution is:

fχ2
n,λ

(x) =
∞∑
j=0

(
( 1
2λ)j

j!
e−λ/2

)
fχ2

n+2j,0
(x), x ∈ R. (19.46)

It demonstrates that a χ2
n,λ random variable X can be generated by picking a

random integer j according to the Poisson distribution of parameter λ/2 and by
then generating a central χ2 random variable of n + 2j degrees of freedom. That
is, to generate a χ2

n,λ random variable X, generate some random variable J taking
value in the nonnegative integers according to the law

Pr[J = j] = e−λ/2
(λ/2)j

j!
, j = 0, 1, . . . (19.47)

and then generate X according the central χ2 distribution with n + 2j degrees of
freedom, where j is the outcome of J .

The density of the χ2
2,λ distribution is

fχ2
2,λ

(x) =
1
2
e−(λ+x)/2 I0

(√
λx
)

I{x > 0}, (19.48)

where I0(·) is the modified zeroth-order Bessel function, which is defined in (27.47)
ahead.

The generalized Rice distribution corresponds to the distribution of the square
root of a noncentral χ2 distribution with n degrees of freedom and noncentrality pa-
rameter λ. The case n = 2 is called the Rice distribution. The Rice distribution
is thus the distribution of the square root of a random variable having the noncen-
tral χ2 distribution with 2 degrees of freedom and noncentrality parameter λ. The
density of the Rice distribution is

f√
χ2

2,λ
(x) = x e−(x2+λ)/2 I0

(
x
√
λ
)

I{x > 0}. (19.49)

The following property of the noncentral χ2 is useful in detection theory. In the
statistics literature this property is called the Monotone Likelihood Ratio prop-
erty (Lehmann and Romano, 2005, Section 3.4). Alternatively, it is called the Total
Positivity of Order 2 of the function (x, λ) 7→ fχ2

n,λ
(x).

Proposition 19.8.3 (The Noncentral χ2 Family Has Monotone Likelihood Ratio).
Let fχ2

n,λ
(ξ) denote the density at ξ of the noncentral χ2 distribution with n degrees

of freedom and noncentrality parameter λ ≥ 0; see (19.46). Then for ξ1, ξ2 > 0
and λ1, λ2 ≥ 0 we have(
ξ0 < ξ1 and λ0 < λ1

)
⇒
(
fχ2

n,λ1
(ξ0) fχ2

n,λ0
(ξ1) ≤ fχ2

n,λ0
(ξ0) fχ2

n,λ1
(ξ1)
)
, (19.50)
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i.e.,

(
λ1 > λ0

)
⇒
(
ξ 7→

fχ2
n,λ1

(ξ)

fχ2
n,λ0

(ξ)
is nondecreasing in ξ > 0

)
. (19.51)

Proof. See, for example, (Finner and Roters, 1997, Proposition 3.8).

19.9 The Limit of Gaussians Is Gaussian

There are a number of useful definitions of convergence for sequences of random
variables. Here we briefly mention a few and show that, under each of these defi-
nitions, the convergence of a sequence of Gaussian random variables to a random
variable X implies that X is Gaussian.

Let the random variablesX,X1, X2, . . . be defined over a common probability space
(Ω,F , P ). We say that the sequence X1, X2, . . . converges to X with probability
one or almost surely if

Pr
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1. (19.52)

Thus, the sequence X1, X2, . . . converges to X almost surely if there exists an event
N ∈ F of probability zero such that for every ω /∈ N the sequence of real numbers
X1(ω), X2(ω), . . . converges to the real number X(ω).

The sequence X1, X2, . . . converges to X in probability if

lim
n→∞

Pr
[
|Xn −X| ≥ ε

]
= 0, ε > 0. (19.53)

The sequence X1, X2, . . . converges to X in mean square if

lim
n→∞

E
[(
Xn −X

)2] = 0. (19.54)

We refer the reader to (Shiryaev, 1996, Ch. II, Section 10, Theorem 2) for a proof
that convergence in mean-square implies convergence in probability and for a proof
that almost-sure convergence implies convergence in probability. Also, if a sequence
converges in probability to X, then it has a subsequence that converges to X with
probability one (Shiryaev, 1996, Ch. II, Section 10, Theorem 5).

Theorem 19.9.1. Let the random variables X,X1, X2, . . . be defined over a common
probability space (Ω,F , P ). Assume that each of the random variables X1, X2, . . .
is Gaussian. If the sequence X1, X2, . . . converges to X in the sense of (19.52) or
(19.53) or (19.54), then X must also be Gaussian.

Proof. Since both mean-square convergence and almost-sure convergence imply
convergence in probability, it suffices to prove the theorem in the case where the
sequence X1, X2, . . . converges to X in probability. And since every sequence con-
verging to X in probability has a subsequence converging to X almost surely, it
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suffices to prove the theorem for almost sure convergence. Our proof for this case
follows (Shiryaev, 1996, Ch. II, Section 13, Paragraph 5).

Since the random variables X1, X2, . . . are all Gaussian, it follows from (19.29) that

E
[
ei$Xn

]
= ei$µn−

1
2$

2σ2
n , $ ∈ R, (19.55)

where µn and σ2
n are the mean and variance of Xn. By the Dominated Convergence

Theorem it follows that the almost sure convergence of X1, X2, . . . to X implies
that

lim
n→∞

E
[
ei$Xn

]
= E

[
ei$X

]
, $ ∈ R. (19.56)

It follows from (19.55) and (19.56) that

lim
n→∞

ei$µn−
1
2$

2σ2
n = E

[
ei$X

]
, $ ∈ R. (19.57)

The limit in (19.57) can exist for every $ ∈ R only if there exist µ, σ2 such that
µn → µ and σ2

n → σ2. And in this case, by (19.57),

E
[
ei$X

]
= ei$µ−

1
2$

2σ2
, $ ∈ R,

so, by Proposition 19.7.1 (ii) and by (19.29), X is N
(
µ, σ2

)
.

Another type of convergence is convergence in distribution or weak conver-
gence, which is defined as follows. Let F1, F2, . . . denote the cumulative distri-
bution functions of the sequence of random variables X1, X2, . . . We say that the
sequence F1, F2, . . . (or sometimes X1, X2, . . .) converges in distribution to the cu-
mulative distribution function F (·) if Fn(ξ) converges to F (ξ) at every point ξ ∈ R
at which F (·) is continuous. That is,(

Fn(ξ)→ F (ξ)
)
,
(
F (·) is continuous at ξ

)
. (19.58)

Theorem 19.9.2. Let the sequence of random variables X1, X2, . . . be such that
Xn ∼ N

(
µn, σ

2
n

)
, for every n ∈ N. Then the sequence converges in distribution to

some limiting distribution if, and only if, there exist some µ and σ2 such that

µn → µ and σ2
n → σ2. (19.59)

And if the sequence does converge in distribution, then it converges to the mean-µ
variance-σ2 Gaussian distribution.

Proof. See (Gikhman and Skorokhod, 1996, Chapter I, Section 3, Theorem 4)
where this statement is proved in the multivariate case.

For extensions of Theorems 19.9.1 & 19.9.2 to random vectors, see Theorems 23.9.1
& 23.9.2 in Section 23.9.
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19.10 Additional Reading

The Gaussian distribution, its characteristic function, and its moment generating
function appear in almost every basic book on Probability Theory. For more on
the Q-function see (Verdú, 1998, Section 3.3) and (Simon, 2002). For more on
distributions related to the Gaussian distribution see (Simon, 2002), (Johnson,
Kotz, and Balakrishnan, 1994a), and (Johnson, Kotz, and Balakrishnan, 1994b).
For more on the central χ2 distribution see (Johnson, Kotz, and Balakrishnan,
1994a, Chapter 18) and (Simon, 2002, Chapter 2). For more on the noncentral χ2

distribution see (Johnson, Kotz, and Balakrishnan, 1994b, Chapter 29) and (Simon,
2002, Chapter 2). Various characterizations of the Gaussian distribution can be
found in (Bryc, 1995) and (Bogachev, 1998).

19.11 Exercises

Exercise 19.1 (Sums of Independent Gaussians). Let X1 ∼ N
(
0, σ2

1

)
and X2 ∼ N

(
0, σ2

2

)
be independent. Convolve their densities to show that X1 +X2 is Gaussian.

Exercise 19.2 (Computing Probabilities). Let X ∼ N (1, 3) and Y ∼ N (−2, 4) be inde-
pendent. Express the probabilities Pr[X ≤ 2] and Pr[2X+3Y > −2] using the Q-function
with nonnegative arguments.

Exercise 19.3 (Bounds on the Q-function). Prove (19.19). We suggest changing the

integration variable in (19.9) to ζ , ξ − α and then proving and using the inequality

1− ζ2

2
≤ exp

(
−ζ

2

2

)
≤ 1, ξ ∈ R.

Exercise 19.4 (An Application of Craig’s Formula). Let the random variables Z ∼ N (0, 1)
and A be independent, where A2 is of MGF MA2(·). Show that

Pr
[
Z ≥ |A|

]
=

1

π

∫ π/2

0

MA2

(
− 1

2 sin2 ϕ

)
dϕ.

Exercise 19.5 (An Expression for Q2(α)). In analogy to (19.15), derive the identity

Q2(α) =
1

π

∫ π/4

0

e
− α2

2 sin2 ϕ dϕ, α ≥ 0.

Exercise 19.6 (Expectation of Q(X)). Show that for any RV X

E
[
Q(X)

]
=

1√
2π

∫ ∞

−∞
Pr[X ≤ ξ] e−ξ

2/2 dξ.

(See (Verdú, 1998, Chapter 3, Section 3.3, Eq. (3.57)).)
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Exercise 19.7 (Generating Gaussians from Uniform RVs).

(i) Let W1 and W2 be IID N (0, 1), and let R =
√
W 2

1 +W 2
2 . Show that R has

a Rayleigh distribution, i.e., that its density fR(r) is given for every r ∈ R by

re−
r2
2 I{r ≥ 0}. What is the CDF FR(·) of R?

(ii) Prove that if a RV X is of density fX(·) and of CDF FX(·), then FX(X) ∼ U (0, 1).

(iii) Show that if U1 and U2 are IID U (0, 1) and if we define R =
√

ln 1
U1

and Θ = 2πU2,

then R cosΘ and R sinΘ are IID N (0, 1/2).

Exercise 19.8 (Infinite Divisibility). Show that for any µ ∈ R and σ2 ≥ 0 there exist IID
RVs X and Y such that X + Y ∼ N

(
µ, σ2

)
.

Exercise 19.9 (MGF of the Square of a Gaussian). Derive (19.32).

Exercise 19.10 (The Distribution of the Magnitude). Show that if a random variable X
is of density fX(·) and if Y = |X|, then the density fY (·) of Y is

fY (y) =
(
fX(y) + fX(−y)

)
I{y ≥ 0}, y ∈ R.

Exercise 19.11 (Uniformly Distributed Random Variables). Suppose that X ∼ U
(
[0, 1]

)
.

(i) Find the characteristic function ΦX(·) of X.

(ii) Show that ifX and Y are independent withX as above, thenX+Y is not Gaussian.

Exercise 19.12 (Sums and Differences of IID RVs). LetX and Y be IID random variables
with finite variances. Show that if X +Y and X −Y are independent, then X and Y are
Gaussian.

(See (Feller, 1971, Chapter III, Section 4).)



Chapter 20

Binary Hypothesis Testing

20.1 Introduction

In Digital Communications the task of the receiver is to observe the channel out-
puts and to use these observations to accurately guess the data bits that were sent
by the transmitter, i.e., the data bits that were fed to the modulator. Ideally, the
guessing would be perfect, i.e., the receiver would make no errors. This, alas, is
typically impossible because of the distortions and noise that the channel intro-
duces. Indeed, while one can usually recover the data bits from the transmitted
waveform (provided that the modulator is a one-to-one mapping), the receiver has
no access to the transmitted waveform but only to the received waveform. And
since the latter is typically a noisy version of the former, some errors are usually
unavoidable.

In this chapter we shall begin our study of how to guess intelligently, i.e., how,
given the channel output, one should guess the data bits with as low a probability
of error as possible. This study will help us not only in the design of receivers but
also in the design of modulators that allow for reliable decoding from the channel’s
output.

In the engineering literature the process of guessing the data bits based on the
channel output is called “decoding.” In the statistics literature this process is
called “hypothesis testing.” We like “guessing” because it demystifies the process.

In most applications the channel output is a continuous-time waveform and we seek
to decode a large number of bits. Nevertheless, for pedagogical reasons, we shall
begin our study with the simpler case where we wish to decode only a single data
bit. This corresponds in the statistics literature to “binary hypothesis testing,”
where the term “binary” reminds us that in this guessing problem there are only
two alternatives. Moreover, we shall assume that the observation, rather than
being a continuous-time waveform, is a vector or a scalar. In fact, we shall begin
our study with the simplest case where there are no observations at all.

360
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20.2 Problem Formulation

In choosing a guessing strategy to minimize the probability of error, the labels
of the two alternatives are immaterial. The principles that guide us in guessing
the outcome of a fair coin toss (where the labels are “heads” or “tails”) are the
same as for guessing the value of a random variable that takes on the values +1
and −1 equiprobably. (These are, of course, extremely simple cases that can be
handled with common sense.) Statisticians typically denote the two alternatives
by H0 and H1 and call them “hypotheses.” We shall denote the two alternatives
by 0 and 1. We thus envision guessing the value of a random variable H taking
value in the set {0, 1} with probabilities

π0 = Pr[H = 0], π1 = Pr[H = 1]. (20.1)

The prior is the distribution of H or the pair (π0, π1). It reflects the state of our
knowledge about H before having made any observations. We say that the prior
is nondegenerate if

π0, π1 > 0. (20.2)

(If the prior is degenerate, then H is deterministic and we can determine its value
without any observation. For example if π0 = 0 we always guess 1 and never err.)
The prior is uniform if π0 = π1 = 1/2.

Aiding us in the guess work is the observation Y, which is a random vector taking
value in Rd. (When d = 1 the observation is a random variable and we denote it
by Y .) We assume that Y is a column vector, so, using the notation of Section 17.2,

Y =
(
Y (1), . . . , Y (d)

)T
.

Typically there is some statistical dependence between Y and H; otherwise, Y
would be useless. If the dependence is so strong that from Y one can deduce H,
then our guess work is very easy: we simply compute from Y the value of H and
declare the result as our guess; we never err. The cases of most interest to us
are therefore those where Y neither determines H nor is statistically independent
of H. Unless otherwise specified, we shall assume that, conditional on H = 0,
the observation Y is of density fY|H=0(·) and that, conditional on H = 1, it is of
density fY|H=1(·). Here fY|H=0(·) and fY|H=1(·) are nonnegative Borel measurable
functions from Rd to R that integrate to one.1

Our problem is how to use the observation Y to intelligently guess the value of H.
At first we shall limit ourselves to deterministic guessing rules. Later we shall
show that no randomized guessing rule can outperform an optimal deterministic
rule. A deterministic guessing rule (or decision rule , or decoding rule) for
guessing H based on Y is a (Borel measurable) mapping from the set of possible
observations Rd to the set {0, 1}. We denote such a mapping by

φGuess : Rd → {0, 1} (20.3)

1Readers who are familiar with Measure Theory should note that these are densities with
respect to the Lebesgue measure on Rd, but that the reference measure is inessential to our
analysis. We could have also chosen as our reference measure the sum of the probability measures
on Rd corresponding to H = 0 and to H = 1. This would have guaranteed the existence of the
densities.
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and say that φGuess(yobs) is the guess we make after having observed that Y = yobs.

The probability of error associated with the guessing rule φGuess(·) is

Pr(error) , Pr[φGuess(Y) 6= H]. (20.4)

Note that two sources of randomness determine whether the guessing rule φGuess(·)
errs or not: the realization of H and the generation of Y conditional on that
realization. We say that a guessing rule is optimal if no other guessing rule
attains a smaller probability of error. (We shall later see that there always exists
an optimal guessing rule.2) In general, there may be a number of different optimal
guessing rules. We shall therefore try to refrain from speaking of the optimal
guessing rule. We apologize if this results in cumbersome writing. The probability
of error associated with optimal guessing rules is the optimal probability of
error and is denoted throughout by

p∗(error).

20.3 Guessing in the Absence of Observables

We begin with the simplest case where there are no observables. Common sense
dictates that in this case we should base our guess on the prior (π0, π1) as follows.
If π0 > π1, then we should guess that the value of H is 0; if π0 < π1, then we
should guess the value 1; and if π0 = π1 = 1/2, then it does not really matter what
we guess: the probability of error will be either way 1/2.

To verify that this intuition is correct note that, since there are no observables,
there are only two guessing rules: the rule “guess 0” and the rule “guess 1.” The
former results in the probability of error π1 (it is in error whenever H = 1, which
happens with probability π1), and the latter results in the probability of error π0.
Hence the former rule is optimal if π0 ≥ π1 and the latter is optimal when π1 ≥ π0.
When π0 = π1 both rules are optimal and we can use either one.

We summarize that, in the absence of observations, an optimal guessing rule is:

φ∗Guess =

{
0 if Pr[H = 0] ≥ Pr[H = 1],
1 otherwise.

(20.5)

(Here we guess 0 also when Pr[H = 0] = Pr[H = 1]. An equally good rule would
guess 1 in this case.)

As we next show, the error probability p∗(error) of this rule is

p∗(error) = min
{
Pr[H = 0],Pr[H = 1]

}
. (20.6)

This can be verified by considering the case where Pr[H = 0] ≥ Pr[H = 1] and the
case where Pr[H = 0] < Pr[H = 1] separately. By (20.5), in the former case our

2Thus, while there is no such thing as “smallest strictly positive number,” i.e., a positive
number that is smaller-or-equal to any other positive number, we shall see that there always
exists a guessing rule that no other guessing rule can outperform. Mathematicians paraphrase
this by saying that “the infimum of the probability of error over all the guessing rules is achievable,
i.e., is a minimum.”
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guess is 0 with the associated probability of error Pr[H = 1], whereas in the latter
case our guess is 1 with the associated probability of error Pr[H = 0]. In either
case the probability of error is given by the RHS of (20.6).

20.4 The Joint Law of H and Y

Before we can extend the results of Section 20.3 to the more interesting case where
we guess H after observing Y, we pause to discuss the joint distribution of H
and Y. This joint distribution is needed in order to derive an optimal decision rule
and in order to analyze its performance. Some care must be exercised in describing
this law because H is discrete (binary) and Y has a density. It is usually simplest
to describe the joint law by describing the prior (the distribution of H), and by
then describing the conditional law of Y given H = 0 and the conditional law of Y
given H = 1.

If, conditional on H = 0, the distribution of Y has the density fY|H=0(·) and if,
conditional on H = 1, the distribution of Y has the density fY|H=1(·), then the
joint distribution of H and Y can be described using the prior (π0, π1) (20.1) and
the conditional densities

fY|H=0(·) and fY|H=1(·). (20.7)

From the prior (π0, π1) and the conditional densities fY|H=0(·), fY|H=1(·) we can
compute the (unconditional) density of Y:

fY(y) = π0fY|H=0(y) + π1fY|H=1(y), y ∈ Rd. (20.8)

The conditional distribution of H given Y = yobs is a bit more tricky because
the probability of Y taking on the value yobs (exactly) is zero. There are two
approaches to defining Pr[H = 0 |Y = yobs] in this case: the heuristic one that is
usually used in a first course on probability theory and the measure-theoretic one
that was pioneered by Kolmogorov. Our approach is to define this quantity in a
way that will be palatable to both mathematicians and engineers and to then give
a heuristic justification for our definition.

We define the conditional probability that H = 0 given Y = yobs as

Pr
[
H = 0

∣∣Y = yobs

]
,

{
π0fY|H=0(yobs)

fY(yobs)
if fY(yobs) > 0,

1
2 otherwise,

(20.9a)

where fY(·) is given in (20.8), and analogously

Pr
[
H = 1

∣∣Y = yobs

]
,

{
π1fY|H=1(yobs)

fY(yobs)
if fY(yobs) > 0,

1
2 otherwise.

(20.9b)

Notice that our definition is meaningful in the sense that the values we assign to
Pr[H = 0 |Y = yobs] and Pr[H = 1 |Y = yobs] are nonnegative and sum to one:

Pr
[
H = 0

∣∣Y = yobs

]
+ Pr

[
H = 1

∣∣Y = yobs

]
= 1, yobs ∈ Rd. (20.10)
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Also note that our definition of Pr[H = 0 |Y = yobs] and Pr[H = 1 |Y = yobs]
for those yobs ∈ Rd for which fY(yobs) = 0 is quite arbitrary; we chose 1/2 just
for concreteness.3 Indeed, it is not difficult to verify that the probability that yobs

satisfies π0fY|H=0(yobs)+π1fY|H=1(yobs) = 0 is zero, and hence our definitions in
this eventuality are not important; see (20.12) ahead.

If d = 1, then the observation is a random variable Y and a heuristic way to
motivate (20.9a) is to consider the limit

lim
δ↓0

Pr
[
H = 0, Y ∈

(
yobs − δ, yobs + δ

)]
Pr
[
Y ∈

(
yobs − δ, yobs + δ

)] . (20.11)

Assuming some regularity of the conditional densities (e.g., continuity) we can use
the approximations

Pr
[
H = 0, Y ∈ (yobs − δ, yobs + δ)

]
= π0

∫ yobs+δ

yobs−δ
fY |H=0(y) dy

≈ 2π0δfY |H=0(yobs), δ � 1,

Pr
[
Y ∈ (yobs − δ, yobs + δ)

]
=
∫ yobs+δ

yobs−δ
fY (y) dy

≈ 2δfY (yobs), δ � 1,

to argue that, under suitable regularity conditions, (20.11) agrees with the RHS of
(20.9a) when fY (yobs) > 0. A similar calculation can be carried out in the vector
case where d > 1.

We next remark on observations yobs at which the density of Y is zero. Accounting
for such observations makes the writing a bit cumbersome as in (20.9). Fortunately,
the probability of such observations is zero:
Note 20.4.1. Let H be drawn according to the prior (π0, π1), and let the con-
ditional densities of Y given H be fY|H=0(·) and fY|H=1(·) with fY(·) given in
(20.8). Then

Pr
[
Y ∈

{
ỹ ∈ Rd : fY(ỹ) = 0

}]
= 0. (20.12)

Proof.

Pr
[
Y ∈

{
ỹ ∈ Rd : fY(ỹ) = 0

}]
=
∫
{ỹ∈Rd:fY(ỹ)=0}

fY(y) dy

=
∫
{ỹ∈Rd:fY(ỹ)=0}

0 dy

= 0,

where the second equality follows because the integrand is zero over the range of
integration.

3In the measure-theoretic probability literature our definition is just a “version” (among many
others) of the conditional probabilities of the event H = 0 (respectively H = 1), conditional on
the σ-algebra generated by the random vector Y (Billingsley, 1995, Section 33), (Williams, 1991,
Chapter 9).
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We conclude this section with two technical remarks which are trivial if you ignore
observations where fY(·) is zero:

Note 20.4.2. Consider the setup of Note 20.4.1.

(i) For every y ∈ Rd

min
{
π0fY|H=0(y), π1fY|H=1(y)

}
= min

{
Pr[H = 0 |Y = y],Pr[H = 1 |Y = y]

}
fY(y). (20.13)

(ii) For every y ∈ Rd(
π0fY|H=0(y) ≥ π1fY|H=1(y)

)
⇔
(
Pr[H = 0 |Y = y] ≥ Pr[H = 1 |Y = y]

)
. (20.14)

Proof. Identity (20.13) can be proved using (20.9) and (20.8) by separately con-
sidering the case fY(y) > 0 and the case fY(y) = 0 (where the latter is equivalent,
by (20.8), to π0fY|H=0(y) and π1fY|H=1(y) both being zero).

To prove (20.14) we also separately consider the case fY(y) > 0 and the case
fY(y) = 0. In the former case we note that for c > 0 the condition a ≥ b is
equivalent to the condition a/c ≥ b/c so for fY(yobs) > 0(

π0fY|H=0(y) ≥ π1fY|H=1(y)
)
⇔
(π0fY|H=0(y)

fY(y)︸ ︷︷ ︸
Pr[H=0 |Y=y]

≥
π1fY|H=1(y)

fY(y)︸ ︷︷ ︸
Pr[H=1 |Y=y]

)
.

In the latter case where fY(y) = 0 we note that, by (20.8), both π0fY|H=0(y)
and π1fY|H=1(y) are zero, so the condition on the LHS of (20.14) is true (0 ≥ 0).
Fortunately, when fY(y) = 0 the condition on the RHS of (20.14) is also true,
because in this case (20.9) implies that Pr[H = 0 |Y = y] and Pr[H = 1 |Y = y]
are both equal to 1/2 (and 1/2 ≥ 1/2).

20.5 Guessing after Observing Y

We next derive an optimal rule for guessing H after observing that Y = yobs.
We begin with a heuristic argument. Having observed that Y = yobs, there are
only two possible decision rules: to guess 0 or guess 1. Which should we choose?
The answer now depends on the a posteriori distribution of H. Once it has been
revealed to us that Y = yobs, our outlook changes and we now assign the event
H = 0 the a posteriori probability Pr[H = 0 |Y = yobs] and the event H = 1 the
complementary probability Pr[H = 1 |Y = yobs]. If the former is greater than the
latter, then we should guess 0, and otherwise we should guess 1. Thus, after it has
been revealed to us that Y = yobs the situation is equivalent to one in which we
need to guess H without any observables and where our distribution on H is not
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its a priori distribution (prior) but its a posteriori distribution. Using our analysis
from Section 20.3 we conclude that the guessing rule

φ∗Guess(yobs) =

{
0 if Pr[H = 0 |Y = yobs] ≥ Pr[H = 1 |Y = yobs],
1 otherwise,

(20.15)

is optimal. Once again, the way we resolve ties is arbitrary: if the observation
Y = yobs results in the a posteriori distribution of H being uniform, that is, if
Pr[H = 0 |Y = yobs] = Pr[H = 1 |Y = yobs] = 1/2, then either guess is optimal.
Using Note 20.4.2 (ii) we can also express the decision rule (20.15) as

φ∗Guess(yobs) =

{
0 if π0fY|H=0(yobs) ≥ π1fY|H=1(yobs),
1 otherwise.

(20.16)

Conditional on Y = yobs, the probability of error of the optimal decision rule is,
in analogy to (20.6), given by

p∗(error|Y = yobs) = min
{
Pr[H = 0 |Y = yobs],Pr[H = 1 |Y = yobs]

}
, (20.17)

as can be seen by treating the case Pr[H = 0 |Y = yobs] ≥ Pr[H = 1 |Y = yobs] and
the complementary case Pr[H = 0 |Y = yobs] < Pr[H = 1 |Y = yobs] separately.

The unconditional probability of error associated with the rule (20.15) is thus

p∗(error) = E
[
min

{
Pr[H = 0 |Y],Pr[H = 1 |Y]

}]
(20.18)

=
∫

Rd
min

{
Pr[H = 0 |Y = y],Pr[H = 1 |Y = y]

}
fY(y) dy (20.19)

=
∫

Rd
min

{
π0fY|H=0(y), π1fY|H=1(y)

}
dy, (20.20)

where the last equality follows from Note 20.4.2 (i).

Before summarizing these conclusions in a theorem, we present the following simple
lemma on the probabilities of error associated with general decision rules.

Lemma 20.5.1. Consider the setup of Note 20.4.1. Let φGuess(·) be an arbi-
trary guessing rule as in (20.3). Then the probabilities of error p(error|H = 0),
p(error|H = 1), and p(error) associated with φGuess(·) are given by

p(error|H = 0) =
∫
y/∈D

fY|H=0(y) dy, (20.21)

p(error|H = 1) =
∫
y∈D

fY|H=1(y) dy, (20.22)

and

p(error) =
∫

Rd

(
π0fY|H=0(y) I{y /∈ D}+ π1fY|H=1(y) I{y ∈ D}

)
dy, (20.23)

where
D = {y ∈ Rd : φGuess(y) = 0}. (20.24)



20.5 Guessing after Observing Y 367

Proof. Conditional on H = 0 the guessing rule makes an error only if Y does not
fall in the set of observations for which φGuess(·) produces the guess “H = 0.” This
establishes (20.21). A similar argument proves (20.22). Finally, (20.23) follows
from (20.21) & (20.22) using the identity

p(error) = π0 p(error|H = 0) + π1 p(error|H = 1).

We next state the key result about binary hypothesis testing. The statement is a
bit cumbersome because, in general, there may be many observations that result
in H being a posteriori uniformly distributed, and an optimal decision rule can
map each such observation to a different guess and still be optimal.

Theorem 20.5.2 (Optimal Binary Hypothesis Testing). Suppose that a guessing
rule φ∗Guess : Rd → {0, 1} produces the guess “H = 0” only when yobs is such that
π0fY|H=0(yobs) ≥ π1fY|H=1(yobs), i.e.,(

φ∗Guess(yobs) = 0
)
⇒
(
π0fY|H=0(yobs) ≥ π1fY|H=1(yobs)

)
, (20.25a)

and produces the guess “H = 1” only when π1fY|H=1(yobs) ≥ π0fY|H=0(yobs),
i.e., (

φ∗Guess(yobs) = 1
)
⇒
(
π1fY|H=1(yobs) ≥ π0fY|H=0(yobs)

)
. (20.25b)

Then no other guessing rule has a smaller probability of error, and

Pr
[
φ∗Guess(Y) 6= H

]
=
∫

Rd
min

{
π0fY|H=0(y), π1fY|H=1(y)

}
dy. (20.26)

Proof. Let φGuess : Rd → {0, 1} be any guessing rule, and let

D = {y ∈ Rd : φGuess(y) = 0} (20.27)

be the set of observations that result in φGuess(·) producing the guess “H = 0.”
Then the probability of error associated with φGuess(·) can be lower-bounded by

Pr
[
φGuess(Y) 6= H

]
=
∫

Rd

(
π0fY|H=0(y) I{y /∈ D}+ π1fY|H=1(y) I{y ∈ D}

)
dy

≥
∫

Rd
min

{
π0fY|H=0(y), π1fY|H=1(y)

}
dy, (20.28)

where the equality follows from Lemma 20.5.1 and where the inequality follows
because for every value of y ∈ Rd

π0fY|H=0(y) I{y /∈ D}+ π1fY|H=1(y) I{y ∈ D}
≥ min

{
π0fY|H=0(y), π1fY|H=1(y)

}
, (20.29)

as can be verified by noting that, irrespective of the set D, one of the two terms
I{y ∈ D} and I{y /∈ D} is equal to one and the other is equal to zero, so the LHS of
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(20.29) is either equal to π0fY|H=0(y) or to π1fY|H=1(y) and hence lower-bounded
by min{π0fY|H=0(y), π1fY|H=1(y)}.
We prove the optimality of φ∗Guess(·) by next showing that the probability of error
associated with φ∗Guess(·) is equal to the RHS of (20.28). To this end we define

D∗ = {y ∈ Rd : φ∗Guess(y) = 0} (20.30)

and note that if both (20.25a) and (20.25b) hold, then

π0fY|H=0(y) I{y /∈ D∗}+ π1fY|H=1(y) I{y ∈ D∗}
= min

{
π0fY|H=0(y), π1fY|H=1(y)

}
, y ∈ Rd. (20.31)

Applying Lemma 20.5.1 to the decoder φ∗Guess(·) we obtain

Pr
[
φ∗Guess(Y) 6= H

]
=
∫

Rd

(
π0fY|H=0(y) I{y /∈ D∗}+ π1fY|H=1(y) I{y ∈ D∗}

)
dy

=
∫

Rd
min

{
π0fY|H=0(y), π1fY|H=1(y)

}
dy, (20.32)

where the second equality follows from (20.31). The theorem now follows from
(20.28) and (20.32).

Referring to a situation where the observation results in the a posteriori distribu-
tion of H being uniform as a tie we have:

Note 20.5.3. The fact that both conditional on H = 0 and conditional on H = 1
the observation Y has a density does not imply that the probability of a tie is zero.

For example, if H takes value in {0, 1} equiprobably, and if the observation Y is
given by Y = H + U , where U is uniformly distributed over the interval [−2, 2]
independently of H, then the a posteriori distribution of H is uniform whenever
Y ∈ [−1, 2], and this occurs with probability 3/4.

20.6 Randomized Decision Rules

So far we have restricted ourselves to deterministic decision rules, where the guess
is a deterministic function of the observation. We next remove this restriction and
allow for some randomization in the decision rule. As we shall see in this section
and in greater generality in Section 20.11, when properly defined, randomization
does not help: the lowest probability of error that is achievable with randomized
decision rules can also be achieved with deterministic decision rules.

By a randomized decision rule we mean that, after observing that Y = yobs, the
guesser chooses some bias b(yobs) ∈ [0, 1] and then tosses a coin of that bias.
If the result is “heads” it guesses 0 and otherwise it guesses 1. Note that the
deterministic rules we have considered before are special cases of the randomized
ones: any deterministic decision rule can be viewed as a randomized decision rule
where, depending on yobs, the bias b(yobs) is either zero or one.
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yobs
Bias

Calculator

b(yobs) Guess

Θ ∼ U ([0, 1])

Θ < b(yobs) ⇒ “H = 0”

Θ ≥ b(yobs) ⇒ “H = 1”

Random Number
Generator

Figure 20.1: A block diagram of a randomized decision rule.

Some care must be exercised in defining the joint distribution of the coin toss with
the other variables (H,Y). We do not want to allow for “telepathic coins.” That is,
we want to make sure that once Y = yobs has been observed and the bias b(yobs)
has been accordingly computed, the outcome of the coin toss is random, i.e., has
nothing to do with H. Probabilists would say that we require that, conditional on
Y = yobs, the outcome of the coin toss be independent of H. (We shall discuss
conditional independence in Section 20.11.) We can clarify the setting as follows.
Upon observing the outcome Y = yobs, the guesser computes the bias b(yobs).
Using a local random number generator the guesser then draws a random variable Θ
uniformly over the interval [0, 1], independently of the pair (H,Y). If the outcome θ
is smaller than b(yobs), then it guesses “H = 0,” and otherwise it guesses “H = 1.”
A randomized decision rule is depicted in Figure 20.1.

We offer two proofs that randomized decision rules cannot outperform the best
deterministic ones. The first is by straightforward calculation. Conditional on
Y = yobs, the randomized guesser makes an error either if Θ ≤ b(yobs) (resulting
in the guess “H = 0”) while H = 1, or if Θ > b(yobs) (resulting in the guess
“H = 1”) while H = 0. Consequently,

Pr
(
error

∣∣Y = yobs

)
= b(yobs) Pr

[
H = 1

∣∣Y = yobs

]
+
(
1− b(yobs)

)
Pr
[
H = 0

∣∣Y = yobs

]
. (20.33)

Thus, Pr(error |Y = yobs) is a weighted average of Pr[H = 0 |Y = yobs] and
Pr[H = 1 |Y = yobs]. As such, irrespective of the weights, it cannot be smaller
than the minimum of the two. But, by (20.17), the optimal deterministic decision
rule (20.15) achieves just this minimum. We conclude that, irrespective of the bias,
for each outcome Y = yobs the conditional probability of error of the randomized
decoder is lower-bounded by that of the optimal deterministic decoder (20.15).
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Since this is the case for every outcome, it must also be the case when we average
over the outcomes. This concludes the first proof.

In the second proof we view the outcome of the local random number generator Θ
as an additional observation. Since it is independent of (H,Y) and since it is
uniform over [0, 1],

fY,Θ|H=0(y, θ) = fY|H=0(y) fΘ|Y=y,H=0(θ)

= fY|H=0(y) fΘ(θ)
= fY|H=0(y) I{0 ≤ θ ≤ 1}, (20.34a)

and similarly
fY,Θ|H=1(y, θ) = fY|H=1(y) I{0 ≤ θ ≤ 1}. (20.34b)

Since the randomized decision rule can be viewed as a deterministic decision
rule that is based on the pair (Y,Θ), it cannot outperform any optimal de-
terministic guessing rule based on (Y,Θ). But by Theorem 20.5.2 and (20.34)
it follows that the deterministic decision rule that guesses “H = 0” whenever
π0fY|H=0(y) ≥ π1fY|H=1(y) is optimal not only for guessing H based on Y but
also for guessing H based on (Y,Θ), because it produces the guess “H = 0” only
when π0fY,Θ|H=0(y, θ) ≥ π1fY,Θ|H=1(y, θ) and it produces the guess “H = 1”
only when π1fY,Θ|H=1(y, θ) ≥ π0fY,Θ|H=0(y, θ). This concludes the second proof.

Even though randomized decision rules cannot outperform the best deterministic
rules, they may have other advantages. For example, they allow for more symmetric
ways of resolving ties. Suppose, for example, that we have no observations and that
the prior is uniform. In this case guessing “H = 0” will give rise to a probability of
error of 1/2, with an error occurring whenever H = 1. Similarly guessing “H = 1”
will also result in a probability of error of 1/2, this time with an error occurring
whenever H = 0. If we think about H as being an information bit, then the former
rule makes sending 0 less error prone than sending 1. A randomized test that flips
a fair coin and guesses 0 if “heads” and 1 if “tails” gives rise to the same average
probability of error (i.e., 1/2) and makes sending 0 and sending 1 equally (highly)
error prone.

If Y = yobs results in a tie, i.e., if it yields a uniform a posteriori distribution
on H,

Pr
[
H = 0

∣∣Y = yobs

]
= Pr

[
H = 1

∣∣Y = yobs

]
=

1
2
,

then the probability of error of the randomized decoder (20.33) does not depend on
the bias. In this case there is thus no loss in optimality in choosing b(yobs) = 1/2,
i.e., by employing a fair coin. This makes for a symmetric way of resolving the tie
in the a posteriori distribution of H.

20.7 The MAP Decision Rule

In Section 20.5 we presented an optimal decision rule (20.15). A slight variation
on that decoder is the Maximum A Posteriori (MAP) decision rule. The MAP
rule is identical to (20.15) except in how it resolves ties. Unlike (20.15), which
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resolves ties by guessing “H = 0,” the MAP rule resolves ties by flipping a fair
coin. It can thus be summarized as follows:

φMAP(yobs) ,


0 if Pr[H = 0 |Y = yobs] > Pr[H = 1 |Y = yobs],
1 if Pr[H = 0 |Y = yobs] < Pr[H = 1 |Y = yobs],
U
(
{0, 1}

)
if Pr[H = 0 |Y = yobs] = Pr[H = 1 |Y = yobs],

(20.35)
where we use “U

(
{0, 1}

)
” to indicate that we guess the outcome uniformly at

random.

Note that, like the rule in (20.15), the MAP rule is optimal. This follows because
the way ties are resolved does not influence the probability of error, and because
the MAP rule agrees with the rule (20.15) for all observations which do not result
in a tie.

Theorem 20.7.1 (The MAP Rule Is Optimal). The Maximum A Posteriori deci-
sion rule (20.35) is optimal.

Since the MAP decoder is optimal,

p∗(error) = π0 pMAP(error|H = 0) + π1 pMAP(error|H = 1), (20.36)

where pMAP(error|H = 0) and pMAP(error|H = 1) denote the conditional prob-
abilities of error for the MAP decoder. Note that one can easily find guessing
rules (such as the rule “always guess 0”) that yield a conditional probability of
error smaller than pMAP(error|H = 0), but one cannot find a rule whose average
probability of error outperforms the RHS of (20.36).

Using Note 20.4.2 (ii) we can express the MAP rule in terms of the densities and
the prior as

φMAP(yobs) =


0 if π0fY|H=0(yobs) > π1fY|H=1(yobs),
1 if π0fY|H=0(yobs) < π1fY|H=1(yobs),
U
(
{0, 1}

)
if π0fY|H=0(yobs) = π1fY|H=1(yobs).

(20.37)

Alternatively, the MAP decision rule can be described using the likelihood-ratio
function LR(·), which is defined by

LR(y) ,
fY|H=0(y)
fY|H=1(y)

, y ∈ Rd (20.38)

using the convention (α
0

=∞, α > 0
)

and
0
0

= 1. (20.39)

Since densities are nonnegative, and since we are defining the likelihood-ratio func-
tion using the convention (20.39), the range of LR(·) is the set [0,∞] consisting of
the nonnegative reals and the special symbol ∞:

LR: Rd → [0,∞].
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Using the likelihood-ratio function and (20.37), we can rewrite the MAP rule for
the case where the prior is nondegenerate (20.2) and where the observation yobs is
such that fY(yobs) > 0 as

φMAP(yobs) =


0 if LR(yobs) > π1

π0
,

1 if LR(yobs) < π1
π0

,
U
(
{0, 1}

)
if LR(yobs) = π1

π0
,

(
π0, π1 > 0, fY(yobs) > 0

)
.

(20.40)

Since many of the densities that are of interest to us have an exponential form, it
is sometimes more convenient to describe the MAP rule using the log likelihood-
ratio function LLR: Rd → [−∞,∞], which is defined by

LLR(y) , ln
fY|H=0(y)
fY|H=1(y)

, y ∈ Rd, (20.41)

using the convention(
ln
α

0
= +∞, ln

0
α

= −∞, α > 0
)

and ln
0
0

= 0, (20.42)

where ln(·) denotes natural logarithm.

Using the log likelihood-ratio function LLR(·) and the monotonicity of the loga-
rithmic function (

a > b
)
⇔
(
ln a > ln b

)
, a, b > 0, (20.43)

we can express the MAP rule (20.40) as

φMAP(yobs) =


0 if LLR(yobs) > ln π1

π0
,

1 if LLR(yobs) < ln π1
π0

,
U
(
{0, 1}

)
if LLR(yobs) = ln π1

π0
,

(
π0, π1 > 0, fY(yobs) > 0

)
.

(20.44)

20.8 The ML Decision Rule

A different decision rule, which is typically suboptimal unlessH is a priori uniform,
is the Maximum-Likelihood (ML) decision rule. Its structure is similar to that
of the MAP rule except that it ignores the prior. In fact, if π0 = π1, then the two
rules are identical. The ML rule is thus given by

φML(yobs) ,


0 if fY|H=0(yobs) > fY|H=1(yobs),
1 if fY|H=0(yobs) < fY|H=1(yobs),
U
(
{0, 1}

)
if fY|H=0(yobs) = fY|H=1(yobs).

(20.45)

The ML decision rule can be alternatively described using the likelihood-ratio func-
tion LR(·) (20.38) as

φML(yobs) =


0 if LR(yobs) > 1,
1 if LR(yobs) < 1,
U
(
{0, 1}

)
if LR(yobs) = 1.

(20.46)
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Alternatively, using the log likelihood-ratio function LLR(·) (20.41):

φML(yobs) =


0 if LLR(yobs) > 0,
1 if LLR(yobs) < 0,
U
(
{0, 1}

)
if LLR(yobs) = 0.

(20.47)

20.9 Performance Analysis: the Bhattacharyya Bound

We next derive the Bhattacharyya Bound, which is a useful upper bound on
the optimal probability of error p∗(error).

Starting with the exact expression (20.20) we obtain:

p∗(error) =
∫

Rd
min

{
π0fY|H=0(y), π1fY|H=1(y)

}
dy

≤
∫

Rd

√
π0fY|H=0(y)π1fY|H=1(y) dy

=
√
π0π1

∫
Rd

√
fY|H=0(y)fY|H=1(y) dy

≤ 1
2

∫
Rd

√
fY|H=0(y)fY|H=1(y) dy,

where the equality in the first line follows from (20.20); the inequality in the second
line from the inequality

min{a, b} ≤
√
ab, a, b ≥ 0, (20.48)

(which can be easily verified by treating the case a ≥ b and the case a < b sepa-
rately); the equality in the third line by trivial algebra; and where the inequality
in the fourth line follows by noting that if c, d ≥ 0, then their geometric mean

√
cd

cannot exceed their arithmetic mean (c+ d)/2, i.e.,

√
cd ≤ c+ d

2
, c, d ≥ 0, (20.49)

and because in our case c = π0 and d = π1, so c+ d = 1.

We have thus established the bound

p∗(error) ≤ 1
2

∫
y∈Rd

√
fY|H=0(y)fY|H=1(y) dy, (20.50)

which is known as the Bhattacharyya Bound.

20.10 Example

Consider the problem of guessing H based on the observation Y , where H takes
on the values 0 and 1 equiprobably and where the conditional densities of Y given
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H = 0 and H = 1 are

fY |H=0(y) =
1√

2πσ2
e−(y−A)2/(2σ2), y ∈ R, (20.51a)

fY |H=1(y) =
1√

2πσ2
e−(y+A)2/(2σ2), y ∈ R (20.51b)

for some deterministic A, σ > 0. Here the observable is a RV, so d = 1.

For these conditional densities the likelihood-ratio function (20.38) is given by:

LR(y) =
fY |H=0(y)
fY |H=1(y)

=
1√

2πσ2
e−(y−A)2/(2σ2)

1√
2πσ2

e−(y+A)2/(2σ2)

= e4yA/(2σ2), y ∈ R.

Since the two hypotheses are a priori equally likely, the MAP rule is equivalent to
the ML rule and both rules guess “H = 0” or “H = 1” depending on whether the
likelihood-ratio LR(yobs) is greater or smaller than one. And since

LR(yobs) > 1⇔ e4yobsA/(2σ
2) > 1

⇔ ln
(
e4yobsA/(2σ

2)
)
> ln 1

⇔ 4yobsA/(2σ2) > 0
⇔ yobs > 0,

and

LR(yobs) < 1⇔ e4yobsA/(2σ
2) < 1

⇔ ln
(
e4yobsA/(2σ

2)
)
< ln 1

⇔ 4yobsA/(2σ2) < 0
⇔ yobs < 0,

it follows that the MAP decision rule guesses “H = 0,” if yobs > 0; guesses “H = 1,”
if yobs < 0; and guesses “H = 0” or “H = 1” equiprobably, if yobs = 0 (i.e., in the
case of a tie).

Note that in this example the probability of a tie is zero. Indeed, under both
hypotheses, the probability that the observed variable Y is exactly equal to zero is
zero:

Pr
[
Y = 0

∣∣H = 0
]

= Pr
[
Y = 0

∣∣H = 1
]

= Pr
[
Y = 0

]
= 0. (20.52)

Consequently, the way ties are resolved is immaterial.

We next compute the probability of error of the MAP decoder. To this end, let
pMAP(error|H = 0) and pMAP(error|H = 1) denote its conditional probabilities of
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error. Its (unconditional) probability of error, which is also the optimal probability
of error, can be expressed as

p∗(error) = π0 pMAP(error|H = 0) + π1 pMAP(error|H = 1). (20.53)

We proceed to compute the required terms on the RHS. Starting with the term
pMAP(error|H = 0), we note that pMAP(error|H = 0) corresponds to the condi-
tional probability that Y is negative or that Y is equal to zero and the coin toss
that the MAP decoder uses to resolve the tie causes the guess to be “H = 1.” By
(20.52), the conditional probability of a tie is zero, so pMAP(error|H = 0) is, in
fact, just the conditional probability that Y is negative:

pMAP(error|H = 0) = Pr[Y < 0 |H = 0]

= Q
(A

σ

)
, (20.54)

where the second equality follows because, conditional on H = 0, the random
variable Y is N

(
A, σ2

)
, and the probability that it is smaller than zero can be thus

computed using the Q-function as in (19.12b). Similarly,

pMAP(error|H = 1) = Pr[Y > 0 |H = 1]

= Q
(A

σ

)
. (20.55)

Note that in this example the MAP rule is “fair” in the sense that the conditional
probability of error given H = 0 is the same as given H = 1. This is a coincidence
(that results from the symmetry in the problem). In general, the MAP rule need
not be fair.

We conclude from (20.53), (20.54), and (20.55) that

p∗(error) = Q
(A

σ

)
. (20.56)

Figure 20.2 depicts the conditional densities of y given H = 0 and given H = 1
and the decision regions of the MAP decision rule φMAP(·). The area of the shaded
region is the probability of an error conditioned on H = 0.

Note that the optimal decision rule for this example is not unique. Another optimal
decision rule is to guess “H = 0” if yobs is positive but not equal to 17, and to
guess “H = 1” otherwise.

Even though we have an exact expression for the probability of error (20.56) it is
instructive to compute the Bhattacharyya Bound too:

p∗(error) ≤ 1
2

∫ ∞

−∞

√
fY |H=0(y)fY |H=1(y) dy

=
1
2

∫ ∞

−∞

√
1√

2πσ2
e−(y−A)2/(2σ2)

1√
2πσ2

e−(y+A)2/(2σ2) dy

=
1
2
e−A2/2σ2

∫ ∞

−∞

1√
2πσ2

e−y
2/2σ2

dy

=
1
2
e−A2/2σ2

, (20.57)
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y

A−A

Guess “H = 0”Guess “H = 1”

fY |H=0(y)fY |H=1(y)

fY (y)
pMAP(error|H = 0)

Figure 20.2: Binary hypothesis testing with a uniform prior. Conditional onH = 0
the observable Y is N

(
A, σ2

)
and conditional on H = 1 it is N

(
−A, σ2

)
. The area

of the shaded region is the probability of error of the MAP rule conditional on
H = 0.

where the first line follows from (20.50); the second from (20.51); the third by simple
algebra; and the final equality because the Gaussian density (like all densities)
integrates to one.

As an aside, we have from (20.57) and (20.56) the bound

Q(α) ≤ 1
2
e−α

2/2, α ≥ 0, (20.58)

which we encountered in Proposition 19.4.2.

20.11 (Nontelepathic) Processing

To further emphasize the optimality of the Maximum A Posteriori decision rule,
and for ulterior motives that have to do with the introduction of conditional inde-
pendence, we shall next show that no processing of the observables can reduce the
probability of a guessing error. To that end we shall have to properly define what
we mean by “processing.”

The first thing that comes to mind is to consider processing as the application of
some deterministic mapping. I.e., we think of mapping the observation yobs using
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yobs
g(·)

g(yobs) GuessGuess H based
on g(yobs)

Figure 20.3: No decision rule based on g(yobs) can outperform an optimal decision
rule based on yobs, because computing g(yobs) and then forming the decision based
on the answer can be viewed as a special case of guessing based on yobs.

some deterministic function g(·) to g(yobs) and then guessing H based on g(yobs).
That this cannot reduce the probability of error is clear from Figure 20.3, which
demonstrates that mapping yobs to g(yobs) and then guessing H based on g(yobs)
can be viewed as a special case of guessing H based on yobs and, as such, cannot
outperform the MAP decision rule, which is optimal among all decision rules based
on yobs.

A more general kind of processing involves randomization, or “dithering.” Here we
envision the processor as using a local random number generator to generate a ran-
dom variable Θ and then producing an output of the form g(yobs, θobs), where θobs

is the outcome of Θ, and where g(·) is some deterministic function. Here Θ is
assumed to be independent of the pair (H,Y), so the processor can generate it
using a local random number generator.

An argument very similar to the one we used in Section 20.6 (in the second proof of
the claim that randomized decision rules cannot outperform optimal deterministic
rules) can be used to show that this type of processing cannot improve our guessing.
The argument is as follows. We view the application of the function g(·) to the
pair (Y,Θ) as deterministic processing of the pair (Y,Θ), so no decision rule based
on g(Y,Θ) can outperform a decision rule that is optimal for guessing H based
on (Y,Θ). It thus remains to show that the decision rule ‘Guess “H = 0” if
π0fY|H=0(yobs) ≥ π1fY|H=1(yobs)’ is also optimal when observing (Y,Θ) and not
only Y. This follows from Theorem 20.5.2 by noting that the independence of Θ
and (H,Y), implies that

fY,Θ|H=0(yobs, θobs) = fY|H=0(yobs) fΘ(θobs),

fY,Θ|H=1(yobs, θobs) = fY|H=1(yobs) fΘ(θobs),

and hence that this rule guesses “H = 0” only when yobs and θobs are such that
π0fY,Θ|H=0(yobs, θobs) ≥ π1fY,Θ|H=1(yobs, θobs) and guesses “H = 1” only when
π1fY,Θ|H=1(yobs, θobs) ≥ π0fY,Θ|H=0(yobs, θobs).

Fearless readers who are not afraid to divide by zero should note that

LR(yobs, θobs) =
fY,Θ|H=0(yobs, θobs)
fY,Θ|H=1(yobs, θobs)
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=
fY|H=0(yobs) fΘ(θobs)
fY|H=1(yobs) fΘ(θobs)

=
fY|H=0(yobs)
fY|H=1(yobs)

, fΘ(θobs) 6= 0

= LR(yobs), fΘ(θobs) 6= 0,

so (ignoring some technical issues) the MAP detector based on (yobs, θobs) ig-
nores θobs and is identical to the MAP detector based on yobs only.4

Ostensibly more general is processing Y by mapping it to g(Y,Θ), where the
distribution of Θ is allowed to depend on yobs. This motivates us to further extend
the notion of processing. The cleanest way to define processing is to define its
outcome rather than the way it is generated.

Before defining processing we remind the reader of the notion of conditional inde-
pendence. But first we recall the definition of (unconditional) independence. We
do so for discrete random variables using their Probability Mass Function (PMF).
The extension to random variables with a joint density is straightforward. For the
definition of independence in more general scenarios see, for example, (Billingsley,
1995, Section 20) or (Loève, 1963, Section 15) or (Williams, 1991, Chapter 4).

Definition 20.11.1 (Independent Discrete Random Variables). We say that the
discrete random variables X and Y of joint PMF PX,Y (·, ·) and marginal PMFs
PX(·) and PY (·) are independent if PX,Y (·, ·) factors as

PX,Y (x, y) = PX(x)PY (y). (20.59)

Equivalently, X and Y are independent if, for every outcome y such that PY (y) > 0,
the conditional distribution of X given Y = y is the same as its unconditional
distribution:

PX|Y (x|y) = PX(x), PY (y) > 0. (20.60)

Equivalently,X and Y are independent if, for every outcome x such that PX(x) > 0,
the conditional distribution of Y given X = x is the same as its unconditional
distribution:

PY |X(y|x) = PY (y), PX(x) > 0. (20.61)

The equivalence of (20.59) and (20.60) follows because, by the definition of the
conditional probability mass function,

PX|Y (x|y) =
PX,Y (x, y)
PY (y)

, PY (y) > 0.

Similarly, the equivalence of (20.59) and (20.61) follows from

PY |X(y|x) =
PX,Y (x, y)
PX(x)

, PX(x) > 0.

The beauty of (20.59) is that it is symmetric in X,Y . It makes it clear that X
and Y are independent if, and only if, Y and X are independent. This is not
obvious from (20.60) or (20.61).

4Technical issues arise when the outcome of Θ, namely θobs, is such that fΘ(θobs) = 0.
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The definition of the conditional independence ofX and Y given Z is similar, except
that we condition everywhere on Z. Again we only consider the discrete case and
refer the reader to (Loève, 1963, Section 25.3) and (Chung, 2001, Section 9.2) for
the general case.

Definition 20.11.2 (Conditionally Independent Discrete Random Variables). Let
the discrete random variables X,Y, Z have a joint PMF PX,Y,Z(·, ·, ·). We say that
X and Y are conditionally independent given Z and write

X(−−Z(−−Y

if
PX,Y |Z(x, y|z) = PX|Z(x|z)PY |Z(y|z), PZ(z) > 0. (20.62)

Equivalently, X and Y are conditionally independent given Z if, for any outcome
y, z with PY,Z(y, z) > 0, the conditional distribution of X given that Y = y and
Z = z is the same as the distribution of X when conditioned on Z = z only:

PX|Y,Z(x|y, z) = PX|Z(x|z), PY,Z(y, z) > 0. (20.63)

Or, equivalently, X and Y are conditionally independent given Z if

PY |X,Z(y|x, z) = PY |Z(y|z), PX,Z(x, z) > 0. (20.64)

The equivalence of (20.62) and (20.63) follows because, by the definition of the
conditional probability mass function,

PX|Y,Z(x|y, z) =
PX,Y,Z(x, y, z)
PY,Z(y, z)

=
PX,Y |Z(x, y|z)PZ(z)
PY |Z(y|z)PZ(z)

=
PX,Y |Z(x, y|z)
PY |Z(y|z)

, PY,Z(y, z) > 0,

and similarly the equivalence of (20.62) and (20.64) follows from

PY |X,Z(y|x, z) =
PX,Y |Z(x, y|z)
PX|Z(x|z)

, PX,Z(x, z) > 0.

Again, the beauty of (20.62) is that it is symmetric in X,Y . Thus X(−−Z(−−Y if,
and only if, Y(−−Z(−−X. When X and Y are conditionally independent given Z
we sometimes say that X(−−Z(−−Y forms a Markov chain.

The equivalence between the different definitions of conditional independence con-
tinues to hold in the general case where the random variables are not necessarily
discrete. We only reluctantly state this as a theorem, because we never defined
conditional independence in nondiscrete settings.

Theorem 20.11.3 (Equivalent Definition for Conditional Independence). Let X,
Y, and Z be random vectors. Then the following statements are equivalent:
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(a) X and Y are conditionally independent given Z.

(b) The conditional distribution of Y given (X,Z) is equal to its conditional
distribution given Z.

(c) The conditional distribution of X given (Z,Y) is equal to its conditional
distribution given Z.

Proof. For a precise definition of concepts appearing in this theorem and for a
proof of the equivalence between the statements see (Loève, 1963, Section 25.3)
and particularly Theorem 25.3A therein.

We are now ready to define the processing of the observation Y with respect to
the hypothesis H.

Definition 20.11.4 (Processing). We say that Z is the result of processing Y
with respect to H if H and Z are conditionally independent given Y.

As we next show, this definition of processing extends the previous ones. We
first show that if Z = g(Y) for some deterministic Borel measurable function g(·)
then H(−−Y(−−g(Y). This follows by noting that, conditional on Y, the random
variable g(Y) is deterministic and hence independent of everything and a fortiori
of H.

We next show that if Θ is independent of (H,Y), then H(−−Y(−−g(Y,Θ). In-
deed, if Z = g(Y,Θ) with Θ being independent of (Y,H), then, conditionally on
Y = y, the distribution of Z is simply the distribution of g(y,Θ) so (under this
conditioning) Z is independent of H.

We next show that processing the observables cannot help decrease the probability
of error. The proof is conceptually very simple; the neat part is in the definition.

Theorem 20.11.5 (Processing Is Futile). If Z is the result of processing Y with
respect to H, then no rule for guessing H based on Z can outperform an optimal
guessing rule based on Y.

Proof. Surely no decision rule that guesses H based on Z can outperform an
optimal decision rule based on Z, let alone outperform a decision rule that is
optimal for guessing H based on Z and Y. But an optimal decision rule based on
the pair (Z,Y) is the MAP rule, which compares

Pr[H = 0 |Y = y,Z = z] and Pr[H = 1 |Y = y,Z = z].

And, because H(−−Y(−−Z, it follows from Theorem 20.11.3 that this is equivalent
to comparing

Pr[H = 0 |Y = y] and Pr[H = 1 |Y = y]

i.e., to an optimal (MAP) decision rule based on Y only.

The above theorem is more powerful than it seems. To demonstrate its strength,
we next use it to show that in testing for a signal in Gaussian noise—irrespective of
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the prior—the optimal probability of error is monotonically nondecreasing in the
noise variance. The setup we consider is one where H is of prior (π0, π1) and aiding
us in guessing H is the observable Y , which, conditional on H = m, is N

(
αm, σ

2
)

for m ∈ {0, 1}. We shall argue that, irrespective of the prior (π0, π1), the optimal
probability of error is monotonically nondecreasing in σ2.

The beauty of the argument is that it allows us to prove the monotonicity result
without having to calculate the optimal probability of error explicitly (as we did
in Section 20.10 for the case of a uniform prior with α0 = A and α1 = −A). While
we could also compute the optimal probability of error for this more general setup
and then use calculus to derive the monotonicity result, the argument we present
instead has the advantage of also being applicable to multi-dimensional multi-
hypothesis testing scenarios, where there is typically no closed-form expression for
the optimal probability of error.

To prove this result, let p∗e(σ
2) denote the optimal probability of error as a function

of σ2. We need to show that p∗e(σ
2) ≤ p∗e(σ

2 + δ2), for all δ ∈ R. Consider the
low-noise case where the conditional law of Y given H is N

(
αm, σ

2
)
. Suppose that

the receiver generates W ∼ N
(
0, δ2

)
independently of (H,Y ) and adds W to Y

to form Z = Y + W . Since Z is the result of processing Y with respect to H, it
follows that the optimal probability of error based on Y , namely p∗e(σ

2), is at least
as good as the optimal probability of error based on Z (Theorem 20.11.5). We
now complete the argument by showing that the optimal probability of error based
on Z is p∗e(σ

2 + δ2). This follows because, by Proposition 19.7.2, the conditional
law of Z given H is N

(
αm, σ

2 + δ2
)
.

Stated differently, since using a local random number generator the receiver can
produce from an observation Y of conditional law N

(
αm, σ

2
)

a random variable Z
whose conditional law is N

(
αm, σ

2 + δ2
)
, the minimal probability of error based

on an observation having conditional law N
(
αm, σ

2
)

cannot be larger than the
optimal probability of error achievable based on an observation having conditional
law N

(
αm, σ

2 + δ2
)
. See Figure 20.4 for an illustration of this argument.

20.12 Sufficient Statistics

This section affords a first glance at the notion of sufficient statistics, which will be
studied in greater depth and generality in Chapter 22. We begin with the following
example. Consider the hypothesis testing problem with a uniform prior, where the
observation is a tuple of real numbers (Y1, Y2). Conditional on H = 0, the random
variables Y1, Y2 are IID N

(
0, σ2

0

)
, whereas conditional on H = 1 they are IID

N
(
0, σ2

1

)
, where

σ0 > σ1 > 0. (20.65)

(If σ2
0 = σ2

1 , then the problem is boring in that the conditional law of the observable
given H = 0 is the same as given H = 1, so the two hypotheses cannot be differ-
entiated. For σ2

0 6= σ2
1 there is no loss in generality in assuming σ0 > σ1 because

we can always relabel the hypotheses. And if σ0 > σ1 = 0, then the problem is
trivial: we guess “H = 1” only if Y1 = Y2 = 0.) Thus, the observation space is the
two-dimensional Euclidean space R2 and, using the explicit form of the Gaussian
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yobs yobs +W MAP for testing
N
(
α0, σ

2 + δ2
)

vs. N
(
α1, σ

2 + δ2
)

with prior (π0, π1)

Gaussian RV
Generator

W ∼ N
(
0, δ2

)

W independent of (Y,H).

+
Guess

Local
Randomness

Figure 20.4: A suboptimal guessing rule (with randomization) for testing
N
(
α0, σ

2
)

vs. N
(
α1, σ

2
)

with the given prior (π0, π1). It attains the optimal
probability of error for guessing N

(
α0, σ

2 + δ2
)

vs. N
(
α1, σ

2 + δ2
)

(with the given
prior).

density (19.6),

fY1,Y2|H=0(y1, y2) =
1

2πσ2
0

exp
(
− 1

2σ2
0

(y2
1 + y2

2)
)
, y1, y2 ∈ R, (20.66a)

fY1,Y2|H=1(y1, y2) =
1

2πσ2
1

exp
(
− 1

2σ2
1

(y2
1 + y2

2)
)
, y1, y2 ∈ R. (20.66b)

Since we assumed a uniform prior, the ML decoding rule for guessing H based on
the tuple (Y1, Y2) is optimal. To derive the ML rule explicitly, we compute the
likelihood-ratio function

LR(y1, y2) =
fY1,Y2|H=0(y1, y2)
fY1,Y2|H=1(y1, y2)

=
1

2πσ2
0

exp
(
− 1

2σ2
0
(y2

1 + y2
2)
)

1
2πσ2

1
exp

(
− 1

2σ2
1
(y2

1 + y2
2)
)

=
σ2

1

σ2
0

exp
(

1
2

( 1
σ2

1

− 1
σ2

0

)
(y2

1 + y2
2)
)
, y1, y2 ∈ R. (20.67)

Thus,

LR(y1, y2) > 1⇔ exp
(

1
2

( 1
σ2

1

− 1
σ2

0

)
(y2

1 + y2
2)
)
>
σ2

0

σ2
1

⇔ 1
2

( 1
σ2

1

− 1
σ2

0

)
(y2

1 + y2
2) > ln

σ2
0

σ2
1
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⇔ σ2
0 − σ2

1

2σ2
0σ

2
1

(y2
1 + y2

2) > ln
σ2

0

σ2
1

⇔ y2
1 + y2

2 >
2σ2

0σ
2
1

σ2
0 − σ2

1

ln
σ2

0

σ2
1

, (20.68)

where the second equivalence follows from the monotonicity of the logarithm func-
tion (20.43); and where the last equivalence follows by multiplying both sides of
the inequality by the constant 2σ2

0σ
2
1/(σ

2
0 − σ2

1) (without the need to change the
inequality direction because this constant is by (20.65) positive).

It follows from (20.68) that the ML decision rule for guessing H based on (Y1, Y2)
computes Y 2

1 +Y 2
2 and then compares the result to a threshold. It is interesting to

note that to implement this decision rule one need not observe Y1 and Y2 directly;
it suffices to observe the sum of their squares

T , Y 2
1 + Y 2

2 . (20.69)

Of course, being the result of processing (Y1, Y2) with respect to H, no guess of H
based on T can outperform an optimal guess based on (Y1, Y2) (Section 20.11).
But what is interesting about this example is that, even though one cannot recover
(Y1, Y2) from T (so there are some decision rules based on (Y1, Y2) that cannot
be implemented if one only knows T ), the ML rule based on (Y1, Y2) only requires
knowledge of T . Thus, in this example, even though pre-processing the observations
to produce T = Y 2

1 +Y 2
2 is not reversible, basing one’s decision on T incurs no loss

in optimality. An optimal decision rule based on T is just as good as an optimal
rule based on (Y1, Y2).

The reason for this can be traced to the fact that, in this example, to compute the
likelihood-ratio LR(y1, y2) one need not know the pair (y1, y2); it suffices that one
know the sum of their squares y2

1 + y2
2 ; see (20.67). In this sense T = Y 2

1 + Y 2
2

forms a sufficient statistic for guessing H from (Y1, Y2), as we next define.

We would like to define a mapping T (·) from the observation space Rd to Rd′ as
being sufficient for the densities fY|H=0(·) and fY|H=1(·) if the likelihood-ratio
LR(yobs) can be computed from T (yobs) for every yobs in Rd. However, for techni-
cal reasons, we require slightly less: we only require that LR(yobs) be computable
from T (yobs) for those observations yobs for which at least one of the densities is
positive (so the likelihood-ratio is not of the form 0/0) and that additionally lie
outside some prespecified set Y0 ⊂ Rd of Lebesgue measure zero.5 Thus, we shall
require that there exist a set Y0 ⊂ Rd of Lebesgue measure zero and a function
ζ : Rd′ → [0,∞] such that ζ

(
T (yobs)

)
is equal to LR(yobs) whenever

yobs /∈ Y0 and fY|H=0(yobs) + fY|H=1(yobs) > 0. (20.70)

Note that the fact that Y0 is of Lebesgue measure zero implies that

Pr[Y ∈ Y0 |H = 0] = Pr[Y ∈ Y0 |H = 1] = 0. (20.71)

5We allow this exception set so that the question of whether T (·) forms a sufficient statistic
or not will not depend on our choice of the density function of the conditional distribution of the
observable. (Recall that if a RV has a probability density function, then it has infinitely many
different probability density functions, every two of which differ on a set of Lebesgue measure
zero.)
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To convince the reader that this really is only “slightly” less, we note:

Note 20.12.1. Both conditional on H = 0 and conditional on H = 1, the proba-
bility that the observable violates (20.70) is zero.

Proof. We shall show that conditional on H = 0, the probability that the ob-
servable violates (20.70) is zero. The conditional probability given H = 1 can be
analogously shown to be zero. The condition that (20.70) is violated is equivalent
to the condition that either yobs ∈ Y0 or fY|H=0(yobs) + fY|H=1(yobs) = 0. By
(20.71), Pr[Y ∈ Y0 |H = 0] = 0. And, by the nonnegativity of the densities,

Pr
[
fY|H=0(Y) + fY|H=1(Y) = 0

∣∣H = 0
]
≤ Pr

[
fY|H=0(Y) = 0

∣∣H = 0
]

=
∫
{ỹ∈Rd:fY|H=0(ỹ)=0}

fY|H=0(y) dy

=
∫
{ỹ∈Rd:fY|H=0(ỹ)=0}

0 dy

= 0.

Conditionally on H = 0, the probability of the observable violating (20.70) is thus
the probability of the union of two events, each of which is of zero probability, and
is thus of zero probability; see Corollary 21.5.2 ahead.

Definition 20.12.2 (Sufficient Statistic for Two Densities). We say that a map-
ping T : Rd → Rd′ forms a sufficient statistic for the density functions fY|H=0(·)
and fY|H=1(·) on Rd if it is Borel measurable6 and if there exists a set Y0 ⊂ Rd of
Lebesgue measure zero and a Borel measurable function ζ : Rd′ → [0,∞] such that
for all yobs ∈ Rd satisfying (20.70)

fY|H=0(yobs)
fY|H=1(yobs)

= ζ
(
T (yobs)

)
, (20.72)

where on the LHS of (20.72) we define a/0 to be +∞ whenever a > 0.

In our example the observation (Y1, Y2) takes value in R2 so d = 2; the mapping
T : (y1, y2) 7→ y2

1 + y2
2 is a mapping from R2 to R so d′ = 1; and by, (20.67),

ζ : t 7→ σ2
1

σ2
0

exp
(

1
2

( 1
σ2

1

− 1
σ2

0

)
t

)
.

6The technical condition that T (·) is Borel measurable guarantees that T (Y) is a random
vector. See for example (Billingsley, 1995, Theorem 13.1(ii)) for a discussion of this technical
issue. The issue is best seen in the scalar case. Suppose that Y is a RV defined over the
probability space (Ω,F , P ). If T (·) is any function, then T (Y ) is a mapping from Ω to the R, but
we are not guaranteed that it be a RV, because for T (Y ) to be a RV we must have that, for every
ξ ∈ R, the set {ω ∈ Ω : T (Y (ω)) ≤ ξ} be in F , and this is, in general, not true. However, if T (·)
is Borel measurable, then the above cited theorem guarantees that T (X) is, indeed, a RV. Note
that any continuous function is Borel measurable (Billingsley, 1995, Theorem 13.2). In practice,
one never encounters functions that are not Borel measurable; In fact, it is hard work to construct
one.



20.12 Sufficient Statistics 385

Here we can take Y0 to be the empty set.7

We next show that if T (·) is a sufficient statistic, then there is no loss in opti-
mality in considering decision rules that base their decision on T (Y). This result
is almost obvious, because the MAP decision rule is optimal (Theorem 20.7.1);
because it can be expressed in terms of the likelihood-ratio function (20.40); and
because the sufficiency of T (·) implies that the likelihood-ratio function LR(yobs)
is computable from T (yobs). Nevertheless, we provide a formal proof because the
result is important.

Proposition 20.12.3. If T : Rd → Rd′ is a sufficient statistic for the densities
fY|H=0(·) and fY|H=1(·), then, irrespective of the prior of H, there exists a decision
rule that guesses H based on T (Y) and which is as good as any optimal guessing
rule based on Y.

Proof. We need to show that if φ∗Guess(·) is an optimal decision rule for guessing H
based on Y, then there exists a guessing rule based on T (Y) that has the same
probability of error. We note that it is enough to prove this result for a nondegen-
erate prior (20.2), because for degenerate priors one can achieve zero probability
of error even without looking at T (Y): if Pr[H = 0] = 1 guess “H = 0,” and if
Pr[H = 1] = 1 guess “H = 1.” We thus proceed to assume a nondegenerate prior
(20.2).

Let φMAP(·) be the MAP rule for guessingH based on Y. Since this rule is optimal,
it suffices to exhibit a decoding rule φT (·) based on T (Y) of equal performance.
Since T (·) is sufficient, it follows that there exists a set of Lebesgue measure zero Y0

and a Borel measurable function ζ(·) such that ζ
(
T (yobs)

)
= LR(yobs), whenever

(20.70) holds. Based upon the observation T (Y) = T (yobs), the desired rule is to
guess

φT
(
T (yobs)

)
=


0 if ζ

(
T (yobs)

)
> π1

π0
,

1 if ζ
(
T (yobs)

)
< π1

π0
,

U
(
{0, 1}

)
if ζ
(
T (yobs)

)
= π1

π0
.

(20.73)

That φT (·) has the same performance as φMAP(·) now follows by noting that,
by (20.72), the two decoding rules are in agreement except perhaps for observa-
tions yobs violating (20.70), but those, by Note 20.12.1, occur with probability zero.
The performance of φMAP(·) (which is optimal based on Y) and of φT (·) (which is
based on T (Y)) are thus identical.

Definition 20.12.2 is intuitive in that it demonstrates how one typically goes about
identifying a sufficient statistic: one computes the likelihood-ratio and checks what
it depends on. This definition, however, becomes a bit cumbersome in multi-
hypothesis testing, which we shall discuss in Chapter 21. A definition that is more
appropriate for that setting is given in Chapter 22 in terms of the computability
of the a posteriori probabilities from T (yobs) (Definition 22.2.1). The purpose of
the next proposition is to show that the two definitions coincide in the binary case:
ignoring sets of Lebesgue measure zero, the likelihood-ratio can be computed from

7We would have needed to choose a nontrivial set Y0 if we had changed the densities (20.66)
at a finite number of points.
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T (yobs) (whenever the ratio is not 0/0), if, and only if, for any prior (π0, π1) one can
compute the a posteriori distribution of H from T (yobs) (whenever fY(yobs) > 0).

We draw the reader’s attention to the following subtle issue. Definition 20.12.2
makes it clear that the sufficiency of T (·) has nothing to do with the prior; it only
depends on the densities fY|H=0(·) and fY|H=1(·). The equivalent definition of
sufficient statistics in terms of the computability of the a posteriori distribution
ostensibly depends also on the prior, because it is only meaningful to discuss the a
posteriori distribution if H has a prior. Nevertheless, the definitions are equivalent
because in the latter definition we require that the a posteriori distribution be
computable from T (Y) for every prior, and not just for the prior given in the
problem’s formulation.

Proposition 20.12.4 (Computability of the a Posteriori Distribution). Let the
mapping T : Rd → Rd′ be Borel measurable, and let fY|H=0(·) and fY|H=1(·) be
densities on Rd. Then the following two conditions are equivalent:

(a) T (·) forms a sufficient statistic for the densities fY|H=0(·) and fY|H=1(·).

(b) For some set Y0 ⊂ Rd of Lebesgue measure zero we have that for every prior
(π0, π1) there exist Borel measurable functions from Rd′ to [0, 1]

t 7→ ψm
(
π0, π1, t

)
, m = 0, 1,

such that the vector(
ψ0

(
π0, π1, T (yobs)

)
, ψ1

(
π0, π1, T (yobs)

))T

is a probability vector, and this probability vector is equal to the vector(
Pr[H = 0 |Y = yobs], Pr[H = 1 |Y = yobs]

)T

, (20.74)

whenever both the condition yobs /∈ Y0, and the condition

π0fY|H=0(yobs) + π1fY|H=1(yobs) > 0 (20.75)

are satisfied. Here (20.74) is computed for H having the prior (π0, π1) and
for the conditional densities fY|H=0(·) and fY|H=1(·).

Proof. We begin by proving that (a) implies (b). That is, we assume that T (·)
forms a sufficient statistic and proceed to prove the existence of the set Y0 and
of the functions ψ0(·), ψ1(·). Let Y0 and ζ : Rd′ → [0,∞] be as guaranteed by the
definition of sufficient statistics (Definition 20.12.2) so

fY|H=0(yobs)
fY|H=1(yobs)

= ζ
(
T (yobs)

)
, (20.76)

whenever yobs satisfies (20.70). We next show how to construct for every pair
(π0, π1) the functions ψ0(·), ψ1(·). We consider three cases separately: the case
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π0 = 1− π1 = 1, the case π0 = 1− π1 = 0, and the case where both π0 and π1 are
strictly positive.

In the first case H is deterministically zero, and the functions ψ0(1, 0, t) = 1 and
ψ1(1, 0, t) = 0 meet our requirements. In the second case H is deterministically
one, and the functions ψ0(0, 1, t) = 1− ψ1(0, 1, t) = 0 meet our requirements.

It remains to treat the case where π0, π1 > 0. We shall show that in this case the
functions

ψ0

(
π0, π1, t

)
,

π0ζ(t)
π0ζ(t) + π1

, ψ1(π0, π1, t) , 1− ψ0

(
π0, π1, t

)
, (20.77)

(where ∞/(∞ + a) is defined as one for all finite a) meet our requirements. To
that end we first note that ψ0(π0, π1, t) and ψ1(π0, π1, t) are nonnegative and sum
to one. We next note that, for π0, π1 > 0, the condition (20.75) implies that
fY|H=0(yobs) and fY|H=1(yobs) are not both zero. Consequently, if yobs satisfies
(20.75) and also yobs /∈ Y0, then it satisfies (20.70) and LR(yobs) = ζ

(
T (yobs)

)
.

Thus, in the case π0, π1 > 0, we have that, whenever (20.75) and yobs /∈ Y0 hold,

ψ0

(
π0, π1, T (yobs)

)
=

π0ζ
(
T (yobs)

)
π0ζ
(
T (yobs)

)
+ π1

=
π0 LR(yobs)

π0 LR(yobs) + π1

=
π0fY|H=0(yobs)/fY|H=1(yobs)

π0fY|H=0(yobs)/fY|H=1(yobs) + π1

=
π0fY|H=0(yobs)

π0fY|H=0(yobs) + π1fY|H=1(yobs)

= Pr[H = 0 |Y = yobs]

as required. This implies that, whenever (20.75) and yobs /∈ Y0 hold, we also have
ψ1

(
π0, π1, T (yobs)

)
= Pr[H = 1 |Y = yobs], since ψ1(π0, π1, t) = 1 − ψ0

(
π0, π1, t

)
and since Pr[H = 1 |Y = yobs] = 1− Pr[H = 0 |Y = yobs]; see (20.10).

We now prove that (b) implies (a), i.e., that the existence of the set Y0 and of
the functions ψ0(·), ψ1(·) imply the existence of the function ζ(·). In fact, we shall
prove a stronger statement that if for some nondegenerate prior the a posteriori
distribution of H given Y = yobs is computable from T (yobs) (whenever (20.75)
and yobs /∈ Y0 hold), then there exists some function ζ : Rd′ → [0,∞] such that
LR(yobs) = ζ(T (yobs)), whenever yobs satisfies (20.70).

To construct ζ(·) from ψ0(·) and ψ1(·), pick some arbitrary strictly positive π̃0, π̃1

summing to one (e.g., π̃0, π̃1 = 1/2), and define ζ(·) by

ζ
(
T (yobs)

)
=
π̃1ψ0

(
π̃0, π̃1, T (yobs)

)
π̃0ψ1

(
π̃0, π̃1, T (yobs)

) , (20.78)

using the convention that a/0 =∞ for all a > 0; see (20.39).

We next verify that if yobs satisfies (20.70) then ζ(T (yobs)) = LR(yobs). To
this end, define H to have the law Pr[H = 0] = π̃0 and Pr[H = 1] = π̃1,
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and let the conditional law of Y given H be as specified by the given densities.
Since π̃0 and π̃1 are strictly positive, it follows that whenever fY|H=0(yobs) and
fY|H=1(yobs) are not both zero, we also have π̃0fY|H=0(yobs)+π̃1fY|H=1(yobs) > 0.
Consequently, for strictly positive π̃0, π̃1 we have that (20.70) implies that yobs /∈ Y0

and π̃0fY|H=0(yobs)+π̃1fY|H=1(yobs) > 0 and thus, for observations yobs satisfying
(20.70),

ζ
(
T (yobs)

)
=
π̃1ψ0

(
π̃0, π̃1, T (yobs)

)
π̃0ψ1

(
π̃0, π̃1, T (yobs)

)
=

Pr[H = 1]Pr[H = 0 |Y = yobs]
Pr[H = 0]Pr[H = 1 |Y = yobs]

= LR(yobs),

where the last equality follows by dividing the equation

Pr[H = 0 |Y = yobs] =
Pr[H = 0]fY|H=0(yobs)

Pr[H = 0]fY|H=0(yobs) + Pr[H = 1]fY|H=1(yobs)

(which is a restatement of (20.9a) for our case) by

Pr[H = 1 |Y = yobs] =
Pr[H = 1]fY|H=1(yobs)

Pr[H = 0]fY|H=0(yobs) + Pr[H = 1]fY|H=1(yobs)

(which is a restatement of (20.9b) for our case).

Once we have identified a sufficient statistic T (Y), we can proceed to derive an
optimal guessing rule using two methods that we describe next. Again, we focus
on nondegenerate priors.

Method 1: We ignore the fact that T (Y) forms a sufficient statistic and simply
use the MAP rule (20.40):

φMAP(yobs) =


0 if LR(yobs) > π1

π0
,

1 if LR(yobs) < π1
π0

,
U
(
{0, 1}

)
if LR(yobs) = π1

π0
.

(20.79)

(Because T (Y) is a sufficient statistic, the likelihood-ratio function LR(yobs) will
be computable from T (yobs) whenever LR(yobs) does not have the pathological
form 0/0 and does not lie in the exception set Y0. Such pathological observations
occur with probability zero (20.12), so we need not worry about them.)

Method 2: By Proposition 20.12.3, there is no loss in optimality in forming our
guess based on T (Y). So we can use any optimal rule, e.g., the MAP rule, for
guessing H based on the new d′-dimensional observations tobs = T (yobs). This
method requires computing the conditional distribution of the random d′-vector
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T = T (Y) conditional on H = 0 and conditional on H = 1 and deciding according
to the rule:

φGuess(T (yobs)) =

{
0 if π0 fT|H=0

(
T (yobs)

)
> π1 fT|H=1

(
T (yobs)

)
,

1 if π0 fT|H=0

(
T (yobs)

)
< π1 fT|H=1

(
T (yobs)

)
,

(20.80)

with ties being resolved at random.

Why would we want to use Method 2 when we have already computed the likelihood-
ratio function to establish the sufficiency of the statistic? The answer is that some-
times one can demonstrate that T (Y) forms a sufficient statistic by methods that
are not based on the computation of the likelihood-ratio. In such cases, Method 2
may be advantageous. Also, sometimes the analysis of the probability of error in
Method 2 is easier. The choice is ours.

Returning to the example of (20.66), we demonstrate Method 2 by calculating
the law of the sufficient statistic T = Y 2

1 + Y 2
2 under each of the hypotheses.

Recalling that the sum of the squares of two IID zero-mean Gaussians is exponential
(Note 19.8.1) we obtain:

fT |H=0(t) =
1

2σ2
0

exp
(
− t

2σ2
0

)
, t ≥ 0, (20.81a)

fT |H=1(t) =
1

2σ2
1

exp
(
− t

2σ2
1

)
, t ≥ 0. (20.81b)

Consequently, the likelihood-ratio is given by

fT |H=0(t)
fT |H=1(t)

=
σ2

1

σ2
0

exp
(
t
( 1

2σ2
1

− 1
2σ2

0

))
, t ≥ 0,

and the log likelihood-ratio by

ln
fT |H=0(t)
fT |H=1(t)

= ln
σ2

1

σ2
0

+ t
( 1

2σ2
1

− 1
2σ2

0

)
, t ≥ 0.

We thus guess “H = 0” if the log likelihood-ratio is positive,

t ≥ 2σ2
0σ

2
1

σ2
0 − σ2

1

ln
σ2

0

σ2
1

,

i.e., if

y2
1 + y2

2 ≥
2σ2

0σ
2
1

σ2
0 − σ2

1

ln
σ2

0

σ2
1

.

We similarly guess “H = 1” if the log likelihood-ratio is negative, and flip a coin if
it is zero. This is the same law we obtained in (20.68) based on Method 1.

20.13 Consequences of Optimality

Consider the problem of guessing an a priori uniformly distributed binary ran-
dom variable H based on the observable Y whose conditional law given H = 0
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is N
(
0, σ2

)
and whose conditional distribution given H = 1 is N

(
1, σ2

)
. To de-

rive an optimal guessing rule we could derive the MAP rule by computing the
likelihood-ratio function as we did in Section 20.10. But having already carried
out the calculations in Section 20.10 for testing whether an observation was drawn
N
(
A, σ2

)
or N

(
−A, σ2

)
, there is a better way. Let

T = Y − 1
2
. (20.82)

Because there is a one-to-one relationship between Y and T , there is no loss in
optimality in subtracting 1/2 from Y to obtain T and in then applying an optimal
decision rule to T . Indeed, since Y = T + 1/2, it follows that Y is the result of
processing T with respect to H, so no decision rule based on Y can outperform an
optimal decision rule based on T (Theorem 20.11.5). (Of course, no decision rule
based on T can outperform an optimal one based on Y , because T is the result of
processing Y with respect to H.) In fact, using the terminology of Section 20.12,
T : y 7→ y− 1/2 forms a sufficient statistic for guessing H based on Y , because the
likelihood-ratio function LR(yobs) = fY |H=0(yobs)/fY |H=1(yobs) can be expressed
as ζ

(
T (yobs)

)
for the mapping ζ : t 7→ LR(t + 1/2). Consequently, our assertion

that there is no loss in optimality in forming our guess based on T (Y ) is just a
consequence of Proposition 20.12.3.

Conditional on H = 0, the random variable T (Y ) is N
(
−0.5, σ2

)
, and, conditional

on H = 1, it is N
(
+0.5, σ2

)
. Consequently, using the results of Section 20.10 (with

the substitution of 1/2 for A), we obtain that an optimal rule based on T is to guess
“H = 0” if T is negative, and to guess “H = 1” if T is positive. To summarize, the
decision rule we derived is to guess “H = 0” if Y − 1/2 < 0 and to guess “H = 1”
if Y − 1/2 > 0.

In the terminology of Section 20.12, we used the fact that the transformation in
(20.82) is one-to-one to conclude that T (·) forms a sufficient statistic, and we then
used Method 2 from that section to derive an optimal decision rule.

20.14 Multi-Dimensional Binary Gaussian Hypothesis Testing

We now come closer to the receiver front end. The kind of problem we would
eventually like to address is the hypothesis testing problem in which, conditional
on H = 0, the observable is a continuous-time waveform of the form s0(t) +N(t)
whereas, conditional on H = 1, it is of the form s1(t) +N(t), where

(
N(t), t ∈ R

)
is some continuous-time stochastic process modeling the noise. This problem will
be addressed in Chapter 26. For now we only address the discrete time version of
this problem.

20.14.1 The Setup

We consider the problem of guessing the random variable H that takes on the
values 0 and 1 with positive probabilities π0 and π1. The observable Y ∈ RJ is
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a random vector with J components Y (1), . . . , Y (J).8 Conditional on H = 0, the
components of Y are independent Gaussians with Y (j) ∼ N

(
s
(j)
0 , σ2

)
, where s0 is

some deterministic vector of J components s(1)0 , . . . , s
(J)
0 , and where σ2 > 0. Con-

ditional on H = 1, the components of Y are independent with Y (j) ∼ N
(
s
(j)
1 , σ2

)
,

for some other deterministic vector s1 of J components s(1)1 , . . . , s
(J)
1 . We assume

that s0 and s1 differ in at least one coordinate. The setup can be described as

H = 0 : Y (j) = s
(j)
0 + Z(j), j = 1, 2, . . . , J,

H = 1 : Y (j) = s
(j)
1 + Z(j), j = 1, 2, . . . , J,

where Z(1), Z(2), . . . , Z(J) are IID N
(
0, σ2

)
.

For typographical reasons, instead of denoting the observed vector by yobs, we now
denote it by y and its J components by y(1), . . . , y(J).

20.14.2 An Optimal Decision Rule

To find an optimal guessing rule we compute the likelihood-ratio function:

LR(y) =
fY|H=0(y)
fY|H=1(y)

=

∏J
j=1

(
1√

2πσ2 exp
(
−
(
y(j)−s(j)0

)2
2σ2

))
∏J
j=1

(
1√

2πσ2 exp
(
−
(
y(j)−s(j)1

)2
2σ2

))

=
J∏
j=1

(
exp

(
−
(
y(j) − s(j)0

)2
2σ2

+

(
y(j) − s(j)1

)2
2σ2

))
, y ∈ RJ.

The log likelihood-ratio function is thus given by

LLR(y) = lnLR(y)

=
1

2σ2

J∑
j=1

((
y(j) − s(j)1

)2 − (y(j) − s(j)0

)2)
=

1
σ2

(
〈y, s0 − s1〉E +

‖s1‖2 − ‖s0‖2

2

)
=

1
σ2

(
〈y, s0 − s1〉E −

〈s0, s0 − s1〉E + 〈s1, s0 − s1〉E
2

)

=
‖s0 − s1‖

σ2

〈y,
s0 − s1

‖s0 − s1‖

〉
E

−

〈
s0,

s0−s1
‖s0−s1‖

〉
E

+
〈
s1,

s0−s1
‖s0−s1‖

〉
E

2


=
‖s0 − s1‖

σ2

(
〈y,φ〉E −

1
2
(
〈s0,φ〉E + 〈s1,φ〉E

))
, y ∈ RJ, (20.83)

8We use J rather than d in order to comply with the notation of Section 21.6 ahead.
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s0 s0 s0

s1 s1 s1

φ φ φ

guess 0
guess 1

guess 0
guess 1

guess 0
guess 1

π0 < π1 π0 = π1 π0 > π1

Figure 20.5: Effect of the ratio π0/π1 on the decision rule.

where for real vectors u = (u(1), . . . , u(J))T and v = (v(1), . . . , v(J))T taking value
in RJ we define9

〈u,v〉E ,
J∑
j=1

u(j)v(j), (20.84)

‖u‖ ,
√
〈u,u〉E =

√√√√ J∑
j=1

(
u(j)

)2
, (20.85)

and where
φ =

s0 − s1

‖s0 − s1‖
(20.86)

is a unit-norm vector pointing from s1 to s0.

An optimal decision rule is to guess “H = 0” when LLR(y) ≥ ln π1
π0

, i.e.,

Guess “H = 0” if 〈y,φ〉E ≥
〈s0,φ〉E + 〈s1,φ〉E

2
+

σ2

‖s0 − s1‖
ln
π1

π0
, (20.87)

and to guess “H = 1” otherwise. This decision rule is illustrated in Figure 20.5.
Depicted are the cases where π1/π0 is smaller than one, equal to one, and larger
than one.

It is interesting to note that the projection 〈y,φ〉E φ of y onto the normalized
vector φ = (s0−s1)/ ‖s0 − s1‖ forms a sufficient statistic for this problem. Indeed,
by (20.83), the log likelihood-ratio (and hence the likelihood-ratio) function is
computable from 〈y,φ〉E. The projection is depicted in Figure 20.6.

The rule (20.87) simplifies if H has a uniform prior. In this case the rule is

Guess “H = 0” if 〈y,φ〉E ≥
〈s0,φ〉E + 〈s1,φ〉E

2
. (20.88)

Note that in this case the guessing rule can be implemented even if σ2 is unknown.

9This is sometimes called the standard inner product on RJ or the inner product between
J-tuples. The subscript “E” stands here for “Euclidean.”
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φ

φ
s1

s0

y

Figure 20.6: The projection of y onto the normalized vector φ = (s0−s1)/‖s0−s1‖.

20.14.3 Error Probability Analysis

We next find the error probability associated with our guessing rule. We de-
note the conditional probabilities of error associated with our guessing rule by
pMAP(error|H = 0) and pMAP(error|H = 1). Since our rule is optimal, its uncon-
ditional probability of error is p∗(error) and is given by

p∗(error) = π0 pMAP(error|H = 0) + π1 pMAP(error|H = 1). (20.89)

Because in (20.87) we resolved ties by guessing “H = 0”, it follows that to evaluate
pMAP(error|H = 0) we need to evaluate the probability that a random vector Y
drawn according to the density fY|H=0(·) is such that the a posteriori probability
of H = 0 is strictly smaller than the a posteriori probability of H = 1. Thus, if
ties in the a posteriori distribution of H are resolved in favor of guessing “H = 0”,
then

pMAP(error|H = 0) = Pr
[
π0fY|H=0(Y) < π1fY|H=1(Y)

∣∣H = 0
]
. (20.90)

This may seem self-referential, but it is not. Another way to state this is

pMAP(error|H = 0) =
∫
y/∈B1,0

fY|H=0(y) dy, (20.91)

where
B1,0 =

{
y ∈ RJ : π0fY|H=0(y) ≥ π1fY|H=1(y)

}
. (20.92)

To compute this probability we need the following lemma:

Lemma 20.14.1. Let π0 and π1 be strictly positive but not necessarily sum to one.
Let the vectors s0, s1 ∈ RJ differ in at least one component, i.e., ‖s0− s1‖ > 0. Let

f0(y) =
(

1√
2πσ2

)J

exp
(
− 1

2σ2

J∑
j=1

(
y(j) − s(j)0

)2)
, y ∈ RJ,
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f1(y) =
(

1√
2πσ2

)J

exp
(
− 1

2σ2

J∑
j=1

(
y(j) − s(j)1

)2)
, y ∈ RJ,

where σ2 > 0. Define

B1,0 ,
{
y ∈ RJ : π0f0(y) ≥ π1f1(y)

}
.

Then ∫
y/∈B1,0

f0(y) dy = Q
(
‖s0 − s1‖

2σ
+

σ

‖s0 − s1‖
ln
π0

π1

)
. (20.93)

This equality continues to hold if we replace the weak inequality (≥) in the definition
of B1,0 with a strict inequality (>).

Proof. Using a calculation identical to the one leading to (20.83) we obtain that
the set B1,0 can also be expressed as

B1,0 =
{
y ∈ RJ : 〈y,φ〉E ≥

〈s0,φ〉E + 〈s1,φ〉E
2

+
σ2

‖s0 − s1‖
ln
π1

π0

}
, (20.94)

where φ is defined in (20.86).

The density f0(·) is the same as the density of the vector s0 + Z, where the com-
ponents Z(1), . . . , Z(J) of Z are IID N

(
0, σ2

)
. Thus, the LHS of (20.93) can be

expressed as∫
y/∈B1,0

f0(y) dy = Pr
[
〈s0 + Z,φ〉E <

〈s0,φ〉E + 〈s1,φ〉E
2

+
σ2

‖s0 − s1‖
ln
π1

π0

]
= Pr

[
〈Z,φ〉E <

〈s1,φ〉E − 〈s0,φ〉E
2

+
σ2

‖s0 − s1‖
ln
π1

π0

]
= Pr

[
−〈Z,φ〉E >

〈s0,φ〉E − 〈s1,φ〉E
2

+
σ2

‖s0 − s1‖
ln
π0

π1

]
= Pr

[
−〈Z,φ〉E >

〈s0 − s1,φ〉E
2

+
σ2

‖s0 − s1‖
ln
π0

π1

]
= Pr

[
〈Z,−φ〉E >

‖s0 − s1‖
2

+
σ2

‖s0 − s1‖
ln
π0

π1

]
= Q

(
‖s0 − s1‖

2σ
+

σ

‖s0 − s1‖
ln
π0

π1

)
,

where the first equality follows from (20.94) and from the observation that the
density f0(·) is the density of s0 +Z; the second because 〈·, ·〉E in linear in the first
argument, so 〈s0 + Z,φ〉E = 〈s0,φ〉E+〈Z,φ〉E; the third by noting that multiplying
both sides of an inequality by (−1) requires changing the direction of the inequality;
the fourth by the linear relationship 〈s1,φ〉E−〈s0,φ〉E = 〈s1 − s0,φ〉E; the fifth by
(20.86); and the final equality because, as we next argue, 〈Z,−φ〉E ∼ N

(
0, σ2

)
, so

we can employ (19.12a). To see that 〈Z,−φ〉E ∼ N
(
0, σ2

)
, note that, by (20.86),

‖ − φ‖ = 1 and then employ Proposition 19.7.3.
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This establishes the first part of the lemma. The result where the weak inequality
is replaced with a strict inequality follows by replacing all the weak inequalities
in the proof with the corresponding strict inequalities and vice versa. (If X has a
density, then Pr[X < ξ] = Pr[X ≤ ξ].)

By applying Lemma 20.14.1 to our problem we obtain

pMAP(error|H = 0) = Q
(
‖s0 − s1‖

2σ
+

σ

‖s0 − s1‖
ln
π0

π1

)
. (20.95)

Similarly, one can show that

pMAP(error|H = 1) = Q
(
‖s0 − s1‖

2σ
+

σ

‖s0 − s1‖
ln
π1

π0

)
. (20.96)

Consequently, by (20.89)

p∗(error) = π0Q
(
‖s0 − s1‖

2σ
+

σ

‖s0 − s1‖
ln
π0

π1

)
+ π1Q

(
‖s0 − s1‖

2σ
+

σ

‖s0 − s1‖
ln
π1

π0

)
. (20.97)

In the special case where the prior is uniform we obtain from (20.95), (20.96), and
(20.97)

p∗(error) = pMAP(error|H = 0) = pMAP(error|H = 1) = Q
(
‖s0 − s1‖

2σ

)
. (20.98)

This has a nice geometric interpretation. It is the probability that a N
(
0, σ2

)
RV

exceeds half the distance between the vectors s0 and s1. Stated differently, since
‖s0 − s1‖ /σ is the number of standard deviations that separate s0 and s1, we can
express the probability of error as the probability that a standard Gaussian exceeds
half the distance between the vectors as measured in standard deviations of the
noise.

20.14.4 The Bhattacharyya Bound

Finally, we compute the Bhattacharyya Bound for this problem. From (20.50) we
obtain that, irrespective of the values of π0, π1,

p∗(error)

≤ 1
2

∫
y∈RJ

√
fy|H=0(y)fy|H=1(y) dy

=
1
2

∫
y

√√√√ J∏
j=1

(
1√

2πσ2
e−

(y(j)−s(j)0 )2

2σ2

)
J∏
j=1

(
1√

2πσ2
e−

(y(j)−s(j)1 )2

2σ2

)
dy

=
1
2

∫
y

√√√√ J∏
j=1

(
1√

2πσ2
e−

(y(j)−s(j)0 )2

2σ2
1√

2πσ2
e−

(y(j)−s(j)1 )2

2σ2

)
dy
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=
1
2

∫
y

J∏
j=1

(
1√

2πσ2
exp

(
−
(
y(j) − s(j)0

)2 +
(
y(j) − s(j)1

)2
4σ2

))
dy

=
1
2

J∏
j=1

∫
y(j)∈R

1√
2πσ2

e−
2(y(j))2

−2y(j)(s(j)0 +s(j)1 )+(s(j)0 )2
+(s(j)1 )2

4σ2 dy(j)

=
1
2

J∏
j=1

∫ ∞

−∞

1√
2πσ2

exp

(
−
y2 − y

(
s
(j)
0 + s

(j)
1

)
+ 1

2

((
s
(j)
0

)2 +
(
s
(j)
1

)2)
2σ2

)
dy

=
1
2

J∏
j=1

∫ ∞

−∞

1√
2πσ2

exp

−
(
y − s

(j)
0 +s

(j)
1

2

)2

+
(
s
(j)
0 −s(j)1

)2
4

2σ2

dy

=
1
2

J∏
j=1

exp

(
−

(
s
(j)
0 − s

(j)
1

)2

8σ2

)

=
1
2

exp

(
− 1

8σ2

J∑
j=1

(
s
(j)
0 − s

(j)
1

)2
)

=
1
2

exp

(
−‖s0 − s1‖2

8σ2

)
, (20.99)

where the last integral is evaluated using (19.22).

20.15 Guessing in the Presence of a Random Parameter

We now consider the guessing problem when the distribution of the observable Y
depends not only on the hypothesis H but also on a random parameter Θ, which
is independent of H. Based on the conditional densities fY|Θ,H=0(·), fY|Θ,H=1(·),
the nondegenerate prior π0, π1 > 0, and on the law of Θ, we seek an optimal rule
for guessing H. We distinguish between two cases depending on whether we must
base our guess on the observed value yobs of Y alone—random parameter not
observed—or whether we also observe the value θobs of Θ—random parameter
observed. The analysis of both cases is conceptually straightforward.

20.15.1 Random Parameter Not Observed

The guessing problem when the random parameter is not observed is sometimes
called “testing in the presence of a nuisance parameter.” Conceptually, the situ-
ation is quite simple. We have only one observation, Y = yobs, and an optimal
decision rule is the MAP rule (Theorem 20.7.1). The MAP rule entails computing
the likelihood-ratio function

LR(yobs) =
fY|H=0(yobs)
fY|H=1(yobs)

, (20.100)
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and comparing the result to the threshold π1/π0; see (20.40).

Often, however, the densities fY|H=0(yobs) and fY|H=1(yobs) appearing in (20.100)
are not given directly. Instead we are given the density of Θ and the conditional
density of Y given (H,Θ). (We shall encounter such a situation in Chapter 27
when we discuss noncoherent communications.) In such cases we can compute the
conditional density fY|H=0(yobs) as follows:

fY|H=0(yobs) =
∫
θ

fY,Θ|H=0(yobs, θ) dθ

=
∫
θ

fY|Θ=θ,H=0(yobs) fΘ|H=0(θ) dθ

=
∫
θ

fY|Θ=θ,H=0(yobs) fΘ(θ) dθ, (20.101)

where the first equality follows because from the joint density one obtains the
marginal density by integrating out the variable in which we are not interested;
the second by the definition of the conditional density; and the final equality from
our assumption that Θ and H are independent. (In computations such as these
it is best to think about the conditioning on H = 0 as defining a new law on
(Y,Θ)—a new law to which all the regular probabilistic manipulations, such as
marginalization and computation of conditional densities, continue to apply. We
thus simply think of the conditioning on H = 0 as specifying the joint law of (Y,Θ)
that we have in mind.)

Repeating the calculation under H = 1 we obtain that the likelihood-ratio function
is given by

LR(yobs) =

∫
θ
fY|Θ=θ,H=0(yobs) fΘ(θ) dθ∫

θ
fY|Θ=θ,H=1(yobs) fΘ(θ) dθ

. (20.102)

The case where Θ is discrete can be similarly addressed. An optimal decision rule
can now be derived based on this expression for the likelihood-ratio function and
on the MAP rule (20.40).

20.15.2 Random Parameter Observed

When the random parameter is observed to be Θ = θobs, we merely view the
problem as a standard hypothesis testing problem with the observation consisting
of Y and Θ. That is, we base our decision on the likelihood-ratio function

LR(yobs, θobs) =
fY,Θ|H=0(yobs, θobs)
fY,Θ|H=1(yobs, θobs)

. (20.103)

The additional twist is that because Θ is independent of H we have

fY,Θ|H=0(yobs, θobs) = fΘ|H=0(θobs)fY|Θ=θobs,H=0(yobs)
= fΘ(θobs)fY|Θ=θobs,H=0(yobs), (20.104)
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where the second equality follows from the independence of Θ and H. Repeating
for the conditional law of the pair (Y,Θ) given H = 1 we have

fY,Θ|H=1(yobs, θobs) = fΘ(θobs)fY|Θ=θobs,H=1(yobs). (20.105)

Consequently, by (20.103), (20.104), and (20.105), we obtain that for θobs satisfying
fΘ(θobs) 6= 0

LR(yobs, θobs) =
fY|H=0,Θ=θobs(yobs)
fY|H=1,Θ=θobs(yobs)

. (20.106)

An optimal decision rule can be again derived based on this expression for the
likelihood-ratio and on the MAP rule (20.40).

20.16 Mathematical Notes

A standard reference on hypothesis testing is (Lehmann and Romano, 2005). It
also contains a measure-theoretic treatment of the subject. For a precise math-
ematical definition of the condition X(−−Y(−−Z we refer the reader to (Loève,
1963, Section 25.3). For a measure-theoretic treatment of sufficient statistic see
(Loève, 1963, Section 24.4), (Billingsley, 1995, Section 34), (Romano and Siegel,
1986, pp. 154–156), and (Halmos and Savage, 1949). For a measure-theoretic treat-
ment of the notion of conditional distribution see, for example, (Billingsley, 1995,
Chapter 6), (Williams, 1991, Chapter 9), or (Lehmann and Romano, 2005, Chap-
ter 2).

20.17 Exercises

Exercise 20.1 (Hypothesis Testing). Let H take on the values 0 and 1 equiprobably.
Conditional on H = 0, the observable Y is equal to a+Z, where Z is a Laplace RV, i.e.,
is of density

fZ(z) =
1

2
e−|z|, z ∈ R,

and a > 0 is a given constant. Conditional on H = 1, the observable Y is given by −a+Z.

(i) Find and draw the densities fY |H=0(·) and fY |H=1(·).
(ii) Find an optimal rule for guessing H based on Y .

(iii) Compute the optimal probability of error.

(iv) Compute the Bhattacharyya Bound.

Exercise 20.2 (A Discrete Multi-Dimensional Problem). Let H take on the values 0
and 1 according to the prior (π0, π1). Let the observation Y = (Y1, . . . , Yn)T be an n-
dimensional binary vector. Conditional on H = 0, the components of the vector Y are
IID with

Pr
[
Y` = 1

∣∣H = 0
]

= 1− Pr
[
Y` = 0

∣∣H = 0
]

= 0.25, ` = 1, . . . , n.

Conditional on H = 1, the components are IID with

Pr
[
Y` = 1

∣∣H = 1
]

= 1− Pr
[
Y` = 0

∣∣H = 1
]

= 0.75, ` = 1, . . . , n.
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(i) Find an optimal rule for guessing H based on Y.

(ii) Compute the optimal probability of error.

(iii) Compute the Bhattacharyya Bound.

Hint: You may need to treat the cases of n even and n odd separately.

Exercise 20.3 (A Multi-Antenna Receiver). Let H take on the values 0 and 1 equiprob-
ably. We wish to guess H based on the random variables Y1 and Y2. Conditional on
H = 0,

Y1 = A + Z1, Y2 = A + Z2,

and conditional on H = 1,

Y1 = −A + Z1, Y2 = −A + Z2.

Here A is a positive constant, and Z1 ∼ N
(
0, σ2

1

)
, Z2 ∼ N

(
0, σ2

2

)
, andH are independent.

(i) Find an optimal rule for guessing H based on (Y1, Y2).

(ii) Draw the decision regions in the (Y1, Y2)-plane for the special case where σ1 = 2σ2.

(iii) Returning to the general case, find a one-dimensional sufficient statistic.

(iv) Find the optimal probability of error in terms of σ2
1 , σ2

2 , and A.

(v) Consider a suboptimal receiver that declares “H = 0” if Y1 +Y2 > 0, and otherwise
declares “H = 1.” Evaluate the probability of error for this decoder as a function
of σ2

1 , σ2
2 , and A.

Exercise 20.4 (Binary Hypothesis Testing with General Costs). LetH take on the values 0
and 1 according to the prior (π0, π1). The observable Y has conditional densities fY|H=0(·)
and fY|H=1(·). Based on Y, we wish to guess the value of H. Let the guess associated
with Y = yobs be denoted by φGuess(yobs). Guessing “H = η” when H = ν costs c(η, ν),
where c(·, ·) is a given function from {0, 1} × {0, 1} to the nonnegative reals. Find a
decision rule that minimizes the expected cost

E
[
c
(
φGuess(Y), H

)]
=

1∑
ν=0

πν

1∑
η=0

c(η, ν) Pr
[
φGuess(Y) = η

∣∣H = ν
]
.

Exercise 20.5 (Binary Hypothesis Testing). Let H take on the values 0 and 1 according
to the prior (π0, π1), and let the observation consist of the RV Y . Conditional on H, the
densities of Y are given for every y ∈ R by

fY |H=0(y) = e−y I{y ≥ 0}, fY |H=1(y) = β e−
y2
2 I{y ≥ 0},

where β > 0 is some constant.

(i) Determine β.

(ii) Find a decision rule that minimizes the probability of error.

(iii) For the rule that you have found, compute Pr(error|H = 0).

Hint: Different priors can lead to dramatically different decision rules.
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Exercise 20.6 (Bhattacharyya Bound).

(i) Show that the Bhattacharyya Bound never exceeds 1/2.

(ii) When is it equal to 1/2?

Hint: You may find the Cauchy-Schwarz Inequality useful.

Exercise 20.7 (The Bhattacharyya Bound for Conditionally IID Observations). Consider
a binary hypothesis testing problem where, conditional on H = 0, the J components of
the observed random vector Y are IID with each component of density f0(·). Conditional
on H = 1 the components of Y are IID with each component of density f1(·). Express
the Bhattacharyya Bound in terms of J and∫

R

√
f0(y) f1(y) dy.

Exercise 20.8 (Error Probability and L1 -Distance). Consider the setting of Theorem 20.5.2
when H has a uniform prior. Show that in this case (20.26) can also be written as

Pr
[
φ∗Guess(Y) 6= H

]
=

1

2
− 1

4

∫
Rd

∣∣fY |H=0(y)− fY |H=1(y)
∣∣ dy.

Exercise 20.9 (Conditionally Poisson Observations). A RV X is said to have a Poisson
distribution of parameter (“intensity”) λ, where λ is some nonnegative real number, if X
takes value in the nonnegative integers and

Pr
[
X = n

]
= e−λ

λn

n!
, n = 0, 1, 2, . . .

(i) Find the Moment Generating Function of a Poisson RV of intensity λ.

(ii) Show that if X and Y are independent Poisson random variables of intensities λx
and λy, then their sum X + Y is Poisson with parameter λx + λy.

(iii) Let H take on the values 0 and 1 according to the prior (π0, π1). We wish to
guess H based on the RV Y . Conditional on H = 0, the observation Y is Poisson
of intensity α + λ, whereas conditional on H = 1 it is Poisson of intensity β + λ.
Here α, β, λ are known non-negative constants. Show that the optimal probability
of error is monotonically non-decreasing in λ.

Hint: For Part (iii) recall Part (ii) and that no randomized decision rule can outperform
an optimal deterministic rule.

Exercise 20.10 (Optical Communication). Consider an optical communication system
that uses binary on/off keying at a rate of 108 bits per second. At the beginning of each
time interval of duration 10−8 seconds a new data bit D enters the transmitter. If D = 0,
the laser is turned off for the duration of the interval; otherwise, if D = 1, the laser is
turned on. The receiver counts the number Y of photons received during the interval.
Assume that, conditional on D, the observation Y is a Poisson RV whose conditional
PMF is

Pr
[
Y = y

∣∣D = 0
]

=
e−µ µy

y!
, y = 0, 1, 2, . . . , (20.107)

Pr
[
Y = y

∣∣D = 1
]

=
e−λ λy

y!
, y = 0, 1, 2, . . . , (20.108)

where λ > µ ≥ 0. Further assume that Pr[D = 0] = Pr[D = 1] = 1/2.
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(i) Find an optimal guessing rule for guessing D based on Y .

(ii) Compute the optimal probability of error. (Not necessarily in closed-form.)

(iii) Suppose that we now transmit each data bit over two time intervals, each of duration
10−8 seconds. (The system now supports a data rate of 0.5× 108 bits per second.)
The receiver produces the photon counts Y1 and Y2 over the two intervals. Assume
that, conditional on D = 0, the counts Y1 & Y2 are IID with the PMF (20.107)
and that, conditional on D = 1, they are IID with the PMF (20.108). Find a
one-dimensional sufficient statistic for the problem and use it to find an optimal
decision rule.

Hint: For Part (iii), recall Part (ii) of Exercise 20.9.

Exercise 20.11 (Monotone Likelihood Ratio and Log-Concavity). Let H take on the
values 0 and 1 according to the nondegenerate prior (π0, π1). Conditional on H = 0, the
observation Y is given by

Y = ξ0 + Z,

where ξ0 ∈ R is some deterministic number and Z is a RV of PDF fZ(·). Conditional on
H = 1, the observation Y is given by

Y = ξ1 + Z,

where ξ1 > ξ0.

(i) Show that if the PDF fZ(·) is positive and is such that

fZ(y1 − ξ0) fZ(y0 − ξ1) ≤ fZ(y1 − ξ1) fZ(y0 − ξ0),
(
y1 > y0, ξ1 > ξ0

)
, (20.109)

then an optimal decision rule is to guess “H = 0” if Y ≤ y? and to guess “H = 1”
if Y > y? for some real number y?.

(ii) Show that if z 7→ log fZ(z) is a concave function, then (20.109) is satisfied.

Mathematicians state this result by saying that if g : R → R is positive, then the mapping
(x, y) 7→ g(x − y) has the Total Positivity property of Order 2 if, and only if, g is log-
concave (Marshall and Olkin, 1979, Chapter 18, Section A, Example A.10). Statisticians
state this result by saying that a location family generated by a positive PDF f(·) has
monotone likelihood ratios if, and only if, f(·) is log-concave. For more on distributions
with monotone likelihood ratios see (Lehmann and Romano, 2005, Chapter 3, Section
3.4).
Hint: For Part (ii) recall that a function g : R 7→ R is concave if for any a < b and
0 < α < 1 we have g

(
αa+ (1− α)b

)
≥ αg(a) + (1− α) g(b). You may like to proceed as

follows. Show that if g is concave then

g(a−∆2) + g(a+ ∆2) ≤ g(a−∆1) + g(a+ ∆1), |∆1| ≤ |∆2|.

Defining g(z) = log fZ(z), show that the logarithm of the LHS of (20.109) can be written
as

g
(
ȳ − ξ̄ +

1

2
∆y +

1

2
∆ξ

)
+ g
(
ȳ − ξ̄ − 1

2
∆y −

1

2
∆ξ

)
,

where
ȳ = (y0 + y1)/2, ξ̄ = (ξ0 + ξ1)/2, ∆y = y1 − y0, ∆ξ = ξ1 − ξ0.

Show that the logarithm of the RHS of (20.109) is given by

g
(
ȳ − ξ̄ +

1

2
∆y −

1

2
∆ξ

)
+ g
(
ȳ − ξ̄ +

1

2
∆ξ −

1

2
∆y

)
.
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Exercise 20.12 (Is a Uniform Prior the Worst Prior?). Based on an observation Y , we
wish to guess the value of a RV H taking on the values 0 and 1 according to the prior
(π0, π1). Conditional on H = 0, the observation Y is uniform over the interval [0, 1], and,
conditional on H = 1, it is uniform over the interval [0, 1/2].

(i) Find an optimal rule for guessing H based on the observation Y . Note that the
rule may depend on π0.

(ii) Let p∗(error;π0) denote the optimal probability of error. Find p∗(error;π0) and
plot it as a function of π0 in the range 0 ≤ π0 ≤ 1.

(iii) Which value of π0 maximizes p∗(error;π0)?

Consider now the general problem where the RV Y is of conditional densities fY |H=0(·),
fY |H=1(·), and H is of prior (π0, π1). Let p∗(error;π0) denote the optimal probability of
error for guessing H based on Y .

(iv) Prove that

p∗
(
error;

1

2

)
≥ 1

2
p∗(error;π0) +

1

2
p∗(error; 1− π0), π0 ∈ [0, 1]. (20.110a)

(v) Show that if the densities fY |H=0(·) and fY |H=1(·) satisfy

fY |H=0(y) = fY |H=1(−y), y ∈ R, (20.110b)

then
p∗(error;π0) = p∗(error; 1− π0), π0 ∈ [0, 1]. (20.110c)

(vi) Show that if (20.110b) holds, then the uniform prior is the worst prior:

p∗(error;π0) ≤ p∗(error; 1/2), π0 ∈ [0, 1]. (20.110d)

Hint: For Part (iv) you might like to consider a new setup. In the new setup H̃ = M ⊕S,
where ⊕ denotes the exclusive-or operation and where the binary random variables M
and S are independent with S taking value in {0, 1} equiprobably and with Pr[M = 0] =
1 − Pr[M = 1] = π0. Assume that in the new setup (M,S)(−−H̃(−−Ỹ and that the
conditional density of Ỹ given H̃ = 0 is fY |H=0(·) and given H̃ = 1 it is fY |H=1(·).
Compare now the performance of an optimal decision rule for guessing H̃ based on Ỹ
with the performance of an optimal decision rule for guessing H̃ based on the pair (Ỹ , S).
Express these probabilities of error in terms of the parameters of the original problem.

Exercise 20.13 (Hypothesis Testing with a Random Parameter). Let Y = X + AZ,
where X, A, and Z are independent random variables with X taking on the values ±1
equiprobably, A taking on the values 2 and 3 equiprobably, and Z ∼ N

(
0, σ2

)
.

(i) Find an optimal rule for guessing X based on the pair (Y,A).

(ii) Repeat when you observe only Y .

Exercise 20.14 (Bounding the Conditional Probability of Error). Show that when the
prior is uniform

pMAP(error|H = 0) ≤
∫ √

fY|H=0(y) fY|H=1(y) dy.
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Exercise 20.15 (Upper Bounds on the Conditional Probability of Error).

(i) Let H take on the values 0 and 1 according to the nondegenerate prior (π0, π1). Let
the observation Y have the conditional densities fY|H=0(·) and fY|H=1(·). Show
that for every ρ > 0

pMAP(error|H = 0) ≤
(π1

π0

)ρ ∫
fρY|H=1(y) f1−ρ

Y|H=0(y) dy.

(ii) A suboptimal decoder guesses “H = 0” if q0(y) > q1(y); guesses “H = 1” if
q0(y) < q1(y); and otherwise tosses a coin. Here q0(·) and q1(·) are arbitrary
positive functions. Show that for this decoder

p(error|H = 0) ≤
∫ (

q1(y)

q0(y)

)ρ
fY|H=0(y) dy, ρ > 0.

Hint: In Part (i) show that you can upper-bound I{π1 fY|H=1(y)/(π0 fY|H=0(y)) ≥ 1} by(
π1 fY|H=1(y)/(π0 fY|H=0(y))

)ρ
.

Exercise 20.16 (The Hellinger Distance). The Hellinger distance between the densities
f(·) and g(·) is defined as the square root of

1

2

∫ (√
f(ξ)−

√
g(ξ)

)2

dξ

(though some authors drop the one-half).

(i) Show that the Hellinger distance between f(·) and h(·) is upper-bounded by the
sum of the Hellinger distances between f(·) and g(·) and between g(·) and h(·).

(ii) Relate the Hellinger distance to the Bhattacharyya Bound.

(iii) Show that the Hellinger distance is upper-bounded by one.

Exercise 20.17 (Artifacts of Suboptimality). Let H take on the values 0 and 1 equiprob-
ably. Conditional on H = 0, the observation Y is N

(
1, σ2

)
, and, conditional on H = 1,

it is N
(
−1, σ2

)
. Alice guesses “H = 0” if Y > 2 and guesses “H = 1” otherwise.

(i) Compute the probability that Alice errs as a function of σ2.

(ii) Show that this probability is not monotonically nondecreasing in σ2.

(iii) Does her guessing rule minimize the probability of error?

(iv) Show that if you are obliged to use her rule, then adding noise to Y prior to feeding
it to her detector may be beneficial.

Exercise 20.18 (The Bhattacharyya Bound and a Random Parameter). Let Θ be inde-
pendent of H and of density fΘ(·). Express the Bhattacharyya Bound on the probability
of guessing H incorrectly in terms of fΘ(·), fY|Θ=θ,H=0(·) and fY|Θ=θ,H=1(·). Treat the
case where Θ is not observed and the case where it is observed separately. Show that the
Bhattacharyya Bound in the former case is always at least as large as in the latter case.



Chapter 21

Multi-Hypothesis Testing

21.1 Introduction

In Chapter 20 we discussed how to guess the outcome of a binary random variable.
We now extend the discussion to random variables that take on more than two—but
still a finite—number of values. Statisticians call this problem “multi-hypothesis
testing” to indicate that there may be more than two hypotheses. Rather than
using H, we now denote the random variable whose outcome we wish to guess
by M . (In Chapter 20 we used H for “hypothesis;” now we use M for “message.”)
We denote the number of possible values that M can take by M and assume that
M ≥ 2. (The case M = 2 corresponds to binary hypothesis testing.) As before the
“labels” are not important and there is no loss in generality in assuming that M
takes value in the setM = {1, . . . ,M}. (In the binary case we used the traditional
labels 0 and 1 but now we prefer 1, 2, . . . ,M.)

21.2 The Setup

A random variable M takes value in the set M = {1, . . . ,M}, where M ≥ 2
according to the prior

πm = Pr[M = m], m ∈M, (21.1)

where
πm ≥ 0, m ∈M, (21.2)

and where ∑
m∈M

πm = 1. (21.3)

We say that the prior is nondegenerate if

πm > 0, m ∈M, (21.4)

with the inequalities being strict, so M can take on any value in M with positive
probability. We say that the prior is uniform if

π1 = · · · = πM =
1
M
. (21.5)

404
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The observation is a random vector Y taking value in Rd. We assume that for
each m ∈M the distribution of Y conditional on M = m has the density1

fY|M=m(·), m ∈M, (21.6)

where fY|M=m(·) is a nonnegative Borel measurable function that integrates to
one over Rd.
A guessing rule is a Borel measurable function φGuess : Rd →M from the space
of possible observations Rd to the set of possible messages M. We think about
φGuess(yobs) as the guess we form after observing that Y = yobs. The error
probability associated with the guessing rule φGuess(·) is given by

Pr
[
φGuess(Y) 6= M

]
. (21.7)

Note that two sources of randomness determine whether we err or not: the real-
ization of M and the generation of Y conditional on that realization. A guessing
rule is said to be optimal if no other guessing rule achieves a lower probability
of error.2 The optimal error probability p∗(error) is the probability of error
associated with an optimal decision rule. In this chapter we shall derive optimal
decision rules and study the optimal probability of error.

21.3 Optimal Guessing

Having observed that Y = yobs, we would like to guess M . An optimal guessing
rule can be derived, as in the binary case, by first considering the scenario where
there are no observables. Its extension to the more interesting case where we
observe Y is straightforward.

21.3.1 Guessing in the Absence of Observables

In this scenario there are only M deterministic decision rules to choose from: the
decision rule “guess 1”, the decision rule “guess 2”, etc. If we employ the “guess 1”
rule, then we are correct if M is indeed equal to 1 and thus with probability of
success π1 and corresponding probability of error of 1−π1. In general, if we employ
the “guess m” rule for some m ∈ M, then our probability of success is πm. Thus,
of the M different rules at our disposal, the one that has the highest probability
of success is the “guess m̃” rule, where m̃ is the outcome that is a priori the most
likely. If this m̃ is not unique, then guessing any one of the outcomes that have
the highest a priori probability is optimal.

1We feel no remorse for limiting ourselves to conditional distributions possessing a density.
The reason is that, while the reader is encouraged to assume that the densities are with respect to
the Lebesgue measure, this assumption is never used in the text. And using the Radon-Nikodym
Theorem (Billingsley, 1995, Section 32), one can show that even in the most general case there
exists a measure on Rd with respect to which the conditional laws of Y conditional on each of
the possible values of M are absolutely continuous. That measure can be taken, for example, as
the sum of the conditional laws corresponding to each of the possible values that M can take.

2As in the case of binary hypothesis testing, an optimal guessing rule always exists.
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We conclude that in the absence of observables, the guessing rule “guess m̃” is
optimal if, and only if,

πm̃ = max
m′∈M

πm′ . (21.8)

For an optimal guessing rule the probability of success is

p∗(correct) = max
m′∈M

{
πm′

}
, (21.9)

and the optimal error probability is thus

p∗(error) = 1− max
m′∈M

{
πm′

}
. (21.10)

21.3.2 The Joint Law of M and Y

Using the prior {πm} and the conditional densities {fY|M=m(·)}, we can express
the unconditional density of Y as

fY(y) =
∑
m∈M

πm fY|M=m(y), y ∈ Rd. (21.11)

As in Section 20.4, we define for every m ∈ M and for every yobs ∈ Rd the
conditional probability that M = m conditional on Y = yobs by

Pr[M = m |Y = yobs] ,

{
πm fY|M=m(yobs)

fY(yobs)
if fY(yobs) > 0,

1
M otherwise.

(21.12)

By an argument similar to the one proving (20.12) we have

Pr
[
Y ∈

{
ỹ ∈ Rd : fY(ỹ) = 0

}]
= 0, (21.13)

which can also be written as

Pr
[
fY(Y) = 0

]
= 0.

21.3.3 Guessing in the Presence of Observables

The problem of guessing in the presence of an observable is very similar to the
one without observables. The intuition is that after observing that Y = yobs, we
associate with each m ∈M the a posteriori probability Pr[M = m |Y = yobs] and
then guess M as though there were no observables. Thus, rather than choosing
the message that has the highest a priori probability as we do in the absence of
observables, we should now choose the message that has the highest a posteriori
probability.

After having observed that Y = yobs we should thus guess “m̃” where m̃ is the out-
come inM that has the highest a posteriori probability. If more than one outcome
attains the highest a posteriori probability, then we say that a tie has occurred
and we need to resolve this tie by picking one (it does not matter which) of the
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outcomes that attains the maximum a posteriori probability. We thus guess “m̃,”
in analogy to (21.8), only if

Pr[M = m̃ |Y = yobs] = max
m′∈M

{
Pr[M = m′ |Y = yobs]

}
.

(We shall later define the Maximum A Posteriori guessing rule as a randomized
decision rule that picks uniformly at random from the outcomes that have the
highest a posteriori probability; see Definition 21.3.2 ahead.)

In analogy with (21.9) we have that for this optimal rule

p∗(correct|Y = yobs) = max
m′∈M

{
Pr[M = m′ |Y = yobs]

}
,

and in analogy with (21.10),

p∗(error|Y = yobs) = 1− max
m′∈M

{
Pr[M = m′ |Y = yobs]

}
.

Consequently, the unconditional optimal probability of error can be expressed as

p∗(error) =
∫

Rd

(
1− max

m′∈M

{
Pr[M = m′ |Y = y]

})
fY(y) dy,

where fY(·) is the unconditional density function of Y and is given in (21.11).

We next proceed to make the above intuitive discussion more rigorous. We begin
by defining for every possible observation yobs ∈ Rd the set of outcomes of maximal
a posteriori probability:

M̃(yobs) ,
{
m̃ ∈M : Pr[M = m̃ |Y = yobs] = max

m′∈M
Pr[M = m′ |Y = yobs]

}
.

(21.14)
As we next argue, this set can also be expressed as

M̃(yobs) =
{
m̃ ∈M : πm̃ fY|M=m̃(yobs) = max

m′∈M
πm′ fY|M=m′(yobs)

}
. (21.15)

This can be shown by treating the case fY(yobs) > 0 and the case fY(yobs) = 0
separately. In the former case, (21.15) is verified by noting that in this case we
have, by (21.12), that Pr[M = m′ |Y = yobs] = πm′ fY|M=m′(yobs)/fY(yobs), so
the result follows because scaling the scores of all the elements of a set by a positive
number that is common to them all (1/fY(yobs)) does not change the subset of
the elements with the highest score. In the latter case we note that, by (21.12),
we have for all m′ ∈M that Pr[M = m′ |Y = yobs] = 1/M, so the RHS of (21.14)
is M and we also have by (21.11) for all m′ ∈ M that πm′ fY|M=m′(yobs) = 0 so
the RHS of (21.15) is alsoM.

Using the above definition of M̃(yobs) we can now state the main theorem regarding
optimal guessing rules.

Theorem 21.3.1 (Optimal Multi-Hypothesis Testing). Let M take value in the set
M = {1, . . . ,M} with the prior (21.1), and let the observation Y be a random vec-
tor taking value in Rd with conditional densities fY|M=1(·), . . . , fY|M=M(·). Any
guessing rule φ∗Guess : Rd →M that satisfies

φ∗Guess(yobs) ∈ M̃(yobs), yobs ∈ Rd (21.16)

is optimal. Here M̃(yobs) is the set defined in (21.14) or (21.15).
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Proof. Every (deterministic) guessing rule induces a partitioning of the space of
possible outcomes Rd into M disjoint sets D1, . . . ,DM:

M⋃
m=1

Dm = Rd, (21.17a)

Dm ∩ Dm′ = ∅, m 6= m′, (21.17b)

where Dm is the set of observations that result in the guessing rule producing
the guess “M = m.” Conversely, every partition D1, . . . ,DM of Rd corresponds
to some deterministic guessing rule that guesses “M = m” whenever yobs ∈ Dm.
Searching for an optimal decision rule is thus equivalent to searching for an optimal
way to partition Rd. For every partition D1, . . . ,DM the probability of success of
the guessing rule associated with it is given by

Pr(correct) =
∑
m∈M

πm Pr(correct |M = m)

=
∑
m∈M

πm

∫
Dm

fY|M=m(y) dy

=
∑
m∈M

πm

∫
Rd

fY|M=m(y) I{y ∈ Dm}dy

=
∫

Rd

( ∑
m∈M

πm fY|M=m(y) I{y ∈ Dm}
)

dy.

To minimize the probability of error we maximize the probability of correct deci-
sion. We thus need to find a partition D1, . . . ,DM that maximizes the last integral.

To maximize the integral we shall maximize the integrand∑
m∈M

πm fY|M=m(y) I{y ∈ Dm}.

For a fixed value of y, the value of the integrand depends on the set to which we
have assigned y. If y was assigned to D1 (i.e., if y ∈ D1), then all the terms in the
sum except for the first are zero, and the value of the integrand is π1 fY|M=1(y).
More generally, if y was assigned to Dm, then all the terms in the sum except for
the m-th term are zero, and the value of the integrand is πm fY|M=m(y). For a
fixed value of y, the integrand will thus be maximized if we assign y to the set Dm̃
(and correspondingly guess m̃), only if

πm̃ fY|M=m̃(y) = max
m′∈M

{
πm′ fY|M=m′(y)

}
.

Thus, if φ∗Guess(·) satisfies the theorem’s hypotheses, then it maximizes the in-
tegrand for every y ∈ Rd and thus also maximizes the probability of guessing
correctly.

21.3.4 The MAP and ML Rules

As in the binary hypothesis testing case, we can also consider randomized decision
rules. Extending the definition of a randomized decision rule to our setting, one
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can show using arguments very similar to those of Section 20.6 that randomization
does not help: no randomized decision rule can yield a smaller probability of error
than an optimal deterministic rule. But randomized decision rules can yield more
symmetric or more “fair” rules. Indeed, we shall define the MAP rule as the
randomized rule that resolves ties by choosing one of the messages that achieves
the highest a posteriori probability uniformly at random:

Definition 21.3.2 (The M-ary MAP Decision Rule). The Maximum A Poste-
riori decision rule is the guessing rule that, after observing that Y = yobs, forms
a guess by picking uniformly at random an element of the set M̃(yobs), which is
defined in (21.14) or (21.15).

Theorem 21.3.3 (The MAP Rule Is Optimal). For the setting of Theorem 21.3.1
the MAP decision rule is optimal in the sense that it achieves the smallest proba-
bility of error among all deterministic or randomized decision rules. Thus,

p∗(error) =
∑
m∈M

πm pMAP(error|M = m), (21.18)

where p∗(error) denotes the optimal probability of error and pMAP(error|M = m)
denotes the conditional probability of error of the MAP rule.

Proof. Irrespective of the realization of the randomization that is used to pick
an element of M̃(yobs), the resulting decision rule is optimal (Theorem 21.3.1).
Consequently, the average probability of error that results when we average over
this source of randomness must also be optimal.

The Maximum-Likelihood (ML) rule ignores the prior. It is identical to the
MAP rule when the prior is uniform. Having observed that Y = yobs, the ML
decoder produces as its guess a member of the set{

m̃ ∈M : fY|M=m̃(yobs) = max
m′∈M

fY|M=m′(yobs)
}

that is drawn uniformly at random.

The ML decoder thus guesses “M = m̃” only if

fY|M=m̃(yobs) = max
m′∈M

fY|M=m′(yobs). (21.19)

(If more than one outcome achieves this maximum, it chooses uniformly at random
one of the outcomes that achieves the maximum.)

21.3.5 Processing

As in Section 20.11, we say that Z is the result of processing Y with respect to M
if

M(−−Y(−−Z

forms a Markov chain. In analogy to Theorem 20.11.5, one can prove that if Z is
the result of processing Y with respect to M , then no decision rule based on Z can
outperform an optimal decision rule based on Y.
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(a1, b1)

(a2, b2)

(a3, b3)

(a4, b4)

(a5, b5)

(a6, b6)

(a7, b7)

(a8, b8)A

Figure 21.1: Eight equiprobable hypotheses; the situation corresponds to 8-PSK.

21.4 Example: Multi-Hypothesis Testing for 2D Signals

21.4.1 The Setup

Consider the case where M is uniformly distributed over the set M = {1, . . . ,M}
and where we would like to guess the outcome of M based on an observation
consisting of a two-dimensional random vector Y of components Y (1) and Y (2).
Conditional on M = m, the random variables Y (1) and Y (2) are independent
with Y (1) ∼ N

(
am, σ

2
)

and Y (2) ∼ N
(
bm, σ

2
)
. We assume that σ2 > 0, so the

conditional densities can be written for every m ∈M and every y(1), y(2) ∈ R as

fY (1),Y (2)|M=m

(
y(1), y(2)

)
=

1
2πσ2

exp
(
− (y(1) − am)2 + (y(2) − bm)2

2σ2

)
. (21.20)

This hypothesis testing problem is related to QAM communication over an additive
white Gaussian noise channel with a pulse shape that is orthogonal to its time shifts
by integer multiples of the baud period. The setup is demonstrated in Figure 21.1
for the special case of M = 8 with

am = A cos
(2πm

8

)
, bm = A sin

(2πm
8

)
, m = 1, . . . , 8. (21.21)

This special case is related to 8-PSK communication, where M-PSK stands for
M-ary Phase Shift Keying.

21.4.2 The “Nearest-Neighbor” Decoding Rule

We shall next derive an optimal decision rule. For typographical reasons we shall
use y rather than yobs to denote the observed vector. To find an optimal decoding
rule we note that, since M has a uniform prior, the Maximum-Likelihood rule
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m = 1

y(1)

y(2)

guess 1

Figure 21.2: Shaded region corresponds to observations leading the ML rule to
guess “M = 1.”

(21.19) is optimal. Now m̃ maximizes the likelihood function if, and only if,

(
fY (1),Y (2)|M=m̃(y(1), y(2)) = max

m′∈M

{
fY (1),Y (2)|M=m′(y(1), y(2))

})
⇔

(
1

2πσ2
e−

(y(1)−am̃)2
+(y(2)−bm̃)2

2σ2 = max
m′∈M

{
1

2πσ2
e−

(y(1)−am′)2
+

(
y(2)−b

m′

)2
2σ2

})

⇔

(
e−

(y(1)−am̃)2
+(y(2)−bm̃)2

2σ2 = max
m′∈M

{
e−

(y(1)−am′)2
+(y(2)−bm′)2

2σ2

})

⇔

(
−
(
y(1) − am̃

)2 +
(
y(2) − bm̃

)2
2σ2

= max
m′∈M

{
−
(
y(1) − am′

)2 +
(
y(2) − bm′

)2
2σ2

})

⇔

((
y(1) − am̃

)2 +
(
y(2) − bm̃

)2
2σ2

= min
m′∈M

{(
y(1) − am′

)2 +
(
y(2) − bm′

)2
2σ2

})
⇔
((
y(1) − am̃

)2 +
(
y(2) − bm̃

)2 = min
m′∈M

{(
y(1) − am′

)2 +
(
y(2) − bm′

)2})
⇔
(
‖y − sm̃‖ = min

m′∈M

{
‖y − sm′‖

})
,

where y = (y(1), y(2))T, sm , (am, bm)T for m ∈M, and ‖·‖ denotes the Euclidean
distance (23.4). It is thus seen that the ML rule (which is equivalent to the MAP
rule because the prior is uniform) is equivalent to a “nearest-neighbor” decoding
rule, which chooses the hypothesis under which the mean vector is closest to the
observed vector (with ties being resolved at random). Figure 21.2 depicts the
nearest-neighbor decoding rule for 8-PSK. The shaded region corresponds to the
set of observables that result in the guess “M = 1,” i.e., the set of points that are
nearest to

(
A cos(2π/8),A sin(2π/8)

)
.
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y(1)

y(2)

Figure 21.3: Contour lines of the density fY1,Y2|M=4(·). Shaded region corresponds
to guessing “M = 4”.

21.4.3 Exact Error Analysis for 8-PSK

The analysis of the probability of error can be a bit tricky. Here we only present
the analysis for 8-PSK. If nothing else, it will motivate us to seek more easily
computable bounds.

We shall compute the probability of error conditional on M = 4. But there is
nothing special about this choice; the rotational symmetry of the problem implies
that the probability of error does not depend on the hypothesis.

Conditional on M = 4, the observables (Y (1), Y (2))T can be expressed as(
Y (1), Y (2)

)T = (−A, 0)T +
(
Z(1), Z(2)

)T
,

where Z(1) and Z(2) are independent N
(
0, σ2

)
random variables:

fZ(1),Z(2)(z(1), z(2)) =
1

2πσ2
exp

(
− (z(1))2 + (z(2))2

2σ2

)
, z(1), z(2) ∈ R.

Figure 21.3 depicts the contour lines of the density fY (1),Y (2)|M=4(·), which are
centered on the mean (a4, b4) = (−A, 0). Note that fY (1),Y (2)|M=4(·) is symmetric
about the horizontal axis:

fY (1),Y (2)|M=4

(
y(1),−y(2)

)
= fY (1),Y (2)|M=4

(
y(1), y(2)

)
, y(1), y(2) ∈ R. (21.22)

The shaded region in the figure is the set of pairs (y(1), y(2)) that cause the nearest-
neighbor decoder to guess “M = 4.”3 Conditional on M = 4 an error results if
(Y (1), Y (2)) is outside the shaded region.

Referring now to Figure 21.4 we need to compute the probability that the noise
(Z(1), Z(2)) causes the received signal to lie in the union of the shaded areas. The

3It can be shown that the probability that the observation lies exactly on the boundary of
the region is zero; see Proposition 21.6.2 ahead. We shall thus ignore this possibility.
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4

5

3

ψ
θ

A

ρ(θ) =
A

sin
ψ

sin(θ+
ψ
)

Figure 21.4: Error analysis for 8-PSK.

symmetry of fY (1),Y (2)|M=4(·) about the horizontal axis (21.22) implies that the
probability that the received vector lies in the darkly-shaded region is the same as
the probability that it lies in the lightly-shaded region. We shall thus compute the
probability of the latter and double the result.

Let ψ = π/8 denote half the angle between the constellation points. To carry out
the integration we shall use polar coordinates (r, θ) centered on the constellation
point (−A, 0) corresponding to Message 4:

pMAP(error|M = 4) = 2
∫ π−ψ

0

∫ ∞

ρ(θ)

1
2πσ2

e−
r2

2σ2 r dr dθ

=
1
π

∫ π−ψ

0

∫ ∞

ρ2(θ)/(2σ2)

e−u du dθ

=
1
π

∫ π−ψ

0

e−
ρ2(θ)
2σ2 dθ, (21.23)

where ρ(θ) is the distance we travel from the point (−A, 0) at angle θ until we
reach the lightly-shaded region, and where the second equality follows using the
substitution u , r2/(2σ2). Using the law of sines we have

ρ(θ) =
A sinψ

sin(θ + ψ)
. (21.24)

Since the symmetry of the problem implies that the conditional probability of error
conditioned on M = m does not depend on m, it follows from (21.23), (21.24), and
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(21.18) that

p∗(error) =
1
π

∫ π−ψ

0

e
− A2 sin2 ψ

2 sin2(θ+ψ)σ2 dθ, ψ =
π

8
. (21.25)

21.5 The Union-of-Events Bound

Although simple, the Union-of-Events Bound, or Union Bound for short, is an
extremely powerful and useful bound.4 To derive it, recall that one of the axioms
of probability is that the probability of the union of two disjoint events is the sum
of their probabilities.5 Given two not necessarily disjoint events V and W, we can
express the set V as in Figure 21.5 as the union of those elements of V that are not
in W and those that are both in V and in W:

V = (V \W) ∪ (V ∩W). (21.26)

Because the sets V \ W and V ∩ W are disjoint, and because their union is V, it
follows that Pr(V) = Pr(V \W) + Pr(V ∩W), which can also be written as

Pr(V \W) = Pr(V)− Pr(V ∩W). (21.27)

Writing the union V ∪W as the union of two disjoint sets

V ∪W =W ∪ (V \W) (21.28)

as in Figure 21.6, we conclude that

Pr(V ∪W) = Pr(W) + Pr(V \W), (21.29)

which combines with (21.27) to prove that

Pr(V ∪W) = Pr(V) + Pr(W)− Pr(V ∩W). (21.30)

Since probabilities are nonnegative, it follows from (21.30) that

Pr(V ∪W) ≤ Pr(V) + Pr(W), (21.31)

which is the Union Bound. This bound can also be extended to derive an upper
bound on the union of more sets. For example, we can show that for three events
U ,V,W we have Pr(U∪V∪W) ≤ Pr(U)+Pr(V)+Pr(W). Indeed, by first applying
the claim to the two sets U and (V ∪W) we obtain

Pr(U ∪ V ∪W) = Pr
(
U ∪ (V ∪W)

)
≤ Pr(U) + Pr(V ∪W)
≤ Pr(U) + Pr(V) + Pr(W),

4It is also sometimes called Boole’s Inequality.
5Actually the axiom is stronger; it states that this holds also for a countably infinite number

of sets.
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V V \W V ∩W

=
⋃

Figure 21.5: Diagram of two nondisjoint sets.

V ∪W W V \W

=
⋃

Figure 21.6: Diagram of the union of two nondisjoint sets.

where the last inequality follows by applying the inequality to the two sets V andW.
One can continue the argument by induction for a finite6 collection of events to
obtain:

Theorem 21.5.1 (Union-of-Events Bound). If V1,V2, . . . , is a finite or countably
infinite collection of events then

Pr
(⋃
j

Vj
)
≤
∑
j

Pr(Vj). (21.32)

We can think about the LHS of (21.32) as the probability that at least one of
the events V1,V2, . . . occurs and of its RHS as the expected number of events that
occur. Indeed, if for each j we define the random variables Xj(ω) = I{ω ∈ Vj} for
all ω ∈ Ω, then the LHS of (21.32) is equal to Pr

[∑
j Xj > 0

]
, and the RHS is∑

j E[Xj ], which can also be expressed as E
[∑

j Xj

]
.

After the trivial bound that the probability of any event cannot exceed one, the
Union Bound is probably the most important bound in Probability Theory. What
makes it so useful is the fact that the RHS of (21.32) can be computed without
regard to any dependencies between the events.

Corollary 21.5.2.

(i) If each of a finite (or countably infinite) collection of events occurs with prob-
ability zero, then their union also occurs with probability zero.

6In fact, this claim holds for a countably infinite number of events.
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(ii) If each of a finite (or countably infinite) collection of events occurs with prob-
ability one, then their intersection also occurs with probability one.

Proof. To prove Part (i) we assume that each of the events V1,V2, . . . is of zero
probability and compute

Pr
(⋃

j

Vj
)
≤
∑
j

Pr(Vj)

=
∑
j

0

= 0,

where the first inequality follows from the Union Bound, and where the subsequent
equality follows from our assumption that Pr(Vj) = 0, for all j.

To prove Part (ii) we assume that each of the events W1,W2, . . . occurs with
probability one and apply Part (i) to the sets V1,V2, . . ., where Vj is the set-
complement of Wj , i.e., Vj = Ω \Wj :

Pr
(⋂

j

Wj

)
= 1− Pr

((⋂
j

Wj

)c
)

= 1− Pr
(⋃

j

Vj
)

= 1,

where the first equality follows because the probabilities of an event and its com-
plement sum to one; the second because the complement of an intersection is the
union of the complements; and the final equality follows from Part (i) because
the events Wj are, by assumption, of probability one so their complements are of
probability zero.

21.5.1 Applications to Hypothesis Testing

We shall now use the Union Bound to derive an upper bound on the conditional
probability of error pMAP(error|M = m) of the MAP decoding rule. The bound
we derive is applicable to any decision rule that satisfies the hypothesis of Theo-
rem 21.3.1 as expressed in (21.16).

Define for every m′ 6= m the set Bm,m′ ⊂ Rd by

Bm,m′ =
{
y ∈ Rd : πm′ fY|M=m′(y) ≥ πm fY|M=m(y)

}
. (21.33)

Notice that y ∈ Bm,m′ does not imply that the MAP rule will guess m′: there may
be a third hypothesis that is a posteriori even more likely than either m or m′.
Also, since the inequality in (21.33) is not strict, y ∈ Bm,m′ does not imply that
the MAP rule will not guess m: there may be a tie, which may be resolved in favor
of m. As we next argue, what is true is that if m was not guessed by the MAP rule,
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then some m′ which is not equal to m must have had an a posteriori probability
that is at least as high as that of m:

(
m was not guessed

)
⇒
(
Y ∈

⋃
m′ 6=m

Bm,m′

)
. (21.34)

Indeed, if m was not guessed by the MAP rule, then some other message was.
Denoting that other message by m′, we note that πm′ fY|M=m′(y) must be at least
as large as πm fY|M=m(y) (because otherwise m′ would not have been guessed),
so y ∈ Bm,m′ .

Continuing from (21.34), we note that if the occurrence of an event E1 implies the
occurrence of an event E2, then Pr(E1) ≤ Pr(E2). Consequently, by (21.34),

pMAP(error|M = m) ≤ Pr
[
Y ∈

⋃
m′ 6=m

Bm,m′

∣∣∣∣M = m

]

= Pr
( ⋃
m′ 6=m

{
ω ∈ Ω : Y(ω) ∈ Bm,m′

} ∣∣∣∣M = m

)
≤
∑
m′ 6=m

Pr
(
{ω ∈ Ω : Y(ω) ∈ Bm,m′}

∣∣M = m
)

=
∑
m′ 6=m

Pr
[
Y ∈ Bm,m′

∣∣M = m
]

=
∑
m′ 6=m

∫
Bm,m′

fY|M=m(y) dy.

We have thus derived:

Proposition 21.5.3. For the setup of Theorem 21.3.1 let pMAP(error|M = m)
denote the conditional probability of error conditional on M = m of the MAP rule
for guessing M based on Y. Then,

pMAP(error|M = m) ≤
∑
m′ 6=m

Pr
[
Y ∈ Bm,m′

∣∣M = m
]

(21.35)

=
∑
m′ 6=m

∫
Bm,m′

fY|M=m(y) dy, (21.36)

where

Bm,m′ =
{
y ∈ Rd : πm′ fY|M=m′(y) ≥ πm fY|M=m(y)

}
. (21.37)

This bound is applicable to any decision rule satisfying the hypothesis of Theo-
rem 21.3.1 as expressed in (21.16).

The term Pr(Y ∈ Bm,m′ |M = m) has an interesting interpretation. If ties occur
with probability zero, then it corresponds to the conditional probability of error
(given that M = m) incurred by a MAP decoder designed for the binary hypothesis
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4 4 4

5 5 5

3 3 3

B4,3

B4,5 B4,3 ∪ B4,5

∪ =

Figure 21.7: Error events for 8-PSK conditional on M = 4.

testing problem of guessing whether M = m or M = m′ when the prior probability
that M = m is πm/(πm + πm′) and that M = m′ is πm′/(πm + πm′).

Alternatively, we can write (21.35) as

pMAP(error|M = m) ≤
∑
m′ 6=m

Pr
[
πm′ fY|M=m′(Y) ≥ πm fY|M=m(Y)

∣∣M = m
]
.

(21.38)

21.5.2 Example: The Union Bound for 8-PSK

We next apply the Union Bound to upper-bound the probability of error associated
with maximum-likelihood decoding of 8-PSK. For concreteness we focus on the
conditional probability of error, conditional on M = 4. We shall see that in this
case the RHS of (21.35) is still an upper bound on the probability of error even if
we do not sum over all m′ that differ from m. Indeed, as we next argue, in upper-
bounding the conditional probability of error of the ML decoder given M = 4, it
suffices to sum over m′ ∈ {3, 5} only.

To show this we first note that for this problem the set Bm,m′ of (21.33) corresponds
to the set of vectors that are at least as close to (am′ , bm′) as to (am, bm):

Bm,m′ =
{
y ∈ R2 :

(
y(1) − am′

)2 +
(
y(2) − bm′

)2 ≤ (y(1) − am
)2 +

(
y(2) − bm

)2}
.

As seen in Figure 21.7, given M = 4, an error will occur only if the observed
vector Y is at least as close to (a3, b3) as to (a4, b4), or if it is at least as close
to (a5, b5) as to (a4, b4). Thus, conditional on M = 4, an error can occur only if
Y ∈ B4,3 ∪ B4,5. (If Y /∈ B4,3 ∪ B4,5, then an error will certainly not occur. If
Y ∈ B4,3 ∪ B4,5, then an error may or may not occur. It will not occur in the case
of a tie—corresponding to Y being on the boundary of B4,3 ∪ B4,5—provided that
the tie is resolved in favor of M = 4.)

Note that the events Y ∈ B4,5 and Y ∈ B4,3 are not mutually exclusive, but,
nevertheless, by the Union-of-Events Bound

pMAP(error|M = 4) ≤ Pr[Y ∈ B4,3 ∪ B4,5 |M = 4]
≤ Pr[Y ∈ B4,3 |M = 4] + Pr[Y ∈ B4,5 |M = 4], (21.39)
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where the first inequality follows because, conditional on M = 4, an error can
occur only if y ∈ B4,3 ∪ B4,5; and where the second inequality follows from the
Union-of-Events Bound. In fact, the first inequality holds with equality because,
for this problem, the probability of a tie is zero; see Proposition 21.6.2 ahead.

From our analysis of multi-dimensional binary hypothesis testing (Lemma 20.14.1)
we obtain that

Pr
[
Y ∈ B4,3

∣∣M = 4
]

= Q
(√

(a4 − a3)2 + (b4 − b3)2
2σ

)
= Q

(
A

σ
sin
(π

8

))
(21.40)

and

Pr
[
Y ∈ B4,5

∣∣M = 4
]

= Q
(√

(a4 − a5)2 + (b4 − b5)2
2σ

)
= Q

(
A

σ
sin
(π

8

))
. (21.41)

Combining (21.39), (21.40), and (21.41) we obtain

pMAP(error|M = 4) ≤ 2Q
(

A

σ
sin
(π

8

))
. (21.42)

This is only an upper bound and not the exact error probability because the sets
B4,3 and B4,5 are not disjoint so the events Y ∈ B4,3 and Y ∈ B4,5 are not disjoint
and the Union-Bound is not tight; see Figure 21.7.

For this symmetric problem the conditional probability of error conditional on
M = m does not depend on the message m, and we thus also have by (21.18)

p∗(error) ≤ 2Q
(

A

σ
sin
(π

8

))
. (21.43)

21.5.3 Union-Bhattacharyya Bound

We next derive a bound which is looser than the Union Bound but which is of-
ten easier to evaluate in non-Gaussian settings. It is the multi-hypothesis testing
version of the Bhattacharyya Bound (20.50).

Recall that, by Theorem 21.3.1, any guessing rule whose guess after observing that
Y = yobs is in the set

M̃(yobs) =
{
m̃ ∈M : πm̃ fY|M=m̃(yobs) = max

m′

{
πm′ fY|M=m′(yobs)

}}
is optimal. To analyze the optimal probability of error p∗(error), we shall analyze
one particular optimal decision rule. This rule is not the MAP rule, but it differs
from the MAP rule only in the way it resolves ties. Rather than resolving ties at
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random, this rule resolves ties according to the index of the hypothesis: it chooses
the message in M̃(yobs) of smallest index. For example, if the messages of highest
a posteriori probability are Messages 7, 9, and 17, i.e., if M̃(yobs) = {7, 9, 17}, then
it guesses “7.” This decision rule may not appeal to the reader’s sense of fairness
but, by Theorem 21.3.1, it is nonetheless optimal. Consequently, if we denote the
conditional probability of error of this decoder by p(error|M = m), then

p∗(error) =
∑
m∈M

πm p(error|M = m). (21.44)

We next analyze the performance of this decision rule. For every m′ 6= m let

Dm,m′ =

{{
y ∈ Rd : πm′ fY|M=m′(y) ≥ πm fY|M=m(y)

}
if m′ < m,{

y ∈ Rd : πm′ fY|M=m′(y) > πm fY|M=m(y)
}

if m′ > m.
(21.45)

Notice that
Dm,m′ = Dc

m′,m, m 6= m′. (21.46)

Conditional on M = m, our detector will err if, and only if, yobs ∈ ∪m′ 6=mDm,m′ .
Thus

Pr(error |M = m) = Pr
[
Y ∈

⋃
m′ 6=m

Dm,m′

∣∣∣∣M = m

]
= Pr

( ⋃
m′ 6=m

{
ω ∈ Ω : Y(ω) ∈ Dm,m′

} ∣∣∣∣M = m

)
≤
∑
m′ 6=m

Pr
({
ω ∈ Ω : Y(ω) ∈ Dm,m′

} ∣∣∣M = m
)

=
∑
m′ 6=m

Pr
[
Y ∈ Dm,m′

∣∣M = m
]

=
∑
m′ 6=m

∫
Dm,m′

fY|M=m(y) dy, (21.47)

where the inequality follows from the Union Bound. To upper-bound p∗(error) we
use (21.44) and (21.47) to obtain

p∗(error) =
M∑
m=1

πm Pr(error |M = m)

≤
M∑
m=1

πm
∑
m′ 6=m

∫
Dm,m′

fY|M=m(y) dy

=
M∑
m=1

∑
m′>m

(
πm

∫
Dm,m′

fY|M=m(y) dy + πm′

∫
Dm′,m

fY|M=m′(y) dy
)

=
M∑
m=1

∑
m′>m

(∫
Dm,m′

πm fY|M=m(y) dy +
∫
Dc
m,m′

πm′ fY|M=m′(y) dy
)
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=
M∑
m=1

∑
m′>m

∫
Rd

min
{
πm fY|M=m(y), πm′ fY|M=m′(y)

}
dy

≤
M∑
m=1

∑
m′>m

√
πmπm′

∫
Rd

√
fY|M=m(y)fY|M=m′(y) dy

≤
M∑
m=1

∑
m′>m

πm + πm′

2

∫
Rd

√
fY|M=m(y)fY|M=m′(y) dy

=
1
2

∑
m∈M

∑
m′ 6=m

πm + πm′

2

∫
Rd

√
fY|M=m(y)fY|M=m′(y) dy,

where the equality in the first line follows from (21.44); the inequality in the second
line from (21.47); the equality in the third line by rearranging the sum; the equality
in the fourth line from (21.46); the equality in the fifth line from the definition of
the set Dm,m′ ; the inequality in the sixth line from the inequality min{a, b} ≤

√
ab,

which holds for all nonnegative a, b ∈ R (see (20.48)); the inequality in the seventh
line from the Arithmetic-Geometric Inequality

√
cd ≤ (c + d)/2, which holds for

all c, d ≥ 0 (see (20.49)); and the final equality by the symmetry of the summand.
We have thus obtained the Union-Bhattacharyya Bound:

p∗(error) ≤
∑
m∈M

∑
m′ 6=m

πm + πm′

4

∫
Rd

√
fY|M=m(y)fY|M=m′(y) dy. (21.48)

For a priori equally likely hypotheses it takes the form

p∗(error) ≤ 1
2M

∑
m∈M

∑
m′ 6=m

∫ √
fY|M=m(y)fY|M=m′(y) dy, (21.49)

which is the Union-Bhattacharyya Bound for M-ary hypothesis testing with a
uniform prior.

21.6 Multi-Dimensional M-ary Gaussian Hypothesis Testing

We next use Theorem 21.3.3 to study the multi-hypothesis testing version of the
problem we addressed in Section 20.14. We begin with the problem setup and then
proceed to derive the MAP decision rule. We then assess the performance of this
rule by deriving an upper bound and a lower bound on its probability of error.

21.6.1 Problem Setup

A random variable M takes value in the setM = {1, . . . ,M} with a nondegenerate
prior (21.4). We wish to guess M based on an observation consisting of a random
column-vector Y taking value in RJ whose components are given by Y (1), . . . , Y (J).7

7Our observation now takes value in RJ and not as before in Rd. My excuse for using J instead
of d is that later, when we refer to this section, d will have a different meaning and choosing J
here reduces the chance of confusion later on.
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For typographical reasons we denote the observed realization of Y by y, instead
of yobs. For every m ∈ M we have that, conditional on M = m, the components
of Y are independent Gaussians, with Y (j) ∼ N (s(j)m , σ2), where sm is some de-
terministic vector of J components s(1)m , . . . , s

(J)
m , and where σ2 > 0. Recalling the

density of the univariate Gaussian distribution (19.6) and using the conditional in-
dependence of the components of Y given M = m, we can express the conditional
density fY|M=m(y) of the vector Y at every point y = (y(1), . . . , y(J))T in RJ as

fY|M=m(y) =
J∏
j=1

(
1√

2πσ2
exp
(
−
(
y(j) − s(j)m

)2
2σ2

))
. (21.50)

21.6.2 Optimal Guessing Rule

Using Theorem 21.3.3 we obtain that, having observed y = (y(1), . . . , y(J))T ∈ RJ,
an optimal decision rule is the MAP rule, which picks uniformly at random an
element from the set

M̃(y) =
{
m̃ ∈M : πm̃ fY|M=m̃(y) = max

m′∈M

{
πm′ fY|M=m′(y)

}}
=
{
m̃ ∈M : ln

(
πm̃ fY|M=m̃(y)

)
= max
m′∈M

{
ln
(
πm′ fY|M=m′(y)

)}}
, (21.51)

where the second equality follows from the strict monotonicity of the logarithm.
We next obtain a more explicit description of M̃(y) for our setup. By (21.50),

ln
(
πm fY|M=m(y)

)
= lnπm −

J

2
ln(2πσ2)− 1

2σ2

J∑
j=1

(
y(j) − s(j)m

)2
. (21.52)

The term (J/2) ln(2πσ2) is a constant term that does not depend on the hypothesis.
Consequently, it does not influence the set of messages that attain the highest score.
(The tallest student in the class is the same irrespective of whether the height of all
the students is measured when they are barefoot or when they are all wearing the
one-inch heel school uniform shoes. The heel can only make a difference if different
students wear shoes of different heel height.) Thus,

M̃(y)=

{
m̃ ∈M : lnπm̃−

J∑
j=1

(
y(j) − s(j)m̃

)2
2σ2

= max
m′∈M

{
lnπm′−

J∑
j=1

(
y(j) − s(j)m′

)2
2σ2

}}
.

The expression for M̃(y) can be further simplified if M is a priori uniformly
distributed. In this case we have

M̃(y) =

{
m̃ ∈M : −

J∑
j=1

(
y(j) − s(j)m̃

)2
2σ2

= max
m′∈M

{
−

J∑
j=1

(
y(j) − s(j)m′

)2
2σ2

}}

=

{
m̃ ∈M :

J∑
j=1

(
y(j) − s(j)m̃

)2 = min
m′∈M

{ J∑
j=1

(
y(j) − s(j)m′

)2}}
, M uniform,
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where the first equality follows because when M is uniform the additive term lnπm
is given by ln(1/M) and hence does not depend on the hypothesis; and where the
second equality follows because changing the sign of all the elements of a set changes
the largest ones to the smallest ones, and by noting that scaling the score by 2σ2

does not change the highest scoring messages (because we assumed that σ2 > 0).

If we interpret the quantity

‖y − sm‖ =

√√√√ J∑
j=1

(
y(j) − s(j)m

)2
as the Euclidean distance between the vector y and the vector sm, then we see that,
for a uniform prior on M , it is optimal to guess the message m whose corresponding
mean vector sm is closest to the observed vector y. Notice that to implement this
“nearest-neighbor” decision rule we do not need to know the value of σ2.

We next show that if, in addition to assuming a uniform prior on M , we also
assume that the vectors s1, . . . , sM all have the same norm, i.e.,

‖s1‖ = ‖s2‖ = · · · = ‖sM‖ , (21.53)

then

M̃(y) =

{
m̃ ∈M :

J∑
j=1

y(j)s
(j)
m̃ = max

m′∈M

{ J∑
j=1

y(j)s
(j)
m′

}}
,

so the MAP decision rules guesses the message m whose mean vector sm has
the “highest correlation” with the received vector y. To see this, we note that
because M has a uniform prior the “nearest-neighbor” decoding rule is optimal,
and we then expand

‖y − sm‖2 =
J∑
j=1

(
y(j) − s(j)m

)2
=

J∑
j=1

(
y(j)
)2 − 2

J∑
j=1

y(j)s(j)m +
J∑
j=1

(
s(j)m
)2
,

where the first term does not depend on the hypothesis and where, by (21.53), the
third term also does not depend on the hypothesis.

We summarize our findings in the following proposition.

Proposition 21.6.1. Consider the problem described in Section 21.6.1 of guess-
ing M based on the observation y.

(i) It is optimal to form the guess based on y = (y(1), . . . , y(J))T by choosing
uniformly at random from the set{
m̃ ∈M : lnπm̃ −

J∑
j=1

(
y(j) − s(j)m̃

)2
2σ2

= max
m′∈M

{
lnπm′ −

J∑
j=1

(
y(j) − s(j)m′

)2
2σ2

}}
.
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(ii) If M is uniformly distributed, then this rule is equivalent to the “nearest-
neighbor” decoding rule of picking uniformly at random an element of the
set {

m̃ ∈M : ‖y − sm̃‖ = min
m′∈M

{
‖y − sm′‖

}}
.

(iii) If, in addition to M being uniform, we also assume that the mean vectors
satisfy (21.53), then this rule is equivalent to the “maximum-correlation” rule
of picking at random an element of the set{

m̃ ∈M :
J∑
j=1

y(j)s
(j)
m̃ = max

m′∈M

{ J∑
j=1

y(j)s
(j)
m′

}}
.

We next show that if the mean vectors s1, . . . , sM are distinct in the sense that for
every pair m′ 6= m′′ in M there exists at least one component where the vectors
sm′ and sm′′ differ, i.e.,

‖sm′ − sm′′‖ > 0, m′ 6= m′′,

then the probability of ties is zero. That is, we will show that the probability of
observing a vector y for which the set M̃(y) (21.51) has more than one element
is zero. Stated in yet another way, the probability that the observable Y will be
such that the MAP will require randomization is zero. Stated one last time:

Proposition 21.6.2. If the mean vectors s1, . . . , sM in our setup are distinct, then
with probability one the observed vector y is such that there is a unique message of
highest a posteriori probability.

Proof. Conditional on Y = y, associate with each message m ∈ M the score
ln
(
πm fY|M=m(y)

)
. We need to show that the probability of the observation y

being such that at least two messages attain the highest score is zero. Instead, we
shall prove the stronger statement that the probability of two messages attaining
the same score (be it maximal or not) is zero.

We first show that it suffices to prove that for every m ∈ M and for every pair of
messages m′ 6= m′′, we have that, conditional on M = m, the probability that m′

and m′′ attain the same score is zero, i.e.,

Pr
(
score of Message m′ = score of Message m′′ ∣∣M = m

)
= 0, m′ 6= m′′.

(21.54)
Indeed, once we show (21.54), it will follow that the unconditional probability that
Message m′ attains the same score as Message m′′ is zero, i.e.,

Pr
(
score of Message m′ = score of Message m′′) = 0, m′ 6= m′′, (21.55)

because

Pr
(
score of Message m′ = score of Message m′′)

=
∑
m∈M

πm Pr
(
score of Message m′ = score of Message m′′ ∣∣M = m

)
.
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But (21.55) implies that the probability that any two or more messages attain the
highest score is zero because

Pr(two or more messages attain the highest score)

= Pr

( ⋃
m′,m′′∈M
m′ 6=m′′

{
m′ and m′′ attain the highest score

})

≤
∑

m′,m′′∈M
m′ 6=m′′

Pr
(
m′ and m′′ attain the highest score

)
≤

∑
m′,m′′∈M
m′ 6=m′′

Pr
(
m′ and m′′ attain the same score

)
,

where the first equality follows because more than one message attains the high-
est score if, and only if, there exist two distinct messages m′ and m′′ that attain
the highest score; the subsequent inequality follows from the Union Bound (Theo-
rem 21.5.1); and the final inequality by noting that if m′ and m′′ both attain the
highest score, then they both achieve the same score.

Having established that in order to complete the proof it suffices to establish
(21.54), we proceed to do so. By (21.52) we obtain, upon opening the square,
that the observation Y results in Messages m′ and m′′ obtaining the same score if,
and only if,

1
σ2

J∑
j=1

Y (j)
(
s
(j)
m′ − s(j)m′′

)
= ln

πm′′

πm′
+

1
2σ2

(
‖sm′‖2 − ‖sm′′‖2

)
. (21.56)

We next show that, conditional on M = m, the probability that Y satisfies (21.56)
is zero. To that end we note that, conditional on M = m, the random variables
Y (1), . . . , Y (J) are independent random variables with Y (j) being Gaussian with
mean s

(j)
m and variance σ2; see (21.50). Consequently, by Proposition 19.7.3, we

have that, conditional onM = m, the LHS of (21.56) is a Gaussian random variable
of variance

1
σ2
‖sm′ − sm′′‖2,

which is positive because m′ 6= m′′ and because we assumed that the mean vectors
are distinct. It follows that, conditional on M = m, the LHS of (21.56) is a
Gaussian random variable of positive variance, and hence has zero probability of
being equal to the deterministic number on the RHS of (21.56). This proves (21.54),
and hence concludes the proof.

21.6.3 The Union Bound

We next use the Union Bound to upper-bound the optimal probability of error
p∗(error). By (21.38)

pMAP(error|M = m) ≤
∑
m′ 6=m

Pr
[
πm′ fY|M=m′(Y) ≥ πm fY|M=m(Y)

∣∣M = m
]



426 Multi-Hypothesis Testing

=
∑
m′ 6=m

Q
(
‖sm − sm′‖

2σ
+

σ

‖sm − sm′‖
ln
πm
πm′

)
, (21.57)

where the equality follows from Lemma 20.14.1. From this and from the optimality
of the MAP rule (21.18) we thus obtain

p∗(error) ≤
∑
m∈M

∑
m′ 6=m

πmQ
(
‖sm − sm′‖

2σ
+

σ

‖sm − sm′‖
ln
πm
πm′

)
. (21.58)

If M is uniform, these bounds simplify to:

pMAP(error|M = m) ≤
∑
m′ 6=m

Q
(
‖sm − sm′‖

2σ

)
, M uniform, (21.59)

p∗(error) ≤ 1
M

∑
m∈M

∑
m′ 6=m

Q
(
‖sm − sm′‖

2σ

)
, M uniform. (21.60)

21.6.4 A Lower Bound

We next derive a lower bound on the optimal error probability p∗(error). We do so
by lower-bounding the conditional probability of error pMAP(error|M = m) of the
MAP rule and by then using this lower bound to derive a lower bound on p∗(error)
via (21.18).

We note that if Message m′ attains a score that is strictly higher than the one
attained by Message m, then the MAP decoder will surely not guess “M = m.”
(The MAP may or may not guess “M = m′” depending on the score associated
with messages other than m and m′.) Thus, for each message m′ 6= m we have

pMAP(error|M = m) ≥ Pr
[
πm′ fY|M=m′(Y) > πm fY|M=m(Y)

∣∣M = m
]

(21.61)

= Q
(
‖sm − sm′‖

2σ
+

σ

‖sm − sm′‖
ln
πm
πm′

)
, (21.62)

where the equality follows from Lemma 20.14.1.

Noting that (21.62) holds for all m′ 6= m, we can choose m′ to get the tightest
bound. This yields the lower bound

pMAP(error|M = m) ≥ max
m′∈M\{m}

Q
(
‖sm − sm′‖

2σ
+

σ

‖sm − sm′‖
ln
πm
πm′

)
(21.63)

and hence, by (21.18),

p∗(error) ≥
∑
m∈M

πm max
m′∈M\{m}

Q
(
‖sm − sm′‖

2σ
+

σ

‖sm − sm′‖
ln
πm
πm′

)
. (21.64)

For uniform M this expression can be simplified by noting that the Q-function is
strictly decreasing:

pMAP(error|M = m) ≥ Q
(

min
m′∈M\{m}

‖sm − sm′‖
2σ

)
, M uniform, (21.65)
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p∗(error) ≥ 1
M

∑
m∈M

Q
(

min
m′∈M\{m}

‖sm − sm′‖
2σ

)
, M uniform. (21.66)

21.7 Additional Reading

For additional reading on multi-hypothesis testing see the recommended reading
for Chapter 20. The problem of assessing the optimal probability of error for the
multi-dimensional M-ary Gaussian hypothesis testing problem of Section 21.6 has
received extensive attention in the coding literature. For a survey of these results
see (Sason and Shamai, 2006).

21.8 Exercises

Exercise 21.1 (Ternary Gaussian Detection). Consider the following special case of the
problem discussed in Section 21.6. Here M is uniformly distributed over the set {1, 2, 3},
and the mean vectors s1, s2, s3 are given by

s1 = 0, s2 = s, s3 = −s,

where s is some deterministic nonzero vector in RJ. Find the conditional probability of
error of the MAP rule conditional on each hypothesis.

Exercise 21.2 (4-PSK Detection). Consider the setup of Section 21.4 with M = 4 and

(a1, b1) = (0,A), (a2, b2) = (−A, 0), (a3, b3) = (0,−A), (a4, b4) = (A, 0).

(i) Sketch the decision regions of the MAP decision rule.

(ii) Using the Q-function, express the conditional probabilities of error of this rule
conditional on each hypothesis.

(iii) Compute an upper bound on pMAP(error|M = 1) using Propsition 21.5.3. Indicate
on the figure which events are summed two or three times. Can you improve the
bound by summing only over a subset of the alternative hypotheses?

Hint: In Part (ii) first find the probability of correct detection.

Exercise 21.3 (A 7-ary QAM problem). Consider the problem addressed in Section 21.4
in the special case where M = 7 and where

am = A cos
(2πm

6

)
, bm = A sin

(2πm

6

)
, m = 1, . . . , 6,

a7 = 0, b7 = 0.

(i) Illustrate the decision regions of the MAP (nearest-neighbor) guessing rule.

(ii) Let Z = (Z(1), Z(2))T be a random vector whose components are IID N
(
0, σ2

)
.

Show that for every message m ∈ {1, . . . , 7} the conditional probability of error
pMAP(error|M = m) can be upper-bounded by the probability that the Euclidean
norm of Z exceeds A/2. Calculate this probability.
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(iii) What is the upper bound on pMAP(error|M = m) that Proposition 21.5.3 yields in
this case? Can you improve it by including fewer terms?

(iv) Compare the different bounds.

See (Viterbi and Omura, 1979, Chapter 2, Problem 2.2).

Exercise 21.4 (Orthogonal Mean Vectors). Let M be uniformly distributed over the set
M = {1, . . . ,M}. Let the observable Y be a random J-vector. Conditional on M = m,
the observable Y is given by

Y =
√

Esφm + Z,

where Z is a random J-vector whose components are IID N
(
0, σ2

)
, and where φ1, . . . ,φM

are orthonormal in the sense that

〈φm′ ,φm′′〉E = I{m′ = m′′}, m′,m′′ ∈M.

Show that

pMAP(error|M = m) = 1− 1√
2π

∫ ∞

−∞

(
1−Q(ξ)

)M−1
e−

(ξ−α)2

2 dξ, (21.67)

where α =
√

Es/σ.

Exercise 21.5 (Equi-Energy Constellations). Consider the setup of Section 21.6.1 with a
uniform prior and with ‖s1‖2 = · · · = ‖sM‖2 = Es. Show that the optimal probability of
correct decoding is given by

p∗(correct) =
1

M
exp

(
− Es

2σ2

)
E

[
exp

( 1

σ2
max
m

〈V, sm〉E
)]
, (21.68)

where V is a random J-vector whose components are IID N
(
0, σ2

)
. We recommend the

following approach. Let D1, . . . ,DM be a partition of RJ such that for every m ∈M,

y ∈ Dm ⇒ 〈y, sm〉E = max
m′

〈y, sm′〉E .

(i) Show that

p∗(correct) =
1

M

∑
m∈M

Pr
[
Y ∈ Dm

∣∣M = m
]
.

(ii) Show that the RHS of the above can be written as

1

M
exp

(
− Es

2σ2

)
∫

RJ

1

(2πσ2)J/2
exp

(
−‖y‖

2

2σ2

)( ∑
m∈M

I{y ∈ Dm} exp
( 1

σ2
〈y, sm〉E

))
dy.

(iii) Finally show that∑
m∈M

I{y ∈ Dm} exp
( 1

σ2
〈y, sm〉E

)
= exp

( 1

σ2
max
m

〈y, sm〉E
)
, y ∈ RJ.

See also Problem 23.7.
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Exercise 21.6 (When Is the Union Bound Tight?). Under what conditions on the events
V1,V2, . . . is the Union Bound (21.32) tight?

Exercise 21.7 (The Union of Independent Events). Show that if the events V1,V2, . . . ,Vn
are independent then

Pr

( n⋃
j=1

Vj
)

= 1−
n∏
j=1

(
1− Pr(Vj)

)
.

Exercise 21.8 (A Lower Bound on the Probability of a Union). Show that the probability
of the union of n events V1, . . . ,Vn can be lower-bounded by

Pr

( n⋃
j=1

Vj
)
≥

n∑
j=1

Pr
(
Vj
)
−
n−1∑
j=1

n∑
`=j+1

Pr
(
Vj ∩ V`

)
.

Inequalities of this nature are sometimes called Bonferroni Inequalities.

Exercise 21.9 (de Caen’s Inequality). Let X be a RV taking value in the finite set X ,
and let {Ai}i∈I be a finite family of subsets (not necessarily disjoint) of X :

Ai ⊆ X , i ∈ I.

Define
Pr(Ai) , Pr[X ∈ Ai], i ∈ I,

deg(x) , #{i ∈ I : x ∈ Ai}, x ∈ X ,
where #B denotes the cardinality of a set B.

(i) Show that

Pr

( ⋃
i∈I

Ai
)

=
∑
i∈I

∑
x∈Ai

Pr[X = x]

deg(x)
.

(ii) Use the Cauchy-Schwarz Inequality to show that for every i ∈ I,( ∑
x∈Ai

Pr[X = x]

deg(x)

)( ∑
x∈Ai

Pr[X = x] deg(x)

)
≥

( ∑
x∈Ai

Pr[X = x]

)2

.

(iii) Use Parts (i) and (ii) to show that

Pr

( ⋃
i∈I

Ai
)
≥
∑
i∈I

(∑
x∈Ai Pr[X = x]

)2∑
j∈I

∑
x′∈Ai∩Aj Pr[X = x′]

.

(iv) Conclude that

Pr

( ⋃
i∈I

Ai
)
≥
∑
i∈I

Pr(Ai)2∑
j∈I Pr(Ai ∩ Aj)

.

This is de Caen’s Bound (de Caen, 1997).

Exercise 21.10 (Asymptotic Tightness of the Union Bound). Consider the hypothesis
testing problem of Section 21.6 when the prior is uniform and the mean vectors s1, . . . , sM

are distinct. Show that the Union Bound of (21.59) is asymptotically tight in the sense
that the limiting ratio of the RHS of (21.59) to the LHS tends to one as σ tends to zero.

Hint: Use Exercise 21.8.



Chapter 22

Sufficient Statistics

22.1 Introduction

In layman’s terms, a sufficient statistic for guessing M based on the observable Y
is a random variable or a collection of random variables that contains all the infor-
mation in Y that is relevant for guessing M . This is a particularly useful concept
when the sufficient statistic is more concise than the observables. For example, if
we observe the results of a thousand coin tosses Y1, . . . , Y1000 and we wish to test
whether the coin is fair or has a bias of 1/4, then a sufficient statistic turns out
to be the number of “heads”among the outcomes Y1, . . . , Y1000.1 Another example
was encountered in Section 20.12. There the observable was a two-dimensional
random vector, and the sufficient statistic summarized the information that was
relevant for guessing H in a scalar random variable; see (20.69).

In this chapter we provide a formal definition of sufficient statistics in the multi-
hypothesis setting and explore the concept in some detail. We shall see that our
definition is compatible with Definition 20.12.2, which we gave for the binary case.
We only address the case where the observations take value in the d-dimensional
Euclidean space Rd. Extensions to observations consisting of a stochastic process
are discussed in Section 26.3. Also, we only treat the case of guessing among a
finite number of alternatives. We thus consider a finite set of messages

M = {1, . . . ,M}, (22.1)

where M ≥ 2, and we assume that associated with each messagem ∈M is a density
fY|M=m(·) on Rd, i.e., a nonnegative Borel measurable function that integrates to
one.

The concept of sufficient statistics is defined for the family of densities

fY|M=m(·), m ∈M; (22.2)

it is unrelated to a prior. But when we wish to use it in the context of hypothesis
testing we need to introduce a probabilistic setting. If, in addition to the family

1Testing whether a coin is fair or not is a more complicated hypothesis testing problem of a
kind that we shall not address. It falls under the category of “composite hypothesis testing.”

430
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{fY|M=m(·)}m∈M, we introduce a prior {πm}m∈M, then we can discuss the pair
(M,Y), where Pr[M = m] = πm, and where, conditionally on M = m, the dis-
tribution of Y is of density fY|M=m(·). Thus, once we have introduced a prior
{πm}m∈M we can, for example, discuss the density fY(·) of Y as in (21.11)

fY(y) =
∑
m∈M

πm fY|M=m(y), y ∈ Rd, (22.3)

and the conditional distribution of M conditional on Y = y as in (21.12)

Pr[M = m |Y = y] ,


πm fY|M=m(y)

fY(y)
if fY(y) > 0,

1
M

otherwise,
m ∈M, y ∈ Rd.

(22.4)

22.2 Definition and Main Consequence

In this section we shall define sufficient statistics for a family of densities (22.2).
We shall then state the main result about this notion, namely, that there is no loss
in optimality in basing one’s guess on a sufficient statistic.

Very roughly, T (·) (or sometimes T (Y)) forms a sufficient statistic for guessing M
based on Y if there exists a black box that, when fed T (yobs) (but not yobs) and
any prior {πm} onM produces the a posteriori distribution of M given Y = yobs.

For technical reasons we make two exceptions. While the black box must always
produce a probability vector, we only require that this vector be the a posteriori
distribution of M given Y = yobs for observations yobs that satisfy∑

m∈M
πm fY|M=m(yobs) > 0 (22.5)

and that lie outside some prespecified set Y0 ⊂ Rd of Lebesgue measure zero. Thus,
if yobs is in Y0 or if (22.5) is violated, then the output of the black box can be any
probability vector. The exception set Y0 is not allowed to depend on {πm}. Since
it is of Lebesgue measure zero, the conditional probability that the observation Y
lies in Y0 is zero:

Pr
[
Y ∈ Y0

∣∣M = m
]

= 0, m ∈M. (22.6)

Note that the black box need not indicate whether yobs is in Y0 and/or whether
(22.5) holds. Figure 22.1 depicts such a black box.

Definition 22.2.1 (Sufficient Statistics for M Densities). We say that a mapping
T : Rd → Rd′ forms a sufficient statistic for the densities fY|M=1(·), . . . , fY|M=M(·)
on Rd if it is Borel measurable and if for some Y0 ⊂ Rd of Lebesgue measure zero we
have that for every prior {πm} there exist M Borel measurable functions from Rd′

to [0, 1]
T (yobs) 7→ ψm

(
{πm}, T (yobs)

)
, m ∈M,
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yobs
T (·)

T (yobs)

{
πm}m∈M

Black Box

(
ψ1

(
{πm} , T (yobs)

)
, . . . , ψM

(
{πm} , T (yobs)

))T

Figure 22.1: A black box that when fed any prior {πm} and T (yobs) (but
not the observation yobs directly) produces a probability vector that is equal to
(Pr[M = 1 |Y = yobs], . . . ,Pr[M = M |Y = yobs])T whenever both the condition∑
m∈M πm fY |M=m(yobs) > 0 and the condition yobs /∈ Y0 are satisfied.

such that the vector(
ψ1

(
{πm}, T (yobs)

)
, . . . , ψM

(
{πm}, T (yobs)

))T

is a probability vector and such that this probability vector is equal to(
Pr[M = 1 |Y = yobs], . . . ,Pr[M = M |Y = yobs]

)T

(22.7)

whenever both the condition yobs /∈ Y0 and the condition

M∑
m=1

πm fY|M=m(yobs) > 0 (22.8)

are satisfied. Here (22.7) is computed for M having the prior {πm} and for the
conditional law of Y given M corresponding to the given densities.

The main result regarding sufficient statistics is that if T (·) forms a sufficient
statistic, then—even if the transformation T (·) is not reversible—there is no loss
in optimality in basing one’s guess on T (Y).

Proposition 22.2.2 (Guessing Based on T (Y) Is Optimal). If T : Rd → Rd′

is a sufficient statistic for the M densities {fY|M=m(·)}m∈M, then, given any
prior {πm}, there exists an optimal decision rule that bases its decision on T (Y).

Proof. To prove the proposition we shall exhibit a decision rule that is based
on T (Y) and that mimics the MAP rule based on Y. Since the latter is optimal
(Theorem 21.3.3), our proposed rule must also be optimal. Let {ψm(·)} be as in
Definition 22.2.1. Given Y = yobs, the proposed decoder considers the set of all
messages m̃ satisfying

ψm̃
(
{πm}, T (yobs)

)
= max
m′∈M

ψm′
(
{πm}, T (yobs)

)
(22.9)

and picks uniformly at random from this set.
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We next argue that this decision rule is optimal. To that end we shall show that,
with probability one, this guessing rule is the same as the MAP rule for guessing M
based on Y. Indeed, the guess produced by this rule is identical to the one produced
by the MAP rule whenever yobs satisfies (22.8) and lies outside Y0. Since the
probability that Y satisfies (22.8) is, by (21.13), one, and since the probability
that Y is outside Y0 is, by (22.6), also one, it follows from Corollary 21.5.2 that
the probability that Y satisfies both (22.8) and the condition Y /∈ Y0 is also one.
Thus, the proposed guessing rule, which bases its decision only on T (yobs) and
on the prior has the same performance as the (optimal) MAP decision rule for
guessing M based on Y.

22.3 Equivalent Conditions

In this section we derive a number of important equivalent definitions for sufficient
statistics. These will further clarify the concept and will also be useful in identifying
sufficient statistics. We shall try to state the theorems rigorously, but our proofs
will be mostly heuristic. Rigorous proofs require some Measure Theory that we
do not wish to assume. For a rigorous measure-theoretic treatment of this topic
see (Halmos and Savage, 1949), (Lehmann and Romano, 2005, Section 2.6), or
(Billingsley, 1995, Section 34).2

22.3.1 The Factorization Theorem

The following characterization is useful because it is purely algebraic. It explores
the form that the densities {fY|M=m(·)} must have for T (Y) to form a sufficient
statistic. Roughly speaking, T (·) is sufficient if the densities in the family all have
the form of a product of two functions, where the first function depends on the
message and on T (y), and where the second function does not depend on the
message but may depend on y. We allow, however, an exception set Y0 ⊂ Rd of
Lebesgue measure zero, so we only require that for every m ∈M

fY|M=m(y) = gm
(
T (y)

)
h(y), y /∈ Y0. (22.10)

Note that if such a factorization exists, then it also exists with the additional
requirement that the functions be nonnegative. Indeed, if (22.10) holds, then by
the nonnegativity of the densities

fY|M=m(y) =
∣∣fY|M=m(y)

∣∣
=
∣∣gm(T (y)

)
h(y)

∣∣, y /∈ Y0

=
∣∣gm(T (y)

)∣∣ |h(y)|, y /∈ Y0,

thus yielding a factorization with the nonnegative functions{
y 7→

∣∣gm(T (y)
)∣∣}

m∈M and y 7→ |h(y)|.

2Our setting is technically easier because we only consider the case where M is finite and
because we restrict the observation space to Rd.
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Limiting ourselves to nonnegative factorizations, as we henceforth shall, is helpful
in manipulating inequalities where multiplication by negative numbers requires
changing the direction of the inequality. For our setting the Factorization Theorem
can be stated as follows.3

Theorem 22.3.1 (The Factorization Theorem). A Borel measurable function
T : Rd → Rd′ forms a sufficient statistic for the M densities {fY|M=m(·)}m∈M
on Rd if, and only if, there exists a set Y0 ⊂ Rd of Lebesgue measure zero and non-
negative Borel measurable functions g1, . . . ,gM : Rd′ → [0,∞) and h : Rd → [0,∞)
such that for every m ∈M

fY|M=m(y) = gm
(
T (y)

)
h(y), y ∈ Rd \ Y0. (22.11)

Proof. We begin by showing that if T (·) is a sufficient statistic then there exists a
factorization of the form (22.11). Let the set Y0 and the functions {ψm(·)} be as in
Definition 22.2.1. Pick some π̃1, . . . , π̃M > 0 that sum to one, e.g., π̃m = 1/M for
all m ∈ M, and let M be of the prior {π̃m}, so Pr[M = m] = π̃m for all m ∈ M.
Let the conditional law of Y given M be as specified by the given densities so, in
particular,

fY(y) =
∑
m∈M

π̃m fY|M=m(y), y ∈ Rd. (22.12)

Since {π̃m} are strictly positive, it follows from (22.12) that(
fY(y) = 0

)
⇒
(
fY|M=m(y) = 0, m ∈M

)
. (22.13)

(The only way the sum of nonnegative numbers can be zero is if they are all zero.
Thus, fY(y) = 0 always implies that all the terms {π̃m fY|M=m(y)} are zero. But
if {π̃m} are strictly positive, then this implies that all the terms {fY|M=m(y)} are
zero.)

By the definition of the functions {ψm(·)} and of the conditional probability (22.4),
we have for every m ∈M

ψm
(
π̃1, . . . , π̃M, T (yobs)

)
=
π̃m fY|M=m(yobs)

fY(yobs)
,
(
yobs /∈ Y0 and fY(yobs) > 0

)
.

(22.14)
We next argue that the densities factorize as

fY|M=m(y) =
1
π̃m

ψm
(
π̃1, . . . , π̃M, T (y)

)
︸ ︷︷ ︸

gm(T (y))

fY(y)︸ ︷︷ ︸
h(y)

, y ∈ Rd \ Y0. (22.15)

3A different, perhaps more elegant, way to state the theorem is in terms of probability dis-
tributions. Let Pm be the probability distribution on Rd corresponding to M = m, where m
is in the finite set M. Assume that {Pm} are dominated by the σ-finite measure µ. Then the

Borel measurable mapping T : Rd → Rd′ forms a sufficient statistic for the family {Pm} if, and
only if, there exists a Borel measurable nonnegative function h(·) from Rd to R, and M nonneg-

ative, Borel measurable functions gm(·) from Rd′ to R such that for each m ∈ M the function
y 7→ gm(T (y))h(y) is a version of the Radon-Nikodym derivative dPm/ dµ of Pm with respect
to µ; see (Billingsley, 1995, Theorem 34.6) and (Lehmann and Romano, 2005, Corollary 2.6.1).
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This can be argued as follows. If fY(y) is greater than zero, then (22.15) follows
directly from (22.14). And if fY(y) is equal to zero, then RHS of (22.15) is equal
to zero and, by (22.13), the LHS is also equal to zero.

We next prove that if the densities factorize as in (22.11), then T (·) forms a suffi-
cient statistic. That is, we show how using the factorization (22.11) we can design
the desired black box. The inputs to the black box are the prior {πm} and T (y).
The black box considers the vector(

π1 g1
(
T (y)

)
, . . . , πM gM

(
T (y)

))T

. (22.16)

If all its components are zero, then the black box produces the uniform distribution
(or any other distribution of the reader’s choice). Otherwise, it produces the above
vector but normalized to sum to one. Thus, if we denote by ψm(π1, . . . , πM, T (y))
the probability that the black box assigns to m when fed π1, . . . , πM and T (y),
then

ψm(π1, . . . , πM, T (y)) ,


1

M if
∑M
m′=1 πm′ gm′

(
T (y)

)
= 0,

πm gm
(
T (y)

)∑
m′∈M πm′ gm′

(
T (y)

) otherwise.

(22.17)
To verify that ψm(π1, . . . , πM, T (y)) = Pr[M = m |Y = y] whenever y is such that
y /∈ Y0 and (22.8) holds, we first note that, by the factorization (22.11),

(
fY(y) > 0 and y /∈ Y0

)
⇒
(
h(y)

M∑
m′=1

πm′ gm′
(
T (y)

)
> 0
)
,

so(
fY(y) > 0 and y /∈ Y0

)
⇒
(
h(y) > 0 and

M∑
m′=1

πm′ gm′
(
T (y)

)
> 0
)
. (22.18)

Consequently, if y /∈ Y0 and if (22.8) holds, then by (22.18) & (22.17)(
ψ1

(
π1, . . . , πM, T (y)

)
, . . . , ψM

(
π1, . . . , πM, T (y)

))T

is equal to the vector in (22.16) but scaled so that its components add to one. But
the a posteriori probability vector is also a scaled version of (22.16) (scaled by
h(y)/fY(y)) that sums to one. Thus, if y /∈ Y0 and (22.8) holds, then the vector
produced by the black box is identical to the a posteriori distribution vector.

22.3.2 Pairwise sufficiency

We next clarify the connection between sufficient statistics for binary hypothesis
testing and for multi-hypothesis testing. We show that T (Y) forms a sufficient
statistic for the family of densities {fY|M=m(·)}m∈M if, and only if, for every pair
of messages m′ 6= m′′ in M we have that T (Y) forms a sufficient statistic for the
densities fY|M=m′(·) and fY|M=m′′(·).
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One part of this statement is trivial, namely, that if T (·) is sufficient for the family
{fY|M=m(·)}m∈M then it is also sufficient for any pair. Indeed, by the Factoriza-
tion Theorem (Theorem 22.3.1), the sufficiency of T (·) for the family implies the
existence of a set of Lebesgue measure zero Y0 ⊂ Rd and functions {gm}m∈M, h
such that for all y ∈ Rd \ Y0

fY|M=m(y) = gm
(
T (y)

)
h(y), m ∈M. (22.19)

In particular, if we limit ourselves to m′,m′′ ∈M then for y /∈ Y0

fY|M=m′(y) = gm′
(
T (y)

)
h(y),

fY|M=m′′(y) = gm′′
(
T (y)

)
h(y),

which, by the Factorization Theorem, implies the sufficiency of T (·) for the pair of
densities fY|M=m′(·), fY|M=m′′(·).
The nontrivial part of the proposition is that pairwise sufficiency implies sufficiency.
Even this is quite easy when the densities are all strictly positive. It is a bit more
tricky without this assumption.4

Proposition 22.3.2 (Pairwise Sufficiency Implies Sufficiency). Consider M den-
sities {fY|M=m(·)}m∈M on Rd, and assume that T : Rd → Rd′ forms a sufficient
statistic for every pair of densities fY|M=m′(·), fY|M=m′′(·), where m′ 6= m′′ are
both inM. Then T (·) is a sufficient statistic for the M densities {fY|M=m(·)}m∈M.

Proof. To prove that T (·) forms a sufficient statistic for {fY|M=m(·)}Mm=1 we shall
describe an algorithm (black box) that when fed any prior {πm} and T (yobs) (but
not yobs) produces an M-dimensional probability vector that is equal to the a
posteriori probability distribution vector(

Pr
[
M = 1

∣∣Y = yobs

]
, . . . ,Pr

[
M = M

∣∣Y = yobs

])T

(22.20)

whenever yobs ∈ Rd is such that

yobs /∈ Y0 and
M∑
m=1

πmfY|M=m(yobs) > 0, (22.21)

where Y0 is a subset of Rd that does not depend on the prior {πm} and that is of
Lebesgue measure zero.

To describe the algorithm we first use the Factorization Theorem (Theorem 22.3.1)
to recast the proposition’s hypothesis as saying that for every pair m′ 6= m′′ inM
there exists a set Y(m′,m′′)

0 ⊂ Rd of Lebesgue measure zero and there exist non-
negative functions g(m′,m′′)

m′ ,g(m′,m′′)
m′′ : Rd′ → R and h(m′,m′′) : Rd → R such that

fY|M=m′(y) = g
(m′,m′′)
m′

(
T (y)

)
h(m′,m′′)(y), y ∈ Rd \ Y(m′,m′′)

0 , (22.22a)

4This result does not extend to the case where the random variable M can take on infinitely
many values.
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fY|M=m′′(y) = g
(m′,m′′)
m′′

(
T (y)

)
h(m′,m′′)(y), y ∈ Rd \ Y(m′,m′′)

0 . (22.22b)

Let
Y0 =

⋃
m′,m′′∈M
m′ 6=m′′

Y(m′,m′′)
0 , (22.23)

and note that, being the union of a finite number of sets of Lebesgue measure zero,
Y0 is of Lebesgue measure zero.

We now use the above functions g(m′,m′′)
m′ ,g(m′,m′′)

m′′ to describe the algorithm. Note
that yobs is never fed directly to the algorithm; only T (yobs) is used. Let the prior

πm = Pr[M = m], m ∈M (22.24)

be given, and assume without loss of generality that it is nondegenerate in the
sense that

πm > 0, m ∈M. (22.25)

(If that is not the case, we can set the black box to produce 0 in the coordinates
of the output vector corresponding to messages of prior probability zero and then
proceed to ignore such messages.) Let yobs ∈ Rd be arbitrary.

There are two phases to the algorithm. In the first phase the algorithm produces
some m∗ ∈ M whose a posteriori probability is guaranteed to be positive when-
ever (22.21) holds. In fact, if (22.21) holds, then no message has an a posteriori
probability higher than that of m∗ (but this is immaterial to us because we are
not content with showing that from T (yobs) we can compute the message that a
posteriori has the highest probability; we want to be able to compute the entire
a posteriori probability vector). In the second phase the algorithm uses m∗ to
compute the desired a posteriori probability vector.

The first phase of the algorithm runs in M steps. In Step 1 we set m[1] = 1. In
Step 2 we set

m[2] =

1 if
π1g

(1,2)
1

(
T (yobs)

)
π2g

(1,2)
2

(
T (yobs)

) > 1,

2 otherwise.

And in Step ν for ν ∈ {2, . . . ,M} we set

m[ν] =


m[ν − 1] if

πm[ν−1] g
(m[ν−1],ν)
m[ν−1]

(
T (yobs)

)
πν g

(m[ν−1],ν)
ν

(
T (yobs)

) > 1,

ν otherwise.

(22.26)

Here we use the convention that a/0 = +∞ whenever a > 0 and that 0/0 = 1. We
complete the first phase by setting

m∗ = m[M]. (22.27)

In the second phase we compute the vector

α[m] =
πm g

(m,m∗)
m

(
T (yobs)

)
πm∗ g(m,m∗)

m∗

(
T (yobs)

) , m ∈M. (22.28)
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If at least one of the components of α[·] is +∞, then we produce as the algorithm’s
output the uniform distribution on M. (The output corresponding to this case is
immaterial because it will turn out that this case is only possible if yobs is such
that either yobs ∈ Y0 or

∑
m πmfY|M=m(yobs) = 0, in which case the algorithm’s

output is not required to be equal to the a posteriori distribution.) Otherwise, the
algorithm’s output is the vector(

α[1]∑M
ν=1 α[ν]

, . . . ,
α[M]∑M
ν=1 α[ν]

)T

. (22.29)

Having described the algorithm, we now proceed to prove that it produces the
a posteriori probability vector whenever (22.21) holds. We need to show that if
(22.21) holds then

Pr[M = m |Y = yobs] =
α[m]∑M
ν=1 α[ν]

, m ∈M. (22.30)

Since there is nothing to prove if (22.21) does not hold, we shall henceforth assume
for the rest of the proof that it does. In this case we have by (22.4)

Pr[M = m |Y = yobs] =
πm fY|M=m(yobs)

fY(yobs)
, m ∈M. (22.31)

We shall prove (22.30) in two steps. In the first step we show that the result m∗

of the algorithm’s first phase satisfies

Pr[M = m∗ |Y = yobs] > 0. (22.32)

To establish (22.32) we shall prove the stronger statement that

Pr
[
M = m∗ ∣∣Y = yobs

]
= max
m∈M

Pr
[
M = m

∣∣Y = yobs

]
. (22.33)

This latter statement follows from the more general claim that for any ν ∈M (and
not only for ν = M) we have, subject to (22.21),

Pr
[
M = m[ν]

∣∣Y = yobs

]
= max

1≤m≤ν
Pr
[
M = m

∣∣Y = yobs

]
. (22.34)

For ν = 1, Statement (22.34) is trivial. For 2 ≤ ν ≤M, (22.34) follows from

Pr
[
M = m[ν]

∣∣Y = yobs

]
=

max
{

Pr
[
M = ν

∣∣Y = yobs

]
,Pr
[
M = m[ν − 1]

∣∣Y = yobs

]}
, (22.35)

which we now prove. We prove (22.35) by considering two cases separately depend-
ing on whether Pr[M = ν |Y = yobs] and Pr[M = m[ν−1] |Y = yobs] are both zero
or not. In the former case there is nothing to prove because (22.35) holds irrespec-
tive of whether (22.26) results in m[ν] being set to ν or to m[ν − 1]. In the latter
case we have by (22.31) and (22.25) that fY|M=ν(yobs) and fY|M=m[ν−1](yobs)
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are not both zero. Consequently, by (22.22), in this case h(m[ν−1],ν)(yobs) is not
only nonnegative but strictly positive. It follows that the choice (22.26) guarantees
(22.35) because

πm[ν−1] g
(m[ν−1],ν)
m[ν−1]

(
T (yobs)

)
πν g

(m[ν−1],ν)
ν

(
T (yobs)

)
=
πm[ν−1] g

(m[ν−1],ν)
m[ν−1]

(
T (yobs)

)
h(m[ν−1],ν)(yobs)

πν g
(m[ν−1],ν)
ν

(
T (yobs)

)
h(m[ν−1],ν)(yobs)

=
πm[ν−1] g

(m[ν−1],ν)
m[ν−1]

(
T (yobs)

)
h(m[ν−1],ν)(yobs)/fY(yobs)

πν g
(m[ν−1],ν)
ν

(
T (yobs)

)
h(m[ν−1],ν)(yobs)/fY(yobs)

=
Pr
[
M = m[ν − 1]

∣∣Y = yobs

]
Pr[M = ν] |Y = yobs]

,

where the first equality follows because h(m[ν−1],ν)(yobs) is strictly positive; the
second because in this part of the proof we are assuming (22.21); and where the
last equality follows from (22.22) and (22.31). This establishes (22.35), which
implies (22.34), which in turn implies (22.33), which in turn implies (22.32), and
thus concludes the proof of the first step.

In the second step of the proof we use (22.32) to establish (22.30). This is
straightforward because, in view of (22.31), we have that (22.32) implies that
fY|M=m∗(yobs) > 0 so, by (22.22b), we have that

h(m,m∗)(yobs) > 0, m ∈M,

g
(m,m∗)
m∗ (yobs) > 0, m ∈M.

Consequently

α[m] =
πm g

(m,m∗)
m

(
T (yobs)

)
πm∗ g(m,m∗)

m∗

(
T (yobs)

)
=

πm g
(m,m∗)
m

(
T (yobs)

)
h(m,m∗)(yobs)

πm∗ g(m,m∗)
m∗

(
T (yobs)

)
h(m,m∗)(yobs)

=
πm g

(m,m∗)
m

(
T (yobs)

)
h(m,m∗)(yobs)/fY(yobs)

πm∗ g(m,m∗)
m∗

(
T (yobs)

)
h(m,m∗)(yobs)/fY(yobs)

=
Pr[M = m |Y = yobs]
Pr[M = m∗ |Y = yobs]

,

from which (22.30) follows by (22.32).

22.3.3 Markov Condition

We now characterize sufficient statistics using Markov chains and conditional in-
dependence. These concepts were introduced in Section 20.11. The key result we
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ask the reader to recall is Theorem 20.11.3. We rephrase it for our present setting
as follows.

Proposition 22.3.3. The statement that M(−−T (Y)(−−Y forms a Markov chain
is equivalent to each of the following statements:

(a) The conditional distribution of M given
(
T (Y),Y

)
is the same as given T (Y).

(b) M and Y are conditionally independent given T (Y).

(c) The conditional distribution of Y given
(
M,T (Y)

)
is the same as given T (Y).

Statement (a) can also be written as:

(a’) The conditional distribution of M given Y is the same as given T (Y).

Indeed, the conditional distribution of any random variable—in particular M—
given

(
T (Y),Y

)
is the same as given Y only, because T (Y) carries no information

that is not in Y.

Statement (a’) can be rephrased as saying that the conditional distribution of M
given Y can be computed from T (Y). Since this is the key requirement of sufficient
statistics, we obtain:

Proposition 22.3.4. A Borel measurable function T : Rd → Rd′ forms a sufficient
statistic for the M densities {fY|M=m(·)}m∈M if, and only if, for any prior {πm}

M(−−T (Y)(−−Y (22.36)

forms a Markov chain.

Proof. The proof of this proposition is omitted. It is not difficult, but it requires
some measure-theoretic tools.5

Using Proposition 22.3.4 and Proposition 22.3.3 (cf. (b)) we obtain that a Borel
measurable function T (·) forms a sufficient statistic for guessing M based on Y if,
and only if, for any prior {πm} on M , the message M and the observation Y are
conditionally independent given T (Y).

We next explore the implications of Proposition 22.3.4 and the equivalence of the
MarkovityM(−−T (Y)(−−Y and Statement (c) in Proposition 22.3.3. These imply
that a Borel measurable function T (·) forms a sufficient statistic if, and only if, the
conditional distribution of Y given

(
T (Y),M = m

)
is the same for all m ∈M. Or,

in other words, a Borel measurable function T (·) forms a sufficient statistic if, and
only if, the conditional distribution of Y given T (Y) does not depend on which
of the densities in {fY|M=m(·)} governs the law of Y. This characterization has
interesting implications regarding the possibility of simulating observables. These
implications are explored next.

5If T (·) forms a sufficient statistic, then by Definition 22.2.1 ψm
(
{πm}, T (Y)

)
is a version of

the conditional probability that M = m conditional on the σ-algebra generated by Y, and it is
also measurable with respect to the σ-algebra generated by T (Y). The reverse direction follows
from (Lehmann and Romano, 2005, Lemma 2.3.1).
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T (yobs)
PY|T (Y)=T (yobs)

Ỹ
(
T (yobs),Θ

)
Given Rule for Guessing

M based on Y

Random Number
Generator

Guess

Θ

Figure 22.2: If T (Y) forms a sufficient statistic for guessing M based on Y, then—
even though Y cannot typically be recovered from T (Y)—the performance of any
given detector based on Y can be achieved based on T (Y) and a local random
number generator as follows. Using T (yobs) and local randomness Θ, one produces
a Ỹ whose conditional law given M = m is the same as that of Y, for each m ∈M.
One then feeds Ỹ to the given detector.

22.3.4 Simulating Observables

For T (Y) to form a sufficient statistic, we do not require that T (·) be invertible, i.e.,
that Y be recoverable from T (Y). Indeed, the notion of sufficient statistics is most
useful when this transformation is not invertible, in which case T (·) “summarizes”
the information in the observation Y that is needed for guessing M . Nevertheless,
as we shall next show, if T (Y) forms a sufficient statistic, then from T (Y) we
can produce (using a local random number generator) a vector Ỹ that appears
statistically like Y in the sense that the conditional law of Ỹ given M is identical
to the conditional law of Y given M .

To expand on this, we first explain what we mean by “we can produce . . . Ỹ” and
then elaborate on the consequences of the vector Ỹ having the same conditional
law given M = m as Y. By “producing” Ỹ from T (Y) we mean that Ỹ is the
result of processing T (Y) with respect to M . Stated differently, for every t ∈ Rd′

there corresponds a probability distribution PỸ|t (not dependent on m) that can
be used to generate Ỹ as follows: having observed T (yobs), we use a local random
number generator to generate the vector Ỹ according to the distribution PỸ|t,
where t = T (yobs); see Figure 22.2.

By Ỹ appearing statistically the same as Y we mean that the conditional law of Ỹ
given M = m is the same as that of Y, i.e., is of density fY|M=m(·). Consequently,
anything that can be learned aboutM from Y can also be learned aboutM from Ỹ.
Also, any guessing device that was designed to guess M based on the input Y will
yield the same probability of error when, instead of being fed Y, it is fed Ỹ. Thus,
if p(error|M = m) is the conditional error probability associated with a guessing
device that is fed Y, then it is also the conditional probability of error that will be
incurred by this device if, rather than Y, it is fed Ỹ; see Figure 22.2.
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Before stating this as a theorem, let us consider the following simple example.
Suppose that our observation consists of d random variables Y1, . . . , Yd and that,
conditional on H = 0, these random variables are IID Bernoulli(p0), i.e., they
each take on the value 1 with probability p0 and the value 0 with probability
1 − p0. Conditional on H = 1, these d random variables are IID Bernoulli(p1).
Here 0 < p0, p1 < 1 and p0 6= p1. Consequently, the conditional probability mass
functions are

PY1,...,Yd|H=0(y1, . . . , yd) =
d∏
j=1

(
p
yj
0 (1− p0)1−yj

)
= p

∑d
j=1 yj

0 (1− p0)d−
∑d
j=1 yj ,

and
PY1,...,Yd|H=1(y1, . . . , yd) = p

∑d
j=1 yj

1 (1− p1)d−
∑d
j=1 yj ,

so T (Y1, . . . , Yd) ,
∑d
j=1 Yj forms a sufficient statistic by the Factorization The-

orem.6 From T (y1, . . . , yd) one cannot recover the sequence y1, . . . , yd. Indeed,
specifying that T (y1, . . . , yd) = t does not determine which of the random vari-
ables is one; it only determines how many of them are one. There are thus

(
d
t

)
possible outcomes (y1, . . . yd) that are consistent with T (y1, . . . , yd) being equal to t.
We leave it to the reader to verify that if we use a local random number genera-
tor to pick one of these outcomes uniformly at random then the result (Ỹ1, . . . Ỹd)
will have the same conditional law given H as (Y1, . . . , Yd). We do not, of course,
guarantee that (Ỹ1, . . . Ỹd) be identical to (Y1, . . . , Yd). (The transformation T (·)
is, after all, not reversible.)

For additional insight let us consider our example of (20.66). For T (y1, y2) = y2
1+y2

2

we can generate Ỹ from a uniform random variable Θ ∼ U ([0, 1)) as

Ỹ1 =
√
T (Y) cos

(
2πΘ

)
Ỹ2 =

√
T (Y) sin

(
2πΘ

)
.

That is, after observing T (yobs) = t, we generate
(
Ỹ1, Ỹ2

)
uniformly over the tuples

that are at radius
√
t from the origin.

This last example also demonstrates the difficulty of stating the result. The random
vector Y in this example has a density, both when conditioned on H = 0 and when
conditioned on H = 1. The same applies to the random variable T (Y). However,
the distribution that is used to generate Ỹ from T (Y) is neither discrete nor has
a density. All its mass is concentrated on the circle of radius

√
t, so it cannot have

a density, and it is uniformly distributed over that circle, so it cannot be discrete.

Theorem 22.3.5 (Simulating the Observables from the Sufficient Statistic). Let
T : Rd → Rd′ be Borel measurable and let fY|M=1(·), . . . , fY|M=M(·) be M densities
on Rd. Then the following two statements are equivalent:

(a) T (·) forms a sufficient statistic for the given densities.

6For illustration purposes we are extending the discussion here to discrete distributions.
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(b) To every t in Rd′ there corresponds a distribution on Rd such that the fol-
lowing holds: for every m ∈ {1, . . . ,M}, if Y = yobs is generated according
to the density fY|M=m(·) and if the random vector Ỹ is then generated ac-
cording to the distribution corresponding to t, where t = T (yobs), then Ỹ is
of density fY|M=m(·).

Proof. For a measure-theoretic statement and proof see (Lehmann and Romano,
2005, Theorem 2.6.1). Here we only present some intuition. Ignoring some of the
technical details, the proof is very simple. The sufficiency of T (·) is equivalent
to M(−−T (Y)(−−Y forming a Markov chain for every prior on M . This latter
condition is equivalent by Proposition 22.3.3 (cf. (c)) to the conditional distribution
of Y given

(
T (Y),M

)
being the same as given T (Y) only. This latter condition

is equivalent to the conditional distribution of Y given T (Y) not depending on
which density in the family {fY|M=m(·)}m∈M was used to generate Y, i.e., to the
existence of a conditional distribution of Y given T (Y) that does not depend on
m ∈M.

22.4 Identifying Sufficient Statistics

Often a sufficient statistic can be identified without having to compute and factorize
the conditional densities of the observation. A number of such cases are described
in this section.

22.4.1 Invertible Transformation

We begin by showing that, ignoring some technical details, any invertible transfor-
mation forms a sufficient statistic. It may not be a particularly helpful sufficient
statistic because it does not “summarize” the observation, but it is a sufficient
statistic nonetheless.

Proposition 22.4.1 (Reversible Transformations Yield Sufficient Statistics). If
T : Rd → Rd′ is Borel measurable with a Borel measurable inverse, then T (·) forms
a sufficient statistic for guessing M based on Y.

Proof. We provide two proofs. The first uses the definition. We need to verify that
from T (yobs) one can compute the conditional distribution of M given Y = yobs.
This is obvious because if t = T (yobs), then one can compute Pr[M = m |Y = yobs]
from t by first applying the inverse T−1(t) to recover yobs and by then substituting
the result in the expression for Pr[M = m |Y = yobs] (21.12).

A second proof can be based on Proposition 22.3.4. We need to verify that for any
prior {πm}

M(−−T (Y)(−−Y

forms a Markov chain. To this end we note that, by Theorem 20.11.3, it suffices
to verify that M and Y are conditionally independent given T (Y). This is clear
because the invertibility of T (·) guarantees that, conditional on T (Y), the random
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vector Y is deterministic and hence independent of any random variable and a
fortiori of M .

22.4.2 A Sufficient Statistic Is Computable from the Statistic

Intuitively, we think about T (·) as forming a sufficient statistic if T (Y) contains
all the information about Y that is relevant to guessing M . For this intuition to
make sense it had better be the case that if T (·) forms a sufficient statistic for
guessing M based on Y, and if T (Y) is computable from S(Y), then S(·) also
forms a sufficient statistic. Fortunately, this is so:

Proposition 22.4.2. Suppose that a Borel measurable mapping T : Rd → Rd′ forms
a sufficient statistic for the M densities {fY|M=m(·)}m∈M on Rd. Let the mapping
S : Rd → Rd′′ be Borel measurable. If T (·) can be written as the composition ψ ◦S
of S with some Borel measurable function ψ : Rd′′ → Rd′ , then S(·) also forms a
sufficient statistic for these densities.

Proof. We need to show that Pr[M = m |Y = yobs] is computable from S(yobs).
This follows because, by assumption, T (yobs) is computable from S(yobs) and
because the sufficiency of T (·) implies that Pr[M = m |Y = yobs] is computable
from T (yobs).

22.4.3 Establishing Sufficiency in Two Steps

It is sometimes convenient to establish sufficiency in two steps: in the first step
we establish that T (Y) is sufficient for guessing M based on Y, and in the second
step we establish that S(T) is sufficient for guessing M based on T (Y). The
next proposition demonstrates that it then follows that S(T (Y)) forms a sufficient
statistic for guessing M based on Y.

Proposition 22.4.3. If T : Rd → Rd′ forms a sufficient statistic for the M densities
{fY|M=m(·)}m∈M and if S : Rd′ → Rd′′ forms a sufficient statistic for the corre-
sponding family of densities of T (Y), then the composition S ◦T forms a sufficient
statistic for the densities {fY|M=m(·)}m∈M.

Proof. We shall establish the sufficiency of S◦T by proving that for any prior {πm}

M(−−S
(
T (Y)

)
(−−Y.

This follows because for every m ∈M and every yobs ∈ Rd

Pr
[
M = m

∣∣S(T (Y)
)

= S
(
T (yobs)

)]
= Pr

[
M = m

∣∣ T (Y) = T (yobs)
]

= Pr
[
M = m

∣∣Y = yobs

]
,

where the first equality follows from the sufficiency of S(T (Y)) for guessing M
based on T (Y), and where the second equality follows from the sufficiency of T (Y)
for guessing M based on Y.
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22.4.4 Guessing whether M Lies in a Given Subset of M

We motivate the next result with the following example, which arises in the detec-
tion of PAM signals in white Gaussian noise (Section 28.3 ahead). Suppose that
the distribution of the observable Y is determined by the value of a k-tuple of bits
(D1, . . . , Dk). Thus, to each of the 2k values that the k-tuple (D1, . . . , Dk) can take,
there corresponds a distribution on Y of some given density fY|D1=d1,...,Dk=dk(·).
Suppose now that T (·) forms a sufficient statistic for this family of M = 2k den-
sities. The result we next describe guarantees that T (·) is also sufficient for the
binary hypothesis testing problem of guessing whether a specific bit Dj is zero or
one. More precisely, we shall show that if {π(d1,...,dk)} is any nondegenerate prior
on the 2k different k-tuples of bits, then T (·) forms a sufficient statistic for the two
densities∑

(d1,...,dk)
dj=0

π(d1,...,dk) fY|D1=d1,...,Dk=dk
(y),

∑
(d1,...,dk)
dj=1

π(d1,...,dk) fY|D1=d1,...,Dk=dk
(y).

Proposition 22.4.4 (Guessing whether M Is in K). Let T : Rd → Rd′ form a
sufficient statistic for the M densities {fY|M=m(·)}m∈M. Let the set K ⊂M be a
nonempty strict subset of M. Let {πm} be a prior on M satisfying

0 <
∑
m∈K

πm < 1.

Then T (·) forms a sufficient statistic for the two densities

y 7→
∑
m∈K

πm fY|M=m(y) and y 7→
∑
m/∈K

πm fY|M=m(y). (22.37)

Proof. By the Factorization Theorem it follows that the sufficiency of T (·) for the
family {fY|M=m(·)}m∈M is equivalent to the condition that for every m ∈M and
for every y /∈ Y0

fY|M=m(y) = gm
(
T (y)

)
h(y), (22.38)

where the set Y0 ⊂ Rd is of Lebesgue measure zero; where {gm(·)}m∈M are non-
negative Borel measurable functions from Rd′ ; and where h(·) is a nonnegative
Borel measurable function from Rd. Consequently,∑

m∈K
πm fY|M=m(y) =

∑
m∈K

πm gm
(
T (y)

)
h(y)

=
( ∑
m∈K

πm gm
(
T (y)

))
h(y), y /∈ Y0, (22.39a)

and ∑
m/∈K

πm fY|M=m(y) =
∑
m/∈K

πm gm
(
T (y)

)
h(y)

=
( ∑
m/∈K

πm gm
(
T (y)

))
h(y), y /∈ Y0. (22.39b)
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The factorization (22.39) of the densities in (22.37) proves that T (·) is also sufficient
for these two densities.

Note 22.4.5. The proposition also extends to more general partitions as follows.
Suppose that T (·) is sufficient for the family {fY|M=m(·)}m∈M. Let K1, . . . ,Kκ be
disjoint nonempty subsets ofM whose union is equal toM, and let the prior {πm}
be such that ∑

m∈Kj

πm > 0, j ∈ {1, . . . , κ}.

Then T (·) is sufficient for the κ densities

y 7→
∑
m∈K1

πm fY|M=m(y), . . . ,y 7→
∑
m∈Kκ

πm fY|M=m(y).

22.4.5 Conditionally Independent Observations

Our next result deals with a situation where we need to guess M based on two
observations: Y1 and Y2. We assume that T1(Y1) forms a sufficient statistic for
guessing M when only Y1 is observed, and that T2(Y2) forms a sufficient statistic
for guessing M when only Y2 is observed. It is tempting to conjecture that in
this case the pair (T1(Y1), T2(Y2)) must form a sufficient statistic for guessing M
when both Y1 and Y2 are observed. But, without additional assumptions, this is
not the case. An example where this fails can be constructed as follows. Let M
and Z be independent with M taking on the values 0 and 1 equiprobably and with
Z ∼ N (0, 1). Suppose that Y1 = M+Z and that Y2 = Z. In this case the invertible
mapping T1(Y1) = Y1 forms a sufficient statistic for guessing M based on Y1 alone,
and the mapping T2(Y2) = 17 forms a sufficient statistic for guessing M based
on Y2 alone (because M and Z are independent). Nevertheless, the pair (Y1, 17) is
not sufficient for guessing M based on the pair (Y1, Y2). Basing one’s guess of M on
(Y1, 17) is not as good as basing it on the pair (Y1, Y2). (The reader is encouraged
to verify that Y1 − Y2 is sufficient for guessing M based on (Y1, Y2) and that M
can be guessed error-free from Y1 − Y2.)

The additional assumption we need is that Y1 and Y2 be conditionally independent
given M . (It would make no sense to assume that they are independent, because
they are presumably both related to M .) This assumption is valid in many appli-
cations. For example, it occurs when a signal is received at two different antennas
with the additive noises in the two antennas being independent.

Proposition 22.4.6 (Conditionally Independent Observations). Let the mapping
T1 : Rd1 → Rd′1 form a sufficient statistic for guessing M based on the observation
Y1 ∈ Rd1 , and let T2 : Rd2 → Rd′2 form a sufficient statistic for guessing M based on
the observation Y2 ∈ Rd2 . If Y1 and Y2 are conditionally independent given M ,
then the pair (T1(Y1), T2(Y2)) forms a sufficient statistic for guessing M based on
the pair (Y1,Y2).

Proof. The proof we offer is based on the Factorization Theorem. The hypothesis
that T1 : Rd1 → Rd′1 forms a sufficient statistic for guessing M based on the obser-
vation Y1 implies the existence of nonnegative functions

{
g(1)
m

}
m∈M and h(1) and
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a subset Y(1)
0 ⊂ Rd1 of Lebesgue measure zero such that

fY1|M=m(y1) = g(1)
m

(
T1(y1)

)
h

(1)(y1), m ∈M, y1 /∈ Y(1)
0 . (22.40)

Similarly, the hypothesis that T2(·) is sufficient for guessing M based on Y2 im-
plies the existence of nonnegative functions

{
g(2)
m

}
m∈M and h(2) and a subset of

Lebesgue measure zero Y(2)
0 ⊂ Rd2 such that

fY2|M=m(y2) = g(2)
m

(
T2(y2)

)
h

(2)(y2), m ∈M, y2 /∈ Y(2)
0 . (22.41)

The conditional independence of Y1 and Y2 given M implies7

fY1,Y2|M=m(y1,y2) = fY1|M=m(y1) fY2|M=m(y2),

m ∈M, y1 ∈ Rd1 , y2 ∈ Rd2 . (22.42)

Combining (22.40), (22.41), and (22.42), we obtain

fY1,Y2|M=m(y1,y2) = g(1)
m

(
T1(y1)

)
g(2)
m

(
T2(y2)

)︸ ︷︷ ︸
gm

(
T1(y1),T2(y2)

) h(1)(y1)h(2)(y2)︸ ︷︷ ︸
h(y1,y2)

,

m ∈M, y1 /∈ Y(1)
0 , y2 /∈ Y(2)

0 . (22.43)

The set of pairs (y1,y2) ∈ Rd1 × Rd2 for which y1 is in Y(1)
0 and/or y2 is in Y(2)

0

is of Lebesgue measure zero, and consequently, the factorization (22.43) implies
that the pair

(
T1(Y1), T2(Y2)

)
forms a sufficient statistic for guessing M based on

(Y1,Y2).

22.5 Irrelevant Data

Closely related to the notion of sufficient statistics is the notion of irrelevant data.
This notion is particularly useful when we think about the data as consisting of
two parts. Heuristically speaking, we say that the second part of the data is
irrelevant for guessing M given the first, if it adds no information about M that
is not already contained in the first part. In such cases the second part of the
data can be ignored. It should be emphasized that the question whether a part
of the observation is irrelevant depends not only on its dependence on the random
variable to be guessed but also on the other part of the observation.

Definition 22.5.1 (Irrelevant Data). We say that R is irrelevant for guessing M
given Y, if Y forms a sufficient statistic for guessing M based on (Y, R).

Equivalently, R is irrelevant for guessing M given Y, if for any prior {πm} on M

M(−−Y(−−(Y, R), (22.44)

i.e.,
M(−−Y(−−R. (22.45)

7Technically speaking, this must only hold outside a set of Lebesgue measure zero, but we do
not want to make things even more cumbersome.
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Example 22.5.2. Let H take on the values 0 and 1, and assume that, conditional
on H = 0, the observation Y is N

(
0, σ2

0

)
and that, conditional on H = 1, it is

N
(
0, σ2

1

)
. Rather than thinking of this problem as a decision problem with a single

observation, let us think of it as a decision problem with two observations (Y1, Y2),
where Y1 is the absolute value of Y , and where Y2 is the sign of Y . Thus Y = Y1 Y2,
where Y1 ≥ 0 and Y2 ∈ {+1,−1}. (The probability that Y = 0 is zero under each
hypothesis, so we need not define the sign of zero.) We now show that Y2 (= the
sign of Y ) is irrelevant data for guessing H given Y1 (= the magnitude of Y ). Or,
in other words, the magnitude of Y is a sufficient statistic for guessing H based on
(Y1, Y2). Indeed the likelihood-ratio function

LR(y1, y2) =
fY1,Y2|H=0(y1, y2)
fY1,Y2|H=1(y1, y2)

=

1√
2πσ2

0

exp
(
− (y1y2)

2

2σ2
0

)
1√

2πσ2
1

exp
(
− (y1y2)2

2σ2
1

)
=
σ1

σ0
exp

( y2
1

2σ2
1

− y2
1

2σ2
0

)
can be computed from the magnitude y1 only, so Y1 is a sufficient statistic for
guessing H based on (Y1, Y2).

The following two notes clarify that the notion of irrelevance is different from that
of statistical independence. Neither implies the other.

Note 22.5.3. A RV can be independent of the RV that we wish to guess and yet
not be irrelevant.

Proof. We provide an example of a RV R that is independent of the RV H that
we wish to guess and that is nonetheless not irrelevant. Suppose that H takes on
the values 0 and 1, and assume that under both hypotheses Y ∼ Bernoulli(1/2):

Pr
[
Y = 1

∣∣H = 0
]

= Pr
[
Y = 1

∣∣H = 1
]

=
1
2
.

Further assume that under H = 0 the RV R is given by 0⊕Y = Y , whereas under
H = 1 it is given by 1 ⊕ Y . Here ⊕ denotes the exclusive-or operation or mod-2
addition.

The distribution of R does not depend on the hypothesis; it is Bernoulli(1/2) both
conditional on H = 0 and conditional on H = 1. But R is not irrelevant for
guessing H given Y . In fact, if we had to guess H based on Y only, our probability
of error would be 1/2. But if we base our decision on Y and R, then our probability
of error is zero because

H = Y ⊕R.

Note 22.5.4. A RV can be irrelevant even if it is statistically dependent on the
RV that we wish to guess.
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Proof. As an example, consider the case where R is equal to Y with probability one
and that Y (and hence also R) is statistically dependent on the RV M that we wish
to guess. Since R is deterministically equal to Y , it follows that, conditional on Y ,
the random variable R is deterministic. Consequently, since a deterministic RV is
independent of every RV, it follows that M and R are conditionally independent
given Y , i.e., that (22.45) holds. Thus, even though in this example R is statistically
dependent on M , it is irrelevant for guessing M given Y . The intuitive explanation
is that, in this example, R is irrelevant for guessing M given Y not because it
conveys no information about M (it does!) but because it conveys no information
about M that is not already conveyed by Y .

Condition (22.44) is often difficult to establish directly, especially when the distri-
bution of the pair (R,Y) is specified in terms of its conditional density given M ,
because in this case the conditional law of (M,R) given Y can be unwieldy. In
some cases the following proposition can be used to establish that R is irrelevant.

Proposition 22.5.5 (A Condition that Implies Irrelevance). Suppose that the con-
ditional law of R given M = m does not depend on m and that, for each m ∈ M,
we have that, conditionally on M = m, the observations Y and R are independent.
Then R is irrelevant for guessing M given Y.

Proof. We provide the proof for the case where the pair (Y, R) has a conditional
density given M . The discrete case or the mixed case (where one has a conditional
density and the other a conditional PMF) can be treated with the same approach.
To prove this proposition we shall demonstrate that Y is a sufficient statistic for
guessing H based on (Y, R) using the Factorization Theorem. To that end, we
express the conditional density of (Y, R) as

fY,R|M=m(y, r) = fY|M=m(y) fR|M=m(r)

= fY|M=m(y) fR(r)
= gm(y)h(y, r), (22.46)

where the first equality follows from the conditional independence of Y and R
given M ; the second from the hypothesis that the conditional density of R given
M = m does not depend on m and by denoting this density by fR(·); and the
final equality follows by defining gm(y) , fY|M=m(y) and h(y, r) , fR(r). The
factorization (22.46) demonstrates that Y forms a sufficient statistic for guessingM
based on (Y, R), i.e., that R is irrelevant for guessing M given Y.

22.6 Testing with Random Parameters

The notions of sufficient statistics and irrelevance also apply when testing in the
presence of a random parameter. If the random parameter Θ is not observed,
then T (Y) is sufficient if, and only if, for any prior {πm} on M

M(−−T (Y)(−−Y. (22.47)
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If Θ is of density fΘ(·) and independent of M , then, as in (20.101), we can express
the conditional density of Y given M = m as

fY|M=m(y) =
∫
θ

fY|Θ=θ,M=m(y) fΘ(θ) dθ,

so T (·) forms a sufficient statistic if, and only if, it forms a sufficient statistic for
the M densities {

y 7→
∫
θ

fY|Θ=θ,M=m(y) fΘ(θ) dθ
}
m∈M

.

Similarly, R is irrelevant for guessing M given Y if, and only if,

M(−−Y(−−R

forms a Markov chain for every prior {πm} onM.

If the parameter Θ is observed, then T (Y,Θ) is a sufficient statistic if, and only if,
for any prior {πm} onM

M(−−T (Y,Θ)(−−(Y,Θ).

If Θ is independent of M and of density fΘ(·), then the density fY,Θ|M=m(·) can
be expressed, as in (20.104), as

fY,Θ|M=m(y, θ) = fΘ(θ) fY|Θ=θ,M=m(y),

so T (·) forms a sufficient statistic if, and only if, it forms a sufficient statistic for
the M densities {

(θ,y) 7→ fΘ(θ) fY|Θ=θ,M=m(y)
}
m∈M

.

Similarly, R is irrelevant for guessing M given (Y,Θ) if, and only if,

M(−−(Y,Θ)(−−R.

The following lemma provides an easily-verifiable condition that guarantees that R
is irrelevant for guessing H based on Y, irrespective of whether the random pa-
rameter is observed or not.

Lemma 22.6.1. If for any prior {πm} on M we have that R is independent of the
triplet (M,Θ,Y),8 then R is irrelevant for guessing M given (Θ,Y) and also for
guessing M given Y.

Proof. To prove the lemma when Θ is observed, we need to show that the inde-
pendence of R and the triplet (M,Θ,Y) implies

M(−−(Y,Θ)(−−R,

8Note that being independent of the triplet is a stronger condition than being independent of
each of the members of the triplet!
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i.e., that the conditional distribution of R given (Y,Θ) is the same as given
(M,Y,Θ). This is indeed the case because R is independent of (M,Y,Θ) so
the two conditional distributions are equal to the unconditional distribution of R.

To prove the lemma in the case where Θ is unobserved, we need to show that the
independence of R and the triplet (M,Θ,Y) implies that

M(−−Y(−−R.

Again, one can do so by noting that the conditional distribution of R given Y is
equal to the conditional distribution of R given (Y,M) because both are equal to
the unconditional distribution of R.

22.7 Additional Reading

The classical definition of sufficient statistic as a mapping T (·) such that the dis-
tribution of Y given

(
T (Y),M = m

)
does not depend on m is due to R. A. Fisher.

A. N. Kolmogorov defined T (·) to be sufficient if for every prior {πm} the a pos-
teriori distribution of M given Y can be computed from T (Y). In our setting
where M takes on a finite number of values the two definitions are equivalent. For
an example where the definitions differ, see (Blackwell and Ramamoorthi, 1982).

For a discussion of pairwise sufficiency and its relation to sufficiency, see (Halmos
and Savage, 1949).

22.8 Exercises

Exercise 22.1 (Another Proof of Proposition 22.4.6). Give an alternative proof of Propo-
sition 22.4.6 using Theorem 22.3.5.

Exercise 22.2 (Hypothesis Testing with Two Observations). Let H take on the values 0
and 1 equiprobably. Let Y1 be a random vector taking value in R2, and let Y2 be a
random variable. Conditional on H = 0,

Y1 = µ+ Z1, Y2 = α+ Z2,

and, conditional on H = 1,

Y1 = −µ+ Z1, Y2 = −α+ Z2.

Here H, Z1, and Z2 are independent with the components of Z1 being IID N (0, 1),
with Z2 being a mean-one exponential, and with µ ∈ R2 and α ∈ R being deterministic.

(i) Find an optimal rule for guessing H based on Y1. Find a one-dimensional sufficient
statistic.

(ii) Find an optimal rule for guessing H based on Y2.

(iii) Find a two-dimensional sufficient statistic (T1, T2) for guessingH based on (Y1, Y2).

(iv) Find an optimal rule for guessing H based on the pair (T1, T2).
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Exercise 22.3 (Sufficient Statistics and the Bhattacharyya Bound). Show that if the

mapping T : Rd → Rd
′

is a sufficient statistic for the densities fY|H=0(·) & fY|H=1(·),
and if T = T (Y) is of conditional densities fT|H=0(·) and fT|H=1(·), then

1

2

∫
Rd

√
fY|H=0(y) fY|H=1(y) dy =

1

2

∫
Rd′

√
fT|H=0(t) fT|H=1(t) dt.

Hint: You may want to first derive the identity∫
Rd

√
fY|H=0(y) fY|H=1(y) dy = E

[(
fY|H=0(Y)

fY|H=1(Y)

)1/2
∣∣∣∣∣H = 1

]
.

Exercise 22.4 (Sufficient Statistics and Irrelevant Data).

(i) Show that if the hypotheses of Proposition 22.5.5 are satisfied, then the random
variables Y and R must be independent also when one does not condition on M .

(ii) Show that the conditions for irrelevance in that proposition are not necessary.

Exercise 22.5 (Two More Characterizations of Sufficient Statistics). Let PY |H=0(·) and
PY |H=1(·) be probability mass functions on the finite set Y. We say that T (Y ) forms a
sufficient statistic for guessing H based on Y if H(−−T (Y )(−−Y for every prior on H.
Show that each of the following conditions is equivalent to T (Y ) forming a sufficient
statistic for guessing H based on Y :

(a) For every y ∈ Y satisfying PY |H=0(y) + PY |H=1(y) > 0 we have

PY |H=0(y)

PY |H=1(y)
=
PT |H=0

(
T (y)

)
PT |H=1

(
T (y)

) ,
where we adopt the convention (20.39).

(b) For every prior (π0, π1) on H there exists a decision rule that bases its decision on
π0, π1, and T (Y ) and that is optimal for guessing H based on Y .

Exercise 22.6 (Pairwise Sufficiency Implies Sufficiency). Prove Proposition 22.3.2 in the
case where the conditional densities of the observable given each of the hypotheses are
positive.

Exercise 22.7 (Simulating the Observable). In all the examples we gave in Section 22.3.4
the random vector Ỹ was generated from T (yobs) uniformly over the set of vectors ξ
in Rd satisfying T (ξ) = T (yobs). Provide an example where this is not the case.

Hint: The setup of Proposition 22.5.5 might be useful.

Exercise 22.8 (Densities with Zeros). Conditional on H = 0, the d components of Y are
IID and uniformly distributed over the interval [α0, β0]. Conditional on H = 1, they are
IID and uniformly distributed over the interval [α1, β1]. Show that the tuple(

max
{
Y (1), . . . , Y (d)}, min

{
Y (1), . . . , Y (d)})

forms a sufficient statistic for guessing H based on Y.
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Exercise 22.9 (Optimality Does Not Imply Sufficiency). Let H take value in the set
{0, 1}, and let d = 2. Suppose that

Yj = (1− 2H) + ΘZj , j = 1, . . . , d,

where H,Θ, Z1, . . . , Zd are independent with Θ taking on the distinct positive values σ0

and σ1 with probability ρ0 and ρ1 respectively, and with Z1, . . . , Zd being IID N (0, 1).
Let T =

∑
j Yj .

(i) Show that T forms a sufficient statistic for guessing H based on Y1, . . . , Yd when Θ
is observed.

(ii) Show that T does not form a sufficient statistic for guessing H based on Y1, . . . , Yd
when Θ is not observed.

(iii) Show that notwithstanding Part (ii), if H has a uniform prior, then the decision
rule that guesses “H = 0” whenever T ≥ 0 is optimal both when Θ is observed and
when it is not observed.

Exercise 22.10 (Markovity Implies Markovity). Suppose that for every prior on M

(M,A)(−−T (Y)(−−Y

forms a Markov chain, where M takes value in the set M = {1, . . . ,M}, where A and Y
are random vectors, and where T (·) is Borel measurable. Does this imply that T (·) forms
a sufficient statistic for guessing M based on Y?



Chapter 23

The Multivariate Gaussian Distribution

23.1 Introduction

The multivariate Gaussian distribution is arguably the most important multi-
variate distribution in Digital Communications. It is the extension of the univariate
Gaussian distribution from scalars to vectors. A random vector of this distribu-
tion is said to be a Gaussian vector, and its components are said to be jointly
Gaussian. In this chapter we shall define this distribution, provide some useful
characterizations, and study some of its key properties. To emphasize its con-
nection to the univariate distribution, we shall derive it along the same lines we
followed in deriving the univariate Gaussian distribution in Chapter 19.

There are a number of equivalent ways to define the multivariate Gaussian distri-
bution, and authors typically pick one definition and then proceed over the course
of numerous pages to derive alternate characterizations. We shall also proceed in
this way, but to satisfy the impatient reader’s curiosity we shall state the various
equivalent definitions in this section. The proof of their equivalence will be spread
over the whole chapter.

In the following definition we use the notation introduced in Section 17.2. In
particular, all vectors are column vectors, and we denote the components of the
vector a ∈ Rn by a(1), . . . , a(n).

Definition 23.1.1 (Standard Gaussians, Centered Gaussians, and Gaussians).

(i) A random vector W taking value in Rn is said to be a standard Gaussian
if its n components W (1), . . . ,W (n) are independent and each is a zero-mean
unit-variance univariate Gaussian.

(ii) A random vector X taking value in Rn is said to be a centered Gaussian
if there exists some deterministic n ×m matrix A such that the distribution
of X is the same as the distribution of AW, i.e.,

X L= AW, (23.1)

where W is a standard Gaussian with m components.

454
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(iii) A random vector X taking value in Rn is said to be Gaussian if there exists
some deterministic n ×m matrix A and some deterministic vector µ ∈ Rn
such that the distribution of X is equal to the distribution of AW+µ, i.e., if

X L= AW + µ, (23.2)

where W is a standard Gaussian with m components.

The random vectors AW + µ and X can have identical laws only if they have
identical mean vectors. As we shall see, the linearity of expectation and the fact
that a standard Gaussian is of zero mean imply that the mean vector of AW + µ
is equal to µ. Thus, AW + µ and X can have identical laws only if µ = E[X].
Consequently, X is a Gaussian random vector if, and only if, for some A and W
as above X L= AW + E[X]. Stated differently, X is a Gaussian random vector if,
and only if, X− E[X] is a centered Gaussian.

While Definition 23.1.1 allows for the matrix A to be rectangular, we shall see in
Corollary 23.6.13 that every centered Gaussian can be generated from a standard
Gaussian by multiplication by a square matrix. That is, if X is an n-dimensional
centered Gaussian, then there exists an n×n square matrix A such that X L= AW,
where W is a standard Gaussian.

In fact, we shall see in Theorem 23.6.14 that we can even limit ourselves to square
matrices that are the product of an orthogonal matrix by a diagonal matrix. Since
multiplying W by a diagonal matrix merely scales its components while leaving
them independent and Gaussian, it follows that X is a centered Gaussian if, and
only if, its law is the same as the law of the result of applying an orthogonal
transformation to a random vector whose components are independent zero-mean
univariate Gaussians (not necessarily of equal variance).

In view of Definition 23.1.1, it is not surprising that applying a linear transfor-
mation to a Gaussian vector results in a Gaussian vector ((23.43) ahead). The
reverse is perhaps more surprising: X is a Gaussian vector if, and only if, the re-
sult of applying any deterministic linear functional to X has a univariate Gaussian
distribution (Theorem 23.6.17 ahead).

We conclude this section with the following pact with the reader.

(i) Unless preceded by the word “random” or “Gaussian,” all scalars, vectors,
and matrices in this chapter are deterministic.

(ii) Unless preceded by the word “complex,” all scalars, vectors, and matrices in
this chapter are real.

But, without violating this pact, we shall sometimes get excited and throw in the
words “real” and “deterministic” even when unnecessary.

23.2 Notation and Preliminaries

Our notation in this chapter expands upon the one introduced in Section 17.2. To
minimize page flipping, we repeat here parts of that section.
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Deterministic vectors are denoted by boldface lowercase letters such as w, whereas
random vectors are denoted by boldface uppercase letters such as W. When we
deal with deterministic matrices we make an exception to our rule of trying to
denote deterministic quantities by lowercase letters.1 Thus, deterministic matrices
are denoted by uppercase letters. But to make it clear that we are dealing with
a deterministic matrix and not a scalar random variable, we use special fonts to
distinguish the two. Thus A denotes a deterministic matrix, whereas A denotes a
random variable. Random matrices, which only appear briefly in this book, are
denoted by uppercase letters of yet another font, e.g., H.

An n ×m deterministic real matrix A is an array of real numbers having n rows
and m columns

A =


a(1,1) a(1,2) . . . a(1,m)

a(2,1) a(2,2) . . . a(2,m)

...
...

. . .
...

a(n,1) a(n,2) . . . a(n,m)

 .

The Row-j Column-` element of the matrix A is denoted

a(j,`) or [A]j,`.

The transpose of an n×m matrix A is the m×n matrix AT whose Row-j Column-`
entry is equal to the Row-` Column-j entry of A:

[AT]j,` = [A]`,j , j ∈ {1, . . . ,m}, ` ∈ {1, . . . , n}.

We shall repeatedly use the fact that if the matrix-product AB is defined (i.e., if
the number of columns of A is the same as the number of rows of B), then the
transpose of the product is the product of the transposes in reverse order

(AB)T = BTAT. (23.3)

The n × n identity matrix whose diagonal elements are all 1 and whose off-
diagonal elements are all 0 is denoted In. The all-zero matrix whose components
are all zero is denoted 0.

An n × 1 matrix is an n-vector, or a vector for short. Thus, unless otherwise
specified, all the vectors we shall encounter are column vectors.2 The components
of an n-vector a are denoted by a(1), . . . , a(n) so

a =

a
(1)

...
a(n)

 ,

or, in a typographically more efficient form,

a = (a(1), . . . , a(n))T.

1We have already made some exceptions to this rule when we dealt with deterministic con-
stants that are by convention always denoted using uppercase letters, e.g., bandwidth W, ampli-
tude A, baud period Ts, etc.

2An exception to this rule is in our treatment of linear codes where the tradition of using row
vectors is too strong to change.
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The vector whose components are all zero is denoted by 0. The square root of the
sum of the squares of the components of a real n-vector a is denoted by ‖a‖:

‖a‖ =

√√√√ n∑
`=1

(
a(`)
)2
, a ∈ Rn. (23.4)

If a = (a(1), . . . , a(n))T and b = (b(1), . . . , b(n))T, then3

aTb =
n∑
`=1

a(`)b(`)

= bTa.

In particular,

‖a‖2 =
n∑
`=1

(
a(`)
)2

= aTa. (23.5)

Note the difference between aTa and aaT: the former is the scalar ‖a‖2 whereas
the latter is the n× n matrix whose Row-j Column-` element is a(j)a(`).

The determinant of a square matrix A is denoted by detA. We note that a matrix
and its transpose have equal determinants

det
(
AT
)

= detA, (23.6)

and that the determinant of the product of two square matrices is the product of
the determinants

det (AB) = det (A) det (B). (23.7)

We say that a square n × n matrix A is singular if its determinant is zero or,
equivalently, if its columns are linearly dependent or, equivalently, if its rows are
linearly dependent or, equivalently, if there exists some nonzero vector α ∈ Rn
such that Aα = 0.

23.3 Some Results on Matrices

We next survey some of the results from Matrix Theory that we shall be using. Par-
ticularly important to us are results on positive semidefinite matrices, because, as
we shall see in Proposition 23.6.1, every covariance matrix is positive semidefinite,
and every positive semidefinite matrix is the covariance matrix of some random
vector.

3In (20.84) we denoted aTb by 〈a,b〉E.
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23.3.1 Orthogonal Matrices

Definition 23.3.1 (Orthogonal Matrices). An n × n real matrix U is said to be
orthogonal if

UUT = In. (23.8)

As proved in (Axler, 1997, Chapter 7, Theorem 7.36), the condition (23.8) is equiv-
alent to the condition

UTU = In. (23.9)

Thus, a real matrix is orthogonal if, and only if, its transpose is orthogonal. From
(23.8) and (23.9) we also obtain:

Note 23.3.2. The inverse of an orthogonal matrix is its transpose.

If we write an n× n matrix U in terms of its columns as

U =


↑ · · · ↑

· · ·
ψ1 · · · ψn

· · ·
↓ · · · ↓

 ,

then (23.9) can be expressed as

In = UTU

=


← ψT

1 →
· · · · · · · · ·
· · · · · · · · ·
← ψT

n →



↑ · · · ↑

· · ·
ψ1 · · · ψn

· · ·
↓ · · · ↓



=


ψT

1ψ1 ψT
1ψ2 · · · ψT

1ψn
ψT

2ψ1 ψT
2ψ2 · · · ψT

2ψn
...

...
. . .

...
ψT
nψ1 ψT

nψ2 · · · ψT
nψn

 ,

thus showing that a real n×n matrix U is orthogonal if, and only if, its n columns
ψ1, . . . ,ψn satisfy

ψT
νψν′ = I{ν = ν′}, ν, ν′ ∈ {1, . . . , n}. (23.10)

Using the same argument but starting with (23.8) we can prove a similar result
about the rows of an orthogonal matrix: if the rows of a real n × n matrix U are
denoted by φT

1 , . . . ,φ
T
n, i.e.,

U =


← φT

1 →
· · · · · · · · ·
· · · · · · · · ·
← φT

n →

 ,
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then U is orthogonal if, and only if,

φT
νφν′ = I{ν = ν′}, ν, ν′ ∈ {1, . . . , n}. (23.11)

Recalling that the determinant of a product of square matrices is the product of
the determinants and that the determinant of a matrix is equal to the determinant
of its transpose, we obtain that for every square matrix U

det
(
UUT

)
=
(
det U

)2
. (23.12)

Consequently, by taking the determinant of both sides of (23.8) we obtain that the
determinant of an orthogonal matrix must be either +1 or −1. It should, however,
be noted that there are numerous examples of matrices of unit determinant that
are not orthogonal.

We leave it to the reader to verify that a 2× 2 matrix is orthogonal if, and only if,
it is equal to one of the following matrices for some choice of −π ≤ θ < π(

cos θ − sin θ
sin θ cos θ

)
,

(
cos θ sin θ
sin θ − cos θ

)
. (23.13)

The former matrix corresponds to a rotation by θ and has determinant +1, and
the latter to a reflection followed by a rotation(

cos θ sin θ
sin θ − cos θ

)
=
(

cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)
and has determinant −1.

23.3.2 Symmetric Matrices

A matrix A is said to be symmetric if it is equal to its transpose:

AT = A.

Only square matrices can be symmetric. A vector ψ ∈ Rn is said to be an eigen-
vector of the matrix A corresponding to the real eigenvalue λ ∈ R if ψ is nonzero
and if Aψ = λψ. The following is a key result about the eigenvectors of symmetric
real matrices.

Proposition 23.3.3 (Eigenvectors and Eigenvalues of Symmetric Real Matrices).
If A is a symmetric real n × n matrix, then A has n (not necessarily distinct)
real eigenvalues λ1, . . . , λn ∈ R with corresponding eigenvectors ψ1, . . . ,ψn ∈ Rn
satisfying

ψT
νψν′ = I{ν = ν′}, ν, ν′ ∈ {1, . . . , n}. (23.14)

Proof. See, for example, (Axler, 1997, Chapter 7, Theorem 7.13, p. 136), or (Her-
stein, 2001, Section 6.10, pp. 346–348), or (Horn and Johnson, 1985, Chapter 4,
Section 1, Theorem 4.5.1).
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The vectors ψ1, . . . ,ψn are eigenvectors of the matrix A corresponding to the eigen-
values λ1, . . . , λn if

Aψν = λνψν , ν ∈ {1, . . . , n}. (23.15)

We next express this in an alternative way. We begin by noting that

A


↑ · · · ↑

· · ·
ψ1 · · · ψn

· · ·
↓ · · · ↓

 =


↑ · · · ↑

· · ·
Aψ1 · · · Aψn

· · ·
↓ · · · ↓


and that

↑ · · · ↑
· · ·

ψ1 · · · ψn
· · ·

↓ · · · ↓



λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn

 =


↑ · · · ↑

· · ·
λ1ψ1 · · · λnψn

· · ·
↓ · · · ↓

 .

Consequently, Condition (23.15) can be written as

AU = UΛ, (23.16)

where

U =


↑ · · · ↑

· · ·
ψ1 · · · ψn

· · ·
↓ · · · ↓

 and Λ =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn

 . (23.17)

Condition (23.14) is equivalent to the condition that the above matrix U is orthog-
onal. By multiplying (23.16) from the right by the inverse of U (which, because U
is orthogonal and by (23.8), is UT) we obtain the equivalent form A = UΛUT.
Consequently, an equivalent statement of Proposition 23.3.3 is:

Proposition 23.3.4 (Spectral Theorem for Real Symmetric Matrices). A sym-
metric real n× n matrix A can be written in the form

A = UΛUT

where, as in (23.17), Λ is a diagonal real n × n matrix whose diagonal elements
are the eigenvalues of A, and where U is a real n×n orthogonal matrix whose ν-th
column is an eigenvector of A corresponding to the eigenvalue in the ν-th position
on the diagonal of Λ.

The reverse is also true: if A = UΛUT for a real diagonal matrix Λ and for a real
orthogonal matrix U, then A is symmetric, its eigenvalues are the diagonal elements
of Λ, and the ν-th column of U is an eigenvector of the matrix A corresponding to
the eigenvalue in the ν-th position on the diagonal of Λ.
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23.3.3 Positive Semidefinite Matrices

Definition 23.3.5 (Positive Semidefinite and Positive Definite Matrices).

(i) We say that the n× n real matrix K is positive semidefinite or nonneg-
ative definite and write

K � 0

if K is symmetric and
αTKα ≥ 0, α ∈ Rn.

(ii) We say that the n× n real matrix K is positive definite and write

K � 0

if K is symmetric and

αTKα > 0,
(
α 6= 0, α ∈ Rn

)
.

The following two propositions characterize positive semidefinite and positive def-
inite matrices. For proofs, see (Axler, 1997, Chapter 7, Theorem 7.27).

Proposition 23.3.6 (Characterizing Positive Semidefinite Matrices). Let K be a
real n× n matrix. Then the statement that K is positive semidefinite is equivalent
to each of the following statements:

(a) The matrix K can be written in the form

K = STS (23.18)

for some real n× n matrix S.4

(b) The matrix K is symmetric and all its eigenvalues are nonnegative.

(c) The matrix K can be written in the form

K = UΛUT, (23.19)

where Λ is a real n × n diagonal matrix with nonnegative entries on the
diagonal and where U is a real n× n orthogonal matrix.

Proposition 23.3.7 (Characterizing Positive Definite Matrices). Let K be a real
n × n matrix. Then the statement that K is positive definite is equivalent to each
of the following statements.

(a) The matrix K can be written in the form K = STS for some real n × n
nonsingular matrix S.

(b) The matrix K is symmetric and all its eigenvalues are positive.

4Even if S is not a square matrix, STS � 0.
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(c) The matrix K can be written in the form

K = UΛUT,

where Λ is a real n× n diagonal matrix with positive entries on the diagonal
and where U is a real n× n orthogonal matrix.

Given a positive semidefinite matrix K, how can we find a matrix S satisfying
K = STS? In general, there can be many such matrices. For example, if K is the
identity matrix, then S can be any orthogonal matrix. We mention here two useful
choices. Being symmetric, the matrix K can be written in the form

K = UΛUT, (23.20)

where U and Λ are as in (23.17). Since K is positive semidefinite, the diagonal
elements of Λ (which are the eigenvalues of K) are nonnegative. Consequently, we
can define the matrix

Λ1/2 =


√
λ1 0 · · · 0

0
√
λ2

. . .
...

...
. . . . . . 0

0 · · · 0
√
λn

 .

One choice of the matrix S is
S = Λ1/2UT. (23.21)

Indeed, with this definition of S we have

STS =
(
Λ1/2UT

)T
Λ1/2UT

= UΛ1/2Λ1/2UT

= UΛUT

= K,

where the first equality follows from the definition of S; the second from the rule
(AB)T = BTAT and from the symmetry of the diagonal matrix Λ1/2; the third from
the definition of Λ1/2; and where the final equality follows from (23.20).

A different choice for S, which will be less useful to us in this chapter, is5

UΛ1/2UT.

The following lemmas will be used in Section 23.4.3 when we study random vectors
of singular covariance matrices.

Lemma 23.3.8. Let K be a real n× n positive semidefinite matrix, and let α be a
vector in Rn. Then αTKα = 0 if, and only if, Kα = 0.

5This is the only choice for S that is positive semidefinite (Axler, 1997, Chapter 7, Proposi-
tion 7.28), (Horn and Johnson, 1985, Chapter 7, Section 7.2, Theorem 7.2.6).
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Proof. One direction is trivial and does not require that K be positive semidefinite:
if Kα = 0, then αTKα must also be equal to zero. Indeed, in this case we have by
the associativity of matrix multiplication αTKα = αT(Kα) = αT0 = 0.

To prove the other direction, we first note that, since K is positive semidefinite,
there exists some n× n matrix S such that K = STS. Hence,

αTKα = αTSTSα

= (Sα)T(Sα)

= ‖Sα‖2 , α ∈ Rn,

where the second equality follows from the rule for transposing a product (23.3).
and where the third equality follows from (23.5). Consequently, if αTKα = 0, then
‖Sα‖2 = 0, so Sα = 0, and hence STSα = 0, i.e., Kα = 0.

Lemma 23.3.9. If K is a real n × n positive definite matrix, then αTKα = 0 if,
and only if, α = 0.

Proof. Follows directly from Definition 23.3.5 of positive semidefinite matrices.

23.4 Random Vectors

23.4.1 Definitions

Recall that an n-dimensional random vector or a random n-vector X de-
fined over the probability space (Ω,F , P ) is a (measurable) mapping from the set
of experiment outcomes Ω to the n-dimensional Euclidean space Rn. A random
vector X is very much like a random variable, except that rather than taking value
in the real line R, it takes value in Rn. In fact, an n-dimensional random vector
can be viewed as an array of n random variables.6

The density of a random vector is the joint density of its components. The density
of a random n-vector is thus a nonnegative (Borel measurable) function from Rn
to the nonnegative reals that integrates to one.

Similarly, an n×m random matrix H is an n×m array of random variables defined
over a common probability space.

23.4.2 Expectations and Covariance Matrices

The expectation E[X] of a random n-vector X = (X(1), . . . , X(n))T is a vector
whose components are the expectations of the corresponding components of X:7

E[X] ,
(
E
[
X(1)

]
, . . . ,E

[
X(n)

])T

. (23.22)

6In dealing with random vectors one often abandons the “coordinate free” approach and views
vectors in a particular coordinate system. This allows one to speak of the covariance matrix in
more familiar terms.

7The expectation of a random vector is only defined if the expectation of each of its compo-
nents is defined.
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The j-th element of E[X] is thus the expectation of the j-th component of X,
namely, E

[
X(j)

]
. Similarly, the expectation of a random matrix is the matrix of

expectations.

If all the components of a random n-vector X are of finite variance, then we say
that X is of finite variance. We then define its n× n covariance matrix KXX

as
KXX , E

[
(X− E[X]) (X− E[X])T

]
. (23.23)

That is,

KXX = E



X(1) − E

[
X(1)

]
...
...

X(n) − E
[
X(n)

]


(
X(1) − E

[
X(1)

]
· · · · · · X(n) − E

[
X(n)

])


=


Var
[
X(1)

]
Cov

[
X(1), X(2)

]
· · · Cov

[
X(1), X(n)

]
Cov

[
X(2), X(1)

]
Var
[
X(2)

]
· · · Cov

[
X(2), X(n)

]
...

...
. . .

...
Cov

[
X(n), X(1)

]
Cov

[
X(n), X(2)

]
· · · Var

[
X(n)

]
 . (23.24)

If n = 1 and the n-dimensional random vector X hence a scalar, then the covariance
matrix KXX is a 1 × 1 matrix whose sole component is the variance of the sole
component of X.

Note that from the n×n covariance matrix KXX of a random n-vector X it is easy
to compute the covariance matrix of a subset of X’s components. For example, if
we are only interested in the 2× 2 covariance matrix of (X(1), X(2))T, then we just
pick the first two columns and the first two rows of KXX. More generally, the r× r
covariance matrix of (X(j1), X(j2), . . . , X(jr))T for 1 ≤ j1 < j2 < · · · < jr ≤ n is
obtained from KXX by picking Rows and Columns j1, . . . , jr. For example, if

KXX =


30 31 9 7
31 39 11 13
9 11 9 12
7 13 12 26

 ,

then the covariance matrix of
(
X(2), X(4)

)T is
(

39 13
13 26

)
.

We next explore the behavior of the mean vector and the covariance matrix of
a random vector when it is multiplied by a deterministic matrix. Regarding the
mean, we shall show that since matrix multiplication is a linear transformation, it
commutes with the expectation operation. Consequently, if H is a random n×m
matrix and A is a deterministic ν × n matrix, then

E[AH] = AE[H] , (23.25a)

and similarly if B is a deterministic m× ν matrix, then

E[HB] = E[H]B. (23.25b)
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To prove (23.25a) we write out the Row-j Column-` element of the ν × m ma-
trix E[AH] and use the linearity of expectation to relate it to the Row-j Column-`
element of the matrix AE[H]:

[
E[AH]

]
j,`

= E

[ n∑
κ=1

[A]j,κ[H]κ,`

]

=
n∑
κ=1

E
[
[A]j,κ[H]κ,`

]
=

n∑
κ=1

[A]j,κE
[
[H]κ,`

]
=
[
AE[H]

]
j,`
, j ∈ {1, . . . , ν}, ` ∈ {1, . . . ,m}.

The proof of (23.25b) is almost identical and is omitted.

The transpose operation also commutes with expectation: if H is a random matrix
then

E
[
HT
]

= (E[H])T . (23.26)

As to the covariance matrix, we next show that if A is a deterministic matrix and
if X is a random vector, then the covariance matrix KYY of the random vector
Y = AX can be expressed in terms of the covariance matrix KXX of X as

KYY = AKXX AT, Y = AX. (23.27)

Indeed,

KYY , E
[
(Y − E[Y])(Y − E[Y])T

]
= E
[
(AX− E[AX])(AX− E[AX])T

]
= E
[
A(X− E[X])(A(X− E[X]))T

]
= E
[
A(X− E[X])(X− E[X])TAT

]
= AE

[
(X− E[X])(X− E[X])TAT

]
= AE

[
(X− E[X])(X− E[X])T

]
AT

= AKXX AT.

A key property of covariance matrices is that, as we shall next show, they are all
positive semidefinite. That is, the covariance matrix KXX of any random vector X
is a symmetric matrix satisfying

αT KXXα ≥ 0, α ∈ Rn. (23.28)

(In Proposition 23.6.1 we shall see that this property fully characterizes covari-
ance matrices: every positive semidefinite matrix is the covariance matrix of some
random vector.)

To prove (23.28) it suffices to consider the case where X is of zero mean because
the covariance matrix of X is the same as the covariance matrix of X−E[X]. The
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symmetry of KXX follows from the definition of the covariance matrix (23.23); from
the fact that expectation and transposition commute (23.26); and from the formula
for the transpose of a product of matrices (23.3):

T

KXX =
(
E
[
XXT

])T

= E
[(

XXT
)T]

= E
[
XXT

]
= KXX . (23.29)

The nonnegativity of αT KXXα for any deterministic α ∈ Rn follows by noting
that by (23.27) (applied with A = αT) the term αT KXXα is the variance of the
scalar random variable αTX, i.e.,

αT KXXα = Var
[
αTX

]
(23.30)

and, as such, is nonnegative.

23.4.3 Singular Covariance Matrices

A random vector having a singular covariance matrix can be unwieldy because it
cannot have a density function. Indeed, as we shall see in Corollary 23.4.2, any such
random vector has at least one component that is determined (with probability one)
by the other components. In this section we shall propose a way of manipulating
such vectors. Roughly speaking, the idea is that if X has a singular covariance
matrix, then we choose a subset of its components so that the covariance matrix of
the chosen subset be nonsingular and so that each component that was not chosen
be equal (with probability one) to a deterministic affine function of the chosen
components. We then manipulate only the chosen components and, with some
deterministic bookkeeping “on the side,” take care of the components that were
not chosen. This idea is made precise in Corollary 23.4.3.

To illustrate the idea, suppose that X is a zero-mean random vector of covariance
matrix

KXX =

3 5 7
5 9 13
7 13 19

 .

An application of Proposition 23.4.1 ahead will show that because the three columns
of KXX satisfy the linear relationship

−

3
5
7

+ 2

 5
9
13

−
 7

13
19

 = 0,

it follows that

−X(1) + 2X(2) −X(3) = 0, with probability one.
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Consequently, in manipulating X we can pick the two components X(2), X(3),
which are of nonsingular covariance matrix

(
9 13
13 19

)
(obtained by picking the last

two rows and the last two columns of KXX), and keep track “on the side” of the
fact that X(1) is equal, with probability one, to 2X(2)−X(3). We could, of course,
also pick the components X(1), X(2) of nonsingular covariance matrix

(
3 5
5 9

)
and

keep track “on the side” of the relationship X(3) = 2X(2) −X(1).

To avoid cumbersome language, for the remainder of this section we shall take all
equalities between random variables to stand for equalities with probability one.
Thus, if we write X(1) = 2X(2) −X(3) we mean that the probability that X(1) is
equal to 2X(2) −X(3) is one.

The justification of the procedure is in the following proposition and its two corol-
laries.

Proposition 23.4.1. Let X be a zero-mean random n-vector of covariance ma-
trix KXX. Then its `-th component X(`) is a deterministic linear combination of
X(`1), . . . , X(`η) if, and only if, the `-th column of KXX is a linear combination of
Columns `1, . . . , `η. Here `, η, `1, . . . , `η,∈ {1, . . . , n} are arbitrary.

Proof. If ` ∈ {`1, . . . , `η}, then the result is trivial. We shall therefore present a
proof only for the case where ` /∈ {`1, . . . , `η}. In this case, the `-th component of
the random n-vector X is a linear combination of the η componentsX(`1), . . . , X(`η)

if, and only if, there exists a vector α ∈ Rn satisfying

α(`) = −1, (23.31a)

α(κ) = 0, κ /∈ {`, `1, . . . , `η} , (23.31b)

and
αTX = 0. (23.31c)

Since X is of zero mean, the condition αTX = 0 is equivalent to the condition
Var
[
αTX

]
= 0. By (23.30) and Lemma 23.3.8 this latter condition is equivalent

to the condition KXXα = 0. Now KXXα is a linear combination of the columns
of KXX where the first column is multiplied by α(1), the second by α(2), etc. Con-
sequently, the condition that KXXα = 0 for some α ∈ Rn satisfying (23.31a) &
(23.31b) is equivalent to the condition that the `-th column of KXX is a linear
combination of Columns `1, . . . , `η.

Corollary 23.4.2. The covariance matrix of a zero-mean random n-vector X is
singular if, and only if, some component of X is a linear combination of the other
components.

Proof. Follows from Proposition 23.4.1 by noting that a square matrix is singular
if, and only if, its columns are linearly dependent.

Corollary 23.4.3. Let X be a zero-mean random n-vector of covariance matrix KXX.
If Columns `1, . . . , `d of KXX form a basis for the subspace of Rn spanned by the
columns of KXX, then every component of X can be written as a linear combination
of the components X(`1), . . . , X(`d), and the random d-vector

(
X(`1), . . . , X(`d)

)T
has a nonsingular d× d covariance matrix.
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Proof. Since Columns `1, . . . , `d form a basis for the subspace spanned by the
columns of KXX, every column ` can be written as a linear combination of these
columns. Consequently, by Proposition 23.4.1, every component of X can be writ-
ten as a linear combination of X(`1), . . . , X(`d). To prove that the d× d covariance
matrix KX̃X̃ of the random d-vector X̃ =

(
X(`1), . . . , X(`d)

)T
is nonsingular, we

note that if this were not the case, then by Corollary 23.4.2 applied to X̃ it would
follow that one of the components of X̃ is a linear combination of the other d− 1
components. But by Proposition 23.4.1 applied to X, this would imply that the
columns `1, . . . , `d of KXX are not linearly independent, in contradiction to the
corollary’s hypothesis that they form a basis.

23.4.4 The Characteristic Function

If X is a random n-vector, then its characteristic function ΦX(·) is a mapping
from Rn to C that maps each vector $ = ($(1), . . . $(n))T in Rn to ΦX($), where

ΦX($) , E
[
ei$

TX
]

= E

[
exp

(
i
n∑
`=1

$(`)X(`)

)]
, $ ∈ Rn.

If X has the density fX(·), then

ΦX($) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
fX(x) ei

∑n
`=1$

(`)x(`)
dx(1) · · · dx(n),

which is reminiscent of the multi-dimensional Fourier Transform of fX(·) (ignoring
2π’s and the sign of i).

Proposition 23.4.4 (Identical Distributions and Characteristic Functions). Two
random n-vectors X,Y are of the same distribution if, and only if, they have
identical characteristic functions:(

X L= Y
)
⇔
(
ΦX($) = ΦY($), $ ∈ Rn

)
. (23.32)

Proof. See (Dudley, 2003, Chapter 9, Section 5, Theorem 9.5.1).

This proposition is extremely useful. We shall demonstrate its power by using it
to show that two random variables X and Y are independent if, and only if,

E
[
ei($1X+$2Y )

]
= E

[
ei$1X

]
E
[
ei$2Y

]
, $1, $2 ∈ R. (23.33)

One direction is straightforward. If X and Y are independent, then for any Borel
measurable functions g(·) and h(·) the random variables g(X) and h(Y ) are also
independent. Thus, the independence of X and Y implies the independence of the
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random variables ei$1X and ei$2Y and hence implies that the expectation of their
product is the product of their expectations:

E
[
ei($1X+$2Y )

]
= E

[
ei$1X ei$2Y

]
= E

[
ei$1X

]
E
[
ei$2Y

]
, $1, $2 ∈ R.

As to the other direction, suppose that X ′ has the same law as X, that Y ′ has the
same law as Y , and that X ′ and Y ′ are independent. Since X ′ has the same law
as X, it follows that

E
[
ei$1X

′
]

= E
[
ei$1X

]
, $1 ∈ R, (23.34)

and similarly for Y ′

E
[
ei$2Y

′
]

= E
[
ei$2Y

]
, $2 ∈ R. (23.35)

Consequently, since X ′ and Y ′ are independent

E
[
ei($1X

′+$2Y
′)
]

= E
[
ei$1X

′
ei$2Y

′
]

= E
[
ei$1X

′
]

E
[
ei$2Y

′
]

= E
[
ei$1X

]
E
[
ei$2Y

]
, $1, $2 ∈ R,

where the third equality follows from (23.34) and (23.35).

We thus see that if (23.33) holds, then the characteristic function of the vector
(X,Y )T is identical to the characteristic function of the vector (X ′, Y ′)T. By
Proposition 23.4.4 the joint distribution of (X,Y ) must then be the same as the
joint distribution of (X ′, Y ′). Since according to the latter distribution the two
components are independent, it follows that the same must be true according to
the former, i.e., X and Y must be independent.

23.5 A Standard Gaussian Vector

Recall Definition 23.1.1 that a random n-vector W is a standard Gaussian if its n
components are independent zero-mean unit-variance Gaussian random variables.
Its density fW(·) is then given by

fW(w) =
n∏
`=1

(
1√
2π

exp
(
−
(
w(`)

)2
2

))

=
1

(2π)n/2
exp

(
−1

2

n∑
`=1

(
w(`)

)2)
= (2π)−n/2 e−

1
2‖w‖

2
, w ∈ Rn. (23.36)

The definition of a standard Gaussian random vector is an extension of the defi-
nition of a standard Gaussian random variable: the sole component of a standard
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one-dimensional Gaussian vector is a scalar N (0, 1) random variable. Conversely,
every N (0, 1) random variable can be viewed as a one-dimensional standard Gaus-
sian.

If W is a standard Gaussian random n-vector then, as we next show, its mean
vector and covariance matrix are given by

E[W] = 0, and KWW = In. (23.37)

Indeed, the mean of a random vector is the vector of the means (23.22), so the
fact that E[W] = 0 is a consequence of all the components of W having zero
mean. And using (23.24) it can be easily shown that the covariance matrix of W
is the identity matrix because the components of W are independent and hence, a
fortiori uncorrelated, and because they are each of unit variance.

23.6 Gaussian Random Vectors

Recall Definition 23.1.1 that a random n-vector X is said to be Gaussian if for some
positive integer m there exists an n ×m matrix A; a standard Gaussian random
m-vector W; and a deterministic vector µ ∈ Rn such that

X L= AW + µ. (23.38)

From (23.38), from the second order properties of standard Gaussians (23.37),
and from the behavior of the mean vector and covariance matrix under linear
transformation (23.25a) & (23.27) we obtain(

X L= AW + µ and W standard
)
⇒
(
E[X] = µ and KXX = AAT

)
. (23.39)

Recall also that X is a centered Gaussian if X L= AW for A and W as above.

Every standard Gaussian vector is a centered Gaussian because every standard
Gaussian n-vector W is equal to AW when A is the n × n identity matrix In.
The reverse is not true: not every centered Gaussian is a standard Gaussian.
Indeed, standard Gaussians have the identity covariance matrix (23.37), whereas
the centered Gaussian vector AW has, by (23.39), the covariance matrix AAT,
which need not be the identity matrix.

Also, X is a Gaussian vector if, and only if, X − E[X] is a centered Gaussian
because, by (23.39),(

X L= AW + µ for some µ ∈ Rn and W standard Gaussian
)

⇔
(
X L= AW + E[X] and W standard Gaussian

)
⇔
(
X− E[X] L= AW and W standard Gaussian

)
. (23.40)

From (23.40) it also follows that the centered Gaussians are the Gaussian vectors
of zero mean.8

8Thus, the name “centered Gaussian,” which we gave in Definition 23.1.1 was not misleading.
A vector is a “centered Gaussian” if, and only if, it is Gaussian and centered.
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Using the definition of a centered Gaussian and using (23.39) we can readily show
that every positive semidefinite matrix is the covariance matrix of some centered
Gaussian. In fact, more is true:

Proposition 23.6.1 (Covariance Matrices and Positive Semidefinite Matrices).
The covariance matrix of every finite-variance random vector is positive semidefi-
nite, and every positive semidefinite matrix is the covariance matrix of some cen-
tered Gaussian random vector.

Proof. The covariance matrix of every random vector is positive semidefinite be-
cause every covariance matrix is symmetric (23.29) and satisfies (23.28). We next
establish the reverse. Given an n× n positive semidefinite matrix K we shall con-
struct a centered Gaussian X whose covariance matrix KXX is equal to K. We begin
by noting that, since K is positive semidefinite, it follows from Proposition 23.3.6
that there exists some n × n matrix S such that STS = K. Let W be a standard
Gaussian n-vector and consider the vector X = STW. Being the result of a linear
transformation of the standard Gaussian W, this vector is a centered Gaussian. We
complete the proof by showing that its covariance matrix KXX is the prespecified
matrix K. This follows from the calculation

KXX = STS

= K,

where the first equality follows from (23.39) (by substituting ST for A and 0 for µ)
and the second from our choice of S as satisfying STS = K.

23.6.1 Examples and Basic Properties

In this section we provide some examples of Gaussian vectors and some simple
properties that follow from their definition.

(i) Every univariate N
(
µ, σ2

)
random variable, when viewed as a one dimen-

sional random vector, is a Gaussian random vector.

Proof: Such a univariate random variable has the same law as
σW + µ, when W is a standard univariate Gaussian.

(ii) Any deterministic vector is a Gaussian vector.

Proof: Choose the matrix A as the all-zero matrix 0.

(iii) If the components of X are independent univariate Gaussians (not necessarily
of equal variance), then X is a Gaussian vector.

Proof: Choose A to be an appropriate diagonal matrix.

For the purposes of stating the next proposition we remind the reader that the ran-
dom vectors X =

(
X(1), . . . , X(nx)

)T and Y =
(
Y (1), . . . , Y (ny)

)T are independent
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if, for every choice of ξ1, . . . , ξnx ∈ R and η1, . . . , ηny ∈ R,

Pr
[
X(1) ≤ ξ1, . . . , X(nx) ≤ ξnx , Y (1) ≤ η1, . . . , Y (ny) ≤ ηny

]
= Pr

[
X(1) ≤ ξ1, . . . , X(nx) ≤ ξnx

]
Pr
[
Y (1) ≤ η1, . . . , Y (ny) ≤ ηny

]
.

The following proposition is a consequence of the fact that if X1 & X2 are inde-
pendent, X1

L= X′
1, X2

L= X′
2, and X′

1 & X′
2 are independent, then(

X1

X2

)
L=
(
X′

1

X′
2

)
.

Proposition 23.6.2 (Stacking Independent Gaussian Vectors). Stacking two in-
dependent Gaussian vectors one on top of the other results in a Gaussian vector.

Proof. Let the random n1-vector X1 = (X(1)
1 , . . . , X

(n1)
1 )T be Gaussian, and let the

random n2-vector X2 = (X(1)
2 , . . . , X

(n2)
2 )T be Gaussian and independent of X1.

We need to show that the (n1 + n2)-vector(
X

(1)
1 , . . . , X

(n1)
1 , X

(1)
2 , . . . , X

(n2)
2

)T (23.41)

is Gaussian.

Let the pair (A1,µ1) represent X1 in the sense that X1
L= A1W1 + µ1, where A1

is n1 ×m1, µ1 ∈ Rn1 , and W1 is a standard Gaussian m1-vector. Similarly, let
the pair (A2,µ2) represent X2, where A2 is n2 × m2 and µ2 ∈ Rn2 . We next
show that the vector (23.41) can be represented using the (n1 + n2)× (m1 +m2)
block-diagonal matrix A of diagonal components A1 and A2, and using the vector
µ ∈ Rn1+n2 that results when the vector µ1 is stacked on top of the vector µ2:

A =
(

A1 0
0 A2

)
µ =

(
µ1

µ2

)
. (23.42)

Indeed, if W is a standard Gaussian (n1 + n2)-vector and if we denote by W1 its
first n1 components and by W2 its last n2 components, then the random vectors
W1 and W2 are independent, and each is a standard Gaussian. Consequently,

AW + µ =
(

A1 0
0 A2

)(
W1

W2

)
+
(
µ1

µ2

)
=
(

A1W1 + µ1

A2W2 + µ2

)
L=
(
X1

X2

)
,

where the first equality follows from the definition of A and µ in (23.42); the
second equality by computing the matrix product in blocks; and where the equality
in distribution follows because the fact that W1 is a standard Gaussian implies
that X1

L= A1W1 + µ1, the fact that W2 is a standard Gaussian implies that
X2

L= A2W2 + µ2, and the fact that W1 and W2 are independent implies that
A1W1 + µ1 and A2W2 + µ2 are independent.
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Proposition 23.6.3 (An Affine Transformation of a Gaussian Is a Gaussian).
Let X be a Gaussian n-vector. If C is a ν × n matrix and if d ∈ Rν , then the
random ν-vector CX + d is Gaussian.

Proof. If X L= AW+µ, where A is a deterministic n×m matrix, W is a standard
Gaussian m-vector, and µ ∈ Rn, then

CX + d L= C(AW + µ) + d

= (CA)W + (Cµ+ d), (23.43)

which demonstrates that CX+d is Gaussian, because (CA) is a deterministic ν×m
matrix, W is a standard Gaussian m-vector, and Cµ+ d is a deterministic vector
in Rν .

This proposition has some important consequences. The first is that if we permute
the components of a Gaussian vector then the resulting vector is also Gaussian.
This explains why we sometimes say of random variables that they are jointly Gaus-
sian without specifying an order. Indeed, by the following corollary, the Gaussianity
of (X,Y, Z)T is equivalent to the Gaussianity of (Y,X,Z)T, etc.

Corollary 23.6.4. Permuting the components of a Gaussian vector results in a
Gaussian vector.

Proof. Follows from Proposition 23.6.3 by choosing C to be the appropriate per-
mutation matrix, i.e., the matrix that results from permuting the columns of the
identity matrix. For example,X(3)

X(1)

X(2)

 =

0 0 1
1 0 0
0 1 0

X(1)

X(2)

X(3)

 .

Corollary 23.6.5 (Subsets of Jointly Gaussians Are Jointly Gaussian). Construct-
ing a random p-vector from a Gaussian n-vector by picking p of its components
(allowing for repetition) yields a Gaussian vector.

Proof. Let X be a Gaussian n-vector. For any choice of j1, . . . , jp ∈ {1, . . . , n},
we can express the random p-vector (X(j1), . . . , X(jp))T as CX, where C is a deter-
ministic p× n matrix whose Row-ν Column-` component is given by

[C]ν,` = I{` = jν}.

For example (
X(3)

X(1)

)
=
(

0 0 1
1 0 0

)X(1)

X(2)

X(3)

 .

The result thus follows from Proposition 23.6.3.

Proposition 23.6.6. Each component of a Gaussian vector is a univariate Gaus-
sian.
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Proof. Let X be a Gaussian n-vector, and let j ∈ {1, . . . , n} be arbitrary. We
need to show that X(j) is Gaussian. Since X is Gaussian, there exist an n × m
matrix A, a vector µ ∈ Rn, and a standard Gaussian W such that the vector X
has the same law as the random vector AW +µ (Definition 23.1.1). In particular,
the j-th component of X has the same law as the j-th component of AW +µ, i.e.,

X(j) L=
m∑
`=1

a(j,`)W (`) + µ(j), j ∈ {1, . . . , n}.

The sum on the RHS is a linear combination of the independent univariate Gaus-
sians W (1), . . . ,W (m) and is thus, by Proposition 19.7.3, Gaussian. The result of
adding µ(j) is still Gaussian.

We caution the reader that while each component of a Gaussian vector has a
univariate Gaussian distribution, there exist random vectors that are not Gaussian
and that yet have Gaussian components.

23.6.2 The Mean and Covariance Determine the Law of a Gaussian

From (23.39) it follows that if X L= AW + µ, where W is a standard Gaussian,
then µ must be equal to E[X]. Thus, the mean of X fully determines the vector µ.
The matrix A, however, is not determined by the covariance of X. Indeed, by
(23.39), the covariance matrix KXX of X is equal to AAT, so KXX only determines
the product AAT. Since there are many different ways to express KXX as the
product of a matrix by its transpose, there are many choices of A (even of different
dimensions) that result in AX + µ having the given covariance matrix. Prima
facie, one might think that these different choices for A yield different Gaussian
distributions. But this is not the case. In this section we shall show that, while the
choice of A is not unique, all choices that result in AAT having the given covariance
matrix KXX give rise to the same distribution.

We shall derive this result by computing the characteristic function ΦX(·) of a
random n-vector X whose law is equal to the law of AW +µ, where W, A, and µ
are as above and by then showing that ΦX(·) depends on A only via AAT, i.e.,
that ΦX($) can be computed for every $ ∈ Rn from $, AAT, and µ. Since, by
(23.39), AAT is equal to the covariance matrix KXX of X, it will follow that the
characteristic functions of all Gaussian vectors of a given mean vector and a given
covariance matrix are identical. Since random vectors of identical characteristic
functions must have identical distributions (Proposition 23.4.4), it will follow that
all Gaussian vectors of a given mean vector and a given covariance matrix have
identical distributions.

We thus proceed to compute the characteristic function of a random n-vector X
whose law is the law of AW + µ, where W is a standard Gaussian m-vector, A
is n × m, and µ ∈ Rn. By (23.39) it follows that KXX = AAT. To that end we
need to compute E

[
ei$

TX
]

for every $ ∈ Rn. From Proposition 23.6.3 (with the
substitution of the 1× n matrix $T for C and of the scalar zero for d), it follows
that $TX is a Gaussian vector with only one component. By Proposition 23.6.6,
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this sole component is a univariate Gaussian. Its mean is, by (23.25a), $Tµ and
its variance is, by (23.30), $T KXX$. Thus,

$TX ∼ N
(
$Tµ, $T KXX$

)
, $ ∈ Rn. (23.44)

Using the expression (19.29) for the characteristic function of the univariate Gaus-
sian distribution (with the substitution $Tµ for µ, the substitution $T KXX$
for σ2, and the substitution 1 for $), we obtain that the characteristic func-
tion ΦX(·), which is defined as E

[
ei$

TX
]
, is given by

ΦX($) = e−
1
2$

T KXX$+i$Tµ, $ ∈ Rn. (23.45)

Since this characteristic function is fully determined by the mean vector and the
covariance matrix of X, it follows that the distribution is also determined by the
mean and covariance. We have thus proved:

Theorem 23.6.7 (The Mean and Covariance of a Gaussian Determine its Law).
Two Gaussian vectors of equal mean vectors and of equal covariance matrices have
identical distributions.

Note 23.6.8. Theorem 23.6.7 and Proposition 23.6.1 combine to prove that for
every µ ∈ Rn and every n× n positive semidefinite matrix K there exists one, and
only one, Gaussian distribution of mean µ and covariance matrix K. We denote
this Gaussian distribution by N (µ,K).

By (23.45) it follows that if X ∼ N (µ,K) then

ΦX($) = e−
1
2$

TK$+i$Tµ, $ ∈ Rn. (23.46)

Theorem 23.6.7 has important consequences, one of which has to do with the
properties of independence and uncorrelatedness. Recall that any two independent
random variables (of finite mean) are also uncorrelated. The reverse is not in
general true. But for jointly Gaussians it is: if X and Y are jointly Gaussian, then
X and Y are independent if, and only if, they are uncorrelated. More generally:

Corollary 23.6.9. Let X be a centered Gaussian (n1 + n2)-vector. Let the random
n1-vector X1 = (X(1), . . . , X(n1))T correspond to its first n1 components, and let
X2 = (X(n1+1), . . . , X(n1+n2))T correspond to the rest of its components. Then the
vectors X1 and X2 are independent if, and only if, they are uncorrelated, i.e., if,
and only if,

E
[
X1XT

2

]
= 0. (23.47)

Proof. The easy direction, which has nothing to do with Gaussianity, is that if
X1 and X2 are centered and independent, then (23.47) holds. Indeed, by the
independence and the fact that the vectors are of zero mean we have

E
[
X1XT

2

]
= E[X1]E

[
XT

2

]
= E[X1] (E[X2])T

= 00T

= 0.
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We now prove the reverse using the Gaussianity. We begin by expressing the
covariance matrix of X in terms of the covariance matrices of X1 and X2 as

KXX =
(

E
[
X1XT

1

]
E
[
X1XT

2

]
E
[
X2XT

1

]
E
[
X2XT

2

])
=
(

KX1X1 0
0 KX2X2

)
, (23.48)

where the second equality follows from (23.47).

Next, let X′
1 and X′

2 be independent random vectors such that X′
1

L= X1 and
X′

2
L= X2. Let X′ be the (n1 + n2)-vector that results from stacking X′

1 on top
of X′

2. Since X is Gaussian, it follows from Corollary 23.6.5 that X1 must also
be Gaussian, and since X′

1 has the same law as X1, it too is Gaussian. Similarly,
X′

2 is also Gaussian. And since X′
1 and X′

2 are, by construction, independent, it
follows from Proposition 23.6.2 that X′ is a centered Gaussian.

Having established that X′ is Gaussian, we next compute its covariance matrix.
Since, by construction, X′

1 and X′
2 are independent and centered,

KX′X′ =
(

KX′
1X

′
1

0
0 KX′

2X
′
2

)
=
(

KX1X1 0
0 KX2X2

)
, (23.49)

where the second equality follows because the equality in law between X′
1 and X1

implies that KX′
1X

′
1

= KX1X1 and similarly for X′
2.

Comparing (23.49) and (23.48) we conclude that X and X′ are centered Gaussians
of identical covariance matrices. Consequently, by Theorem 23.6.7, X′ L= X. And
since the first n1 components of X′ are independent of its last n2 components, the
same must also be true for X.

Corollary 23.6.10. If the components of the Gaussian random vector X are uncor-
related and the matrix KXX is therefore diagonal, then the components of X are
independent.

Proof. By repeated application of Corollary 23.6.9.

Another consequence of the fact that there is only one multivariate Gaussian distri-
bution of a given mean vector and of a given covariance matrix has to do with pair-
wise independence and independence. Recall that the random variables X1, . . . , Xn

are pairwise independent if for each pair of distinct indices ν′, ν′′ ∈ {1, . . . , n}
the random variables Xν′ and Xν′′ are independent, i.e., if for all such ν′, ν′′ and
all ξν′ , ξν′′ ∈ R

Pr
[
Xν′ ≤ ξν′ , Xν′′ ≤ ξν′′

]
= Pr

[
Xν′ ≤ ξν′

]
Pr[Xν′′ ≤ ξν′′ ]. (23.50)

The random variables X1, . . . , Xn are independent if for all ξ1, . . . , ξn in R

Pr
[
Xj ≤ ξj , for all j ∈ {1, . . . , n}

]
=

n∏
j=1

Pr
[
Xj ≤ ξj

]
. (23.51)
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Independence implies pairwise independence, but the two are not equivalent. One
can find triplets of random variables that are pairwise independent but not inde-
pendent.9 But if X1, . . . , Xn are jointly Gaussian, then pairwise independence is
equivalent to independence:

Corollary 23.6.11. If the components of a Gaussian random vector are pairwise
independent, then they are independent.

Proof. If the components of the Gaussian n-vector X are pairwise independent,
then they are pairwise uncorrelated and the covariance matrix KXX must be diag-
onal. Denote the diagonal elements by λ1, . . . , λn. Let µ be the mean vector of X.
Another Gaussian vector of this mean and of this covariance matrix is the Gaussian
vector whose components are independent N

(
µ(j), λj

)
. Since the mean and covari-

ance determine the distribution of Gaussian vectors, it follows that the two vectors,
in fact, have identical laws so the components of X are also independent.

Corollary 23.6.12. If W is a standard Gaussian n-vector, and if U is an n × n
orthogonal matrix, then UW is also a standard Gaussian vector.

Proof. By Definition 23.1.1 it follows that the random vector UW is a centered
Gaussian. By (23.39) we obtain that the orthogonality of the matrix U implies
that the covariance matrix of this centered Gaussian is the identity matrix, which
is also the covariance matrix of W; see (23.37). Consequently, UW and W are
two centered Gaussian vectors of identical covariance matrices and hence, by The-
orem 23.6.7, of equal law. Since W is standard, this implies that UW must also
be standard.

The next corollary shows that if X is a centered Gaussian n-vector, then X L= AW
for a standard Gaussian n-vector W and some square matrix A. That is, if the
law of an n-vector X is equal to the law of ÃW̃ where Ã is an n ×m matrix and
where W̃ is a standard Gaussian m-vector, then the law of X is also identical to
the law of AW, where A is some n×n matrix and where W is a standard Gaussian
n-vector. Consequently, we could have required in Definition 23.1.1 that the matrix
A be square without changing the set of distributions that we define as Gaussian.

Corollary 23.6.13. If X is a centered Gaussian n-vector, then there exists a de-
terministic square n × n matrix A such that X L= AW, where W is a standard
Gaussian n-vector.

Proof. Let KXX denote the covariance matrix of X. Being a covariance matrix,
KXX must be positive semidefinite (Proposition 23.6.1). Consequently, by Propo-
sition 23.3.7, there exists some n× n matrix S such that

KXX = STS. (23.52)

Consider now the centered Gaussian STW, where W is a standard Gaussian n-
vector. By (23.39), the covariance matrix of STW is STS, which by (23.52) is

9A classical example is the triple X,Y, Z where X and Y are IID each taking on the values
±1 equiprobably and where Z is their product.
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equal to KXX. Thus X and STW are centered Gaussians of the same covariance,
and so they must be of the same law. We have thus established that the law
of X is the same as the law of the product of a square matrix (ST) by a standard
Gaussian (W).

23.6.3 A Canonical Representation of a Centered Gaussian

The representation of a centered Gaussian vector as the result of the multiplication
of a deterministic matrix by a standard Gaussian vector is not unique. Indeed,
whenever the n×m matrix A satisfies AAT = K it follows that if W is a standard
Gaussian m-vector, then AW ∼ N (0,K). (This follows because AW is a random
n-vector of covariance matrix AAT (23.39); it is, by Definition 23.1.1, a centered
Gaussian; and all centered Gaussians of a given covariance matrix have the same
law.) We saw in Corollary 23.6.13 that A can always be chosen as a square matrix.
Thus, to every K � 0 there exists a square matrix A such that AW ∼ N (0,K). In
this section we shall focus on a particular choice of the matrix A that is useful in
the analysis of Gaussian vectors. In this representation A is a square matrix that
can be written as the product of an orthogonal matrix by a diagonal matrix. The
diagonal matrix acts on W by stretching and shrinking its components, and the
orthogonal matrix then rotates (and possibly reflects) the result.

Theorem 23.6.14 (A Canonical Representation of a Gaussian Vector). Let X be
a centered Gaussian n-vector of covariance matrix KXX. Then

X L= UΛ1/2W,

where W is a standard Gaussian n-vector; the n × n matrix U is orthogonal; the
n×n matrix Λ is diagonal; the diagonal elements of Λ are the eigenvalues of KXX;
and the j-th column of U is an eigenvector corresponding to the eigenvalue of KXX

that is equal to the j-th diagonal element of Λ.

Proof. By Proposition 23.6.1, KXX is positive semidefinite and a fortiori sym-
metric. Consequently, by Proposition 23.3.6, there exists a diagonal matrix Λ
whose diagonal elements are the eigenvalues of KXX and there exists an orthogo-
nal matrix U such that KXX U = UΛ, so the j-th column of U is an eigenvector
corresponding to the eigenvalue given by the j-th diagonal element of Λ. Since,
KXX � 0, it follows that all its eigenvalues are nonnegative, and we can define the
matrix Λ1/2 as the matrix whose components are the componentwise nonnegative
square roots of the matrix Λ. As in (23.21), choose S = Λ1/2UT. We then have
that KXX = STS. If W is a standard Gaussian, then STW is a centered Gaussian
of zero mean and covariance STS. Since STS = KXX and since there is only one
centered multivariate Gaussian distribution of a given covariance matrix, it follows
that the law of STW ( = UΛ1/2W) is the same as the law of X.

Corollary 23.6.15. A centered Gaussian vector can be expressed as the result of
an orthogonal transformation applied to a random vector whose components are
independent centered univariate Gaussians of different variances. These variances
are the eigenvalues of the covariance matrix.
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Figure 23.1: Contour plot of the density of four different two dimensional Gaussian
random variables: from left to right and top to bottom X1, . . . ,X4.

Proof. Because the matrix Λ in the theorem is diagonal, we can write Λ1/2W as

Λ1/2W =


√
λ1W

(1)

...√
λnW

(n)

 ,

where λ1, . . . , λn are the diagonal elements of Λ, i.e., the eigenvalues of KXX. Thus,
the random vector Λ1/2W has independent components with the ν-th component
being N (0, λν).

Figures 23.1 and 23.2 demonstrate this canonical representation. They depict the
contour lines and mesh plots of the density functions of the following four two-
dimensional Gaussian vectors:

X1 =
(

1 0
0 1

)
W, KX1X1 = I2,

X2 =
(

2 0
0 1

)
W, KX2X2 =

(
4 0
0 1

)
,

X3 =
(

1 0
0 2

)
W, KX3X3 =

(
1 0
0 4

)
,
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Figure 23.2: Mesh plots of the density functions of Gaussian random vectors: from
left to right and top to down X1, . . . ,X4.

X4 =
1√
2

(
1 1
−1 1

)(
1 0
0 2

)
W, KX4X4 =

1
2

(
5 3
3 5

)
,

where W is a standard Gaussian vector with two components.

Theorem 23.6.14 can be used to find a linear transformation that transforms a
given Gaussian vector to a standard Gaussian. The following is the multivariate
version of the univariate result showing that if X ∼ N

(
µ, σ2

)
, where σ2 > 0, then

(X − µ)/σ has a N (0, 1) distribution (19.8).

Proposition 23.6.16 (From Gaussians to Standard Gaussians). Let the random
n-vector X be N (µ,K), where K � 0 and µ ∈ Rn. Let the n× n matrices Λ and U
be such that Λ is diagonal, U is orthogonal, and KU = UΛ. Then

Λ−1/2UT(X− µ) ∼ N (0, In) ,

where Λ−1/2 is the diagonal matrix whose diagonal entries are the reciprocals of the
square roots of the diagonal elements of Λ.

Proof. Since an affine transformation of a Gaussian vector is Gaussian (Proposi-
tion 23.6.3), it follows that Λ−1/2UT(X − µ) is a Gaussian vector. And since the
mean and covariance of a Gaussian vector fully specify its law (Theorem 23.6.7),
the result will follow once we show that the mean of Λ−1/2UT(X − µ) is the zero



23.6 Gaussian Random Vectors 481

vector and its covariance matrix is the identity matrix. This can be readily verified
using (23.39).

23.6.4 The Density of a Gaussian Vector

As we saw in Corollary 23.4.2, if the covariance matrix of a centered vector is
singular, then at least one of its components can be expressed as a deterministic
linear combination of its other components. Consequently, random vectors with
singular covariance matrices cannot have a density. If the covariance matrix is
nonsingular, then the vector may or may not have a density. If it is Gaussian, then
it does. In this section we shall derive the density of the multivariate Gaussian
distribution when the covariance matrix is nonsingular.

We begin with the centered case. To derive the density of a centered Gaussian
n-vector of positive definite covariance matrix K we shall use Theorem 23.6.14 to
represent the N (0,K) distribution as the distribution of UΛ1/2W where U is an
orthogonal matrix and Λ is a diagonal matrix satisfying KU = UΛ. Note that Λ
is nonsingular because its diagonal elements are the eigenvalues of K, which we
assume to be positive definite.

Let
B = UΛ1/2, (23.53)

so the density we are after is the density of BW. Note that, by (23.53),

BBT = UΛ1/2Λ1/2UT

= UΛUT

= K. (23.54)

Also, by (23.54),

|det(B)| =
√

det(B) det(B)

=
√

det(B) det(BT)

=
√

det(BBT)

=
√

det(K), (23.55)

where the first equality follows by expressing |x| as
√
x2; the second follows because

a square matrix and its transpose have the same determinant; the third because the
determinant of the product of square matrices is the product of the determinants;
and where the last equality follows from (23.54).

Using the formula for computing the density of BW from that of W (Theo-
rem 17.3.4), we have that if X L= BW, then

fX(x) =
fW
(
B−1x

)
|det(B)|
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=
exp
(
− 1

2

(
B−1x

)T(
B−1x

))
(2π)n/2|det(B)|

=
exp
(
− 1

2x
T
(
B−1

)T(
B−1x

))
(2π)n/2|det(B)|

=
exp
(
− 1

2x
T
(
BBT

)−1
x
)

(2π)n/2|det(B)|

=
exp
(
− 1

2x
TK−1x

)
(2π)n/2|det(B)|

=
exp
(
− 1

2x
TK−1x

)
(2π)n/2

√
det(K)

,

where the second equality follows from the density of the standard Gaussian (23.36);
the third from the rule for the transpose of the product of matrices (23.3); the fourth
from the representation of the inverse of the product of matrices as the product
of the inverses in reverse order (AB)−1 = B−1A−1 and because transposition and
inversion commute; the fifth from (23.54); and the sixth from (23.55). It follows
that if X ∼ N (0,K) where K is nonsingular, then

fX(x) =
exp
(
− 1

2x
TK−1x

)√
(2π)ndet(K)

, x ∈ Rn.

Accounting for the mean, we have that if X ∼ N (µ,K) where K is nonsingular,
then

fX(x) =
exp

(
− 1

2 (x− µ)TK−1(x− µ)
)√

(2π)ndet(K)
, x ∈ Rn. (23.56)

23.6.5 Linear Functionals of Gaussian Vectors

A linear functional on Rn is a linear mapping from Rn to R. For example, if α
is any fixed vector in Rn, then the mapping

x 7→ αTx (23.57)

is a linear functional on Rn. In fact, as we next show, every linear functional on Rn
has this form. This can be proved by using linearity to verify that we can choose
the j-th component of α to equal the result of applying the linear functional to
the vector ej whose components are all zero except for its j-th component which
is equal to one.

If X is a Gaussian n-vector and if α ∈ Rn, then, by Proposition 23.6.3 (applied
with the substitution of the 1×n matrix αT for C), it follows that αTX is a Gaus-
sian vector with only one component. By Proposition 23.6.6, this sole component
must have a univariate Gaussian distribution. We thus conclude that the result of
applying a linear functional to a Gaussian vector is a Gaussian random variable.
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We next show that the reverse is also true: if X is of mean µ and of covariance
matrix K and if the result of applying every linear functional to X has a univari-
ate Gaussian distribution, then X ∼ N (µ,K).10 To prove this result we compute
the characteristic function of X. For every $ ∈ Rn the mapping x 7→ $Tx is
a linear functional on Rn. Consequently, our assumption that the result of the
application of every linear functional to X has a univariate Gaussian distribution
implies (23.44). From here we can follow the steps leading to (23.46) to conclude
that the characteristic function of X must be given by the RHS of (23.46). Since
this is also the characteristic function of a N (µ,K) random vector, it follows that
X ∼ N (µ,K), because random vectors of identical characteristic functions must
have identical distributions (Proposition 23.4.4). We have thus proved:

Theorem 23.6.17 (Gaussian Vectors and Linear Functionals). A random vector X
is Gaussian if, and only if, every linear functional of X has a univariate Gaussian
distribution.

23.7 Jointly Gaussian Vectors

Three miracles occur when we compute the conditional distribution of X given
Y = y for jointly Gaussian random vectors X and Y. Before describing these
miracles we need to define jointly Gaussian vectors.

Definition 23.7.1 (Jointly Gaussian Vectors). Two random vectors are said to be
jointly Gaussian if the vector that results when one is stacked on top of the other
is Gaussian.

That is, the random nx-vector X = (X(1), . . . , X(nx))T and the random ny-vector
Y = (Y (1), . . . , Y (ny))T are jointly Gaussian if the random (nx + ny)-vector(

X(1), . . . , X(nx), Y (1), . . . , Y (ny)
)T

is Gaussian.

By Corollary 23.6.5, the random vectors X and Y can only be jointly Gaussian if
each is Gaussian. But this is not enough: both X and Y can be Gaussian without
them being jointly Gaussian. However, if X and Y are independent Gaussian
vectors, then, by Proposition 23.6.2, they are jointly Gaussian.

Proposition 23.7.2. Independent Gaussian vectors are jointly Gaussian.

By Corollary 23.6.9 we have:

Proposition 23.7.3. If two jointly Gaussian random vectors are uncorrelated, then
they are independent.

10It is not difficult to show that the assumption that X is of finite variance is not necessary.
If every linear functional of X is of finite variance, then X must be of finite variance. Thus, we
could have stated the result as follows: if a random vector is such that the result of applying
every linear functional to it is a univariate Gaussian, then it is a multivariate Gaussian.
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Having defined jointly Gaussian random vectors we next turn to the main result of
this section. Loosely speaking, it states that if X and Y are jointly Gaussian, then
in computing the conditional distribution of X given Y = y three miracles occur:

(i) the conditional distribution is a multivariate Gaussian;

(ii) its mean vector is an affine function of y;

(iii) and its covariance matrix does not depend on y.

Before stating this more formally, we justify two simplifying assumptions. The first
assumption is that the covariance matrix of Y is nonsingular, so

KYY � 0.

The reason is that if the covariance matrix of Y is singular, then, by Corol-
lary 23.4.2, some of its components are with probability one affine functions of
the others, and we then have to consider two cases. If the realization y satisfies
these affine relations, then we can just pick a subset of the components of Y that
determine all the other components and that have a nonsingular covariance matrix
as in Section 23.4.3 and ignore the other components of y; the ignored components
do not alter the conditional distribution of X given Y = y. The other case where
the realization y does not satisfy the relations that Y satisfies with probability one
can be ignored because it occurs with probability zero.

The second assumption we make is that both X and Y are centered. There is no
loss in generality in making this assumption for the following reason. Conditioning
on Y = y when Y has mean µy is equivalent to conditioning on Y−µy = y−µy.
And if X has mean µx, then we can compute the conditional distribution of X by
computing the conditional distribution of X−µx and by then shifting the resulting
distribution by µx. Thus, the conditional density fX|Y=y(·) is given by

fX|Y=y(x) = fX−µx|Y−µy=y−µy (x− µx), (23.58)

where X− µx & Y − µy are jointly Gaussian and centered whenever X & Y are
jointly Gaussian. It is now straightforward to verify that if the miracles hold for
the centered case

x 7→ fX−µx|Y−µy=y−µy (x)

then they also hold for the general case

x 7→ fX−µx|Y−µy=y−µy (x− µx).

Theorem 23.7.4. Let X and Y be centered and jointly Gaussian with covariance
matrices KXX and KYY. Assume that KYY � 0. Then the conditional distribution
of X conditional on Y = y is a multivariate Gaussian of mean

E
[
XYT

] −1

KYY y (23.59)

and covariance matrix

KXX−E
[
XYT

] −1

KYY E
[
YXT

]
. (23.60)
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Proof. Let nx and ny denote the number of components of X and Y. Let D be
any deterministic real nx × ny matrix. Then clearly

X = DY +
(
X− DY

)
. (23.61)

Since X and Y are jointly Gaussian, the vector
(
XT,YT

)T is Gaussian. Conse-
quently, since (

X− DY
Y

)
=
(

Inx −D
0 Iny

)(
X
Y

)
,

it follows from Proposition 23.6.3 that

(X− DY) and Y are centered and jointly Gaussian. (23.62)

Suppose now that the matrix D is chosen so that (X−DY) and Y be uncorrelated:

E
[
(X− DY)YT

]
= 0. (23.63)

By (23.62) and Proposition 23.7.3 it then follows that the random vector (X−DY)
is independent of Y. Consequently, with this choice of D we have that (23.61)
expresses X as the sum of two terms where the first, DY, is fully determined
by Y and where the second, (X − DY), is independent of Y. It follows that
the conditional distribution of X given Y = y is the same as the distribution of
(X − DY) but shifted by Dy. By (23.62) and Corollary 23.6.5, (X − DY) is a
centered Gaussian, so the conditional distribution of X given Y = y is that of the
centered Gaussian (X − DY) shifted by the vector Dy. This already establishes
the three “miracles” we discussed before: the conditional distribution of X given
Y = y is Gaussian; its mean Dy is a linear function of Y; and its covariance matrix,
which is the covariance matrix of (X−DY), does not depend on the realization y
of Y.

The remaining claims, namely that the mean of the conditional distribution is as
given in (23.59) and that the covariance matrix is as given in (23.60) now follow
from straightforward calculations. Indeed, by solving (23.63) for D we obtain

D = E
[
XYT

] −1

KYY, (23.64)

so Dy is given by (23.59). To show that the covariance of the conditional law of X
given Y = y is as given in (23.60), we note that this covariance is the covariance
of (X− DY), which is given by

E
[
(X− DY)(X− DY)T

]
= E

[
(X− DY)XT

]
− E

[
(X− DY)(DY)T

]
= E

[
(X− DY)XT

]
− E

[
(X− DY)YT

]
DT

= E
[
(X− DY)XT

]
= KXX−D E

[
YXT

]
= KXX−E

[
XYT

] −1

KYY E
[
YXT

]
,

where the first equality follows by opening the second set of parentheses; the second
by (23.3) and (23.25b); the third by (23.63); the fourth by opening the parentheses
and using the linearity of the expectation; and the final equality by (23.64).



486 The Multivariate Gaussian Distribution

Theorem 23.7.4 has important consequences in Estimation Theory. A key result
in Estimation Theory is that if after observing that Y = y for some y ∈ Rny we
would like to estimate the random nx-vector X using a (Borel measurable) function
g : Rny → Rnx so as to minimize the estimation error

E
[
‖X− g(Y)‖2

]
, (23.65)

then an optimal choice for g(·) is the conditional expectation

g(y) = E
[
X
∣∣Y = y

]
, y ∈ Rny . (23.66)

Theorem (23.7.4) demonstrates that if X and Y are jointly Gaussian and centered,
then E[X |Y = y] is a linear function of y and is explicitly given by (23.59). Thus,
for jointly Gaussian centered random vectors, there is no loss in optimality in
limiting ourselves to linear estimators.

The optimality of choosing g(·) as in (23.66) has a simple intuitive explanation. We
first note that it suffices to establish the result when nx = 1, i.e., when estimating
a random variable rather than a random vector. Indeed, the squared-norm error in
estimating a random vector X with nx components is the sum of the squared errors
in estimating its components. To minimize the sum, one should therefore minimize
each of the terms. And the problem of estimating the j-th component of X based
on the observation Y = y is a problem of estimating a random variable. Stated
differently, to estimate X so as to minimize the error (23.65) we should separately
estimate each of its components.

Having established that it suffices to prove the optimality of (23.66) when nx = 1,
we now assume that nx = 1 and denote the random variable to be estimated by X.
To study how to estimate X after observing that Y = y, we first consider the
case where there is no observation. In this case, the estimate is a constant, and
by Lemma 14.4.1 the optimal choice of that constant is the mean E[X]. We now
view the general case where we observe Y = y as though there were no observables
but X had the a posteriori distribution given Y = y. Utilizing the result for the
case where there are no observables yields that estimating X by E[X |Y = y] is
optimal.

23.8 Moments and Wick’s Formula

We next describe without proof a technique for computing moments of centered
Gaussian vectors. A sketch of a proof can be found in (Zvonkin, 1997).

Theorem 23.8.1 (Wick’s Formula). Let X be a centered Gaussian n-vector and
let g1, . . . ,g2k : Rn → R be an even number of (not necessarily different) linear
functionals on Rn. Then

E
[
g1(X) g2(X) · · · g2k(X)

]
=
∑

E
[
gp1(X) gq1(X)

]
E
[
gp2(X) gq2(X)

]
· · ·E

[
gpk(X) gqk(X)

]
, (23.67)

where the summation is over all permutations p1, q1, p2, q2, . . . , pk, qk of 1, 2, . . . , 2k
such that

p1 < p2 < · · · < pk (23.68a)
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and
p1 < q1, p2 < q2, · · · , pk < qk. (23.68b)

The number of terms on the RHS of (23.67) is 1× 3× 5× · · · × (2k − 1).
Example 23.8.2. Suppose that n = 1, so X is a centered univariate Gaussian.
Let σ2 be its variance, and suppose we wish to compute E

[
X4
]
. We can express this

in the form of Theorem 23.8.1 with k = 2 and g1(x) = g2(x) = g3(x) = g4(x) = x.
By Wick’s Formula

E
[
X4
]

= E
[
g1(X) g2(X)

]
E
[
g3(X) g4(X)

]
+ E
[
g1(X) g3(X)

]
E
[
g2(X) g4(X)

]
+ E
[
g1(X) g4(X)

]
E
[
g2(X) g3(X)

]
= 3σ4,

which is in agreement with (19.31).
Example 23.8.3. Suppose that X is a bivariate centered Gaussian whose com-
ponents are of unit variance and of correlation coefficient ρ ∈ [−1, 1]. We com-
pute E

[
(X(1))2(X(2))2

]
using Theorem 23.8.1 by setting k = 2 and by defining

g1(x) = g2(x) = x(1) and g3(x) = g4(x) = x(2). By Wick’s Formula

E
[(
X(1)

)2(
X(2)

)2]
= E
[
g1(X) g2(X)

]
E[g3(X) g4(X)] + E

[
g1(X) g3(X)

]
E
[
g2(X) g4(X)

]
+ E
[
g1(X) g4(X)

]
E
[
g2(X) g3(X)

]
= E

[(
X(1)

)2]
E
[(
X(2)

)2]+ E
[
X(1)X(2)

]
E
[
X(1)X(2)

]
+ E

[
X(1)X(2)

]
E
[
X(1)X(2)

]
= 1 + 2ρ2. (23.69)

Similarly,
E
[(
X(1)

)3
X(2)

]
= 3ρ. (23.70)

23.9 The Limit of Gaussian Vectors Is a Gaussian Vector

The results of Section 19.9 on limits of Gaussian random variables extend to Gaus-
sian vectors. In this setting we consider random vectors X,X1,X2, . . . defined
over the probability space (Ω,F , P ). We say that the sequence of random vectors
X1,X2, . . . converges to the random vector X with probability one or almost
surely if

Pr
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1. (23.71)

The sequence X1,X2, . . . converges to the random vector X in probability if

lim
n→∞

Pr
[
‖Xn −X‖ ≥ ε

]
= 0, ε > 0. (23.72)

The sequence X1,X2, . . . converges to the random vector X in mean square if

lim
n→∞

E
[
‖Xn −X‖2

]
= 0. (23.73)
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Finally, the sequence of random vectors X1,X2, . . . taking value in Rd converges
to the random vector X weakly or in distribution if

lim
n→∞

Pr
[
X(1)
n ≤ ξ(1), . . . , X(d)

n ≤ ξ(d)
]

= Pr
[
X(1) ≤ ξ(1), . . . , X(d) ≤ ξ(d)

]
(23.74)

for every vector ξ ∈ Rd such that

lim
ε↓0

Pr
[
X(1) ≤ ξ(1) − ε, . . . ,X(d) ≤ ξ(d) − ε

]
= Pr

[
X(1) ≤ ξ(1), . . . , X(d) ≤ ξ(d)

]
. (23.75)

In analogy to Theorem 19.9.1 we next show that, irrespective of which of the above
forms of convergence we consider, if a sequence of Gaussian vectors converges to
some random vector X, then X must be Gaussian.

Theorem 23.9.1. Let the random d-vectors X,X1,X2, . . . be defined over a com-
mon probability space. Let X1,X2, . . . each be Gaussian (with possibly different
mean vectors and covariance matrices). If the sequence X1,X2, . . . converges to X
in the sense of (23.71) or (23.72) or (23.73), then X must be Gaussian.

Proof. The proof is based on Theorem 23.6.17, which demonstrates that it suffices
to consider linear functionals of the vectors in the sequence and on the analogous
result for scalars (Theorem 19.9.1). We demonstrate the idea by considering the
case where the convergence is almost sure. If X1,X2, . . . converges almost surely
to X, then for every α ∈ Rd the sequence αTX1,α

TX2, . . . converges almost surely
to αTX. Since, by Theorem 23.6.17, linear functionals of Gaussian vectors are
univariate Gaussians, it follows that the sequence αTX1,α

TX2, . . . is a sequence of
Gaussian random variables. And since it converges almost surely to αTX, it follows
from Theorem 19.9.1 that αTX must be Gaussian. Since this is true for every α
in Rd, it follows from Theorem 23.6.17 that X must be a Gaussian vector.

In analogy to Theorem 19.9.2 we have the following result on weakly converging
Gaussian vectors.

Theorem 23.9.2 (Weakly Converging Gaussian Vectors). Let the sequence of
random d-vectors X1,X2, . . . be such that Xn ∼ N (µn,Kn) for n = 1, 2, . . . Then
the sequence converges in distribution to some limiting distribution, if, and only if,
there exist some µ ∈ Rd and some d× d matrix K such that

µn → µ and Kn → K. (23.76)

And if the sequence does converge in distribution, then it converges to the multi-
variate Gaussian distribution of mean vector µ and covariance matrix K.

Proof. See (Gikhman and Skorokhod, 1996, Chapter I, Section 3, Theorem 4).
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23.10 Additional Reading

There are numerous books on Matrix Theory that discuss orthogonal matrices and
positive semidefinite matrices. We mention here (Zhang, 1999, Section 5.2), (Her-
stein, 2001, Chapter 6, Section 6.10), and (Axler, 1997, Chapter 7) on orthogonal
matrices, and (Zhang, 1999, Chapter 6), (Axler, 1997, Chapter 7), and (Horn and
Johnson, 1985, Chapter 7) on positive semidefinite matrices. Much more on the
multivariate Gaussian can be found in (Tong, 1990) and (Johnson and Kotz, 1972,
Chapter 35). For more on estimation and linear estimation, see Poor (1994) and
(Kailath, Sayed, and Hassibi, 2000).

23.11 Exercises

Exercise 23.1 (Covariance Matrices). Which of the following matrices cannot be a co-
variance matrix of some real random vector?

A =

(
5 0
0 −1

)
, B =

(
5 1
2 2

)
, C =

(
2 10
10 1

)
, D =

(
1 −1
−1 1

)
.

Exercise 23.2 (An Orthogonal Matrix of Determinant 1). Show that in Theorem 23.6.14
the orthogonal matrix U can be chosen to have determinant +1.

Exercise 23.3 (A Mixture of Gaussians). Let X ∼ N
(
µx, σ

2
x

)
and Y ∼ N

(
µy, σ

2
y

)
be

Gaussian random variables. Let E take on the values 0 and 1 equiprobably and indepen-
dently of (X,Y ). Define the mixture RV

Z =

{
X if E = 0,

Y if E = 1.

Must Z be Gaussian? Can Z be Gaussian? Compute Z’s characteristic function.

Exercise 23.4 (Multivariate Gaussians). Show that if Z is a univariate Gaussian, then
the random vector (Z,Z)T is a Gaussian vector. What is its canonical representation?

Exercise 23.5 (Manipulating Gaussians). Let W1,W2, . . . ,W5 be IID N (0, 1). Define
Y = 3W1 + 4W2 − 2W3 +W4 −W5 and Z = W1 − 4W2 − 2W3 + 3W4 −W5. What is the
joint distribution of (Y,Z)?

Exercise 23.6 (Largest Eigenvalue). Let X be a zero-mean Gaussian n-vector of covari-
ance matrix K � 0, and let λmax denote the maximal eigenvalue of K. Show that for some
random n-vector Z independent of X

X + Z ∼ N
(
0, λmaxIn

)
,

where In denotes the n× n identity matrix.
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Exercise 23.7 (The Error Probability Revisited). Show that p∗(correct) of (21.68) in
Problem 21.5 can be rewritten as

p∗(correct) =
1

M
exp

(
− Es

2σ2

)
E
[
exp

( 1

σ
max
m

{
Ξ(m)})],

where (Ξ(1), . . . ,Ξ(M))T is a centered Gaussian with a covariance matrix whose Row-j
Column-` entry is 〈sj , s`〉E.

Exercise 23.8 (Gaussian Marginals). Let X and Z be IID N (0, 1). Let Y = |Z| sgn(X),
where sgn(X) is 1 if X ≥ 0 and is −1 otherwise. Show that X is Gaussian, that Y is
Gaussian, but that they are not jointly Gaussian. Sketch the contour lines of their joint
probability density function.

Exercise 23.9 (Characteristic Function of a Random Vector). Let X be a random vector
with two components whose characteristic function is ΦX(·). Express the characteristic
function of the sum of its components in terms of ΦX(·).

Exercise 23.10 (The Distribution of Linear Functionals). Let X and Y be random n-
vectors of components X(1), . . . , X(n) and Y (1), . . . , Y (n). Assume that for all determinis-
tic coefficients α1, . . . , αn ∈ R the random variables

∑n
ν=1 ανX

(ν) and
∑n
ν=1 ανY

(ν) have
the same distribution, i.e.,( n∑

j=1

αjX
(j) L

=

n∑
j=1

αjY
(j)

)
,
(
α1, . . . , αn ∈ R

)
.

(i) Show that the characteristic function of X must be equal to that of Y.

(ii) Show that X and Y must have the same distribution.

Exercise 23.11 (Independence, Uncorrelatedness and Gaussianity). Let the random vari-
ables X and H be independent with X ∼ N (0, 1) and with H taking on the values ±1
equiprobably. Let Y = HX denote their product.

(i) Find the density of Y .

(ii) Are X and Y correlated?

(iii) Compute Pr
[
|X| ≥ 1

]
and Pr

[
|Y | ≥ 1

]
.

(iv) Compute the probability that both |X| and |Y | exceed 1.

(v) Are X and Y independent?

(vi) Is the vector (X,Y )T a Gaussian vector?

Exercise 23.12 (Expected Maximum of Jointly Gaussians).

(i) Let (X1, X2, . . . , Xn, Y ) have an arbitrary joint distribution with E[Y ] = 0. Here
Y need not be independent of (X1, X2, . . . , Xn). Prove that

E
[

max
1≤j≤n

{
Xj + Y

}]
= E

[
max

1≤j≤n

{
Xj
}]
.

(ii) Use Part (i) to prove that if (U, V ) are jointly Gaussian and of zero mean, then

E
[
max{U, V }

]
=

√
E
[
(U − V )2

]
2π

.
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Exercise 23.13 (The Density of a Bivariate Gaussian). Let X and Y be jointly Gaussian
with means µx and µy and with positive variances σ2

x and σ2
y. Let

ρ =
Cov[X,Y ]

σx σy

be their correlation coefficient. Assume |ρ| < 1.

(i) Find the joint density of X and Y .

(ii) Find the conditional density of X given Y = y.

Exercise 23.14 (A Training Symbol). Conditional on (X1, X2) = (x1, x2), the observable
(Y1, Y2) is given by

Yν = Axν + Zν , ν = 1, 2,

where Z1, Z2, and A are independent with Z1, Z2 ∼ IID N
(
0, σ2

)
and A ∼ N (0, 1).

Suppose thatX1 = 1 (deterministically) and thatX2 takes on the values ±1 equiprobably.

(i) Derive an optimal rule for guessing X2 based on (Y1, Y2).

(ii) Consider a decoder that operates in two stages. In the first stage the decoder
estimates A from Y1 with an estimator that minimizes the mean squared-error.
In the second stage it uses the ML decoding rule for guessing X2 based on Y2

by pretending that A is given by its estimate from the first stage. Compute the
probability of error of this decoder. Is it optimal?

Exercise 23.15 (On Wick’s Formula). Let X be a centered Gaussian n-vector, and let
g1, . . . ,g2k+1 : Rn → R be an odd number of (not necessarily different) linear functionals
from Rn to R. Show that

E
[
g1(X) g2(X) · · · g2k+1(X)

]
= 0.

Exercise 23.16 (Jointly Gaussians with Positive Correlation). Let X and Y be jointly
Gaussian with means µx and µy; positive variances σ2

x and σ2
y; and correlation coefficient ρ

as in Exercise 23.13 satisfying |ρ| < 1.

(i) Show that, conditional on Y = y, the distribution of X is Gaussian with mean
µx + ρσx

σy
(y − µy) and variance σ2

x(1− ρ2).

(ii) Show that if ρ ≥ 0, then the family fX|Y (x|y) has the monotone likelihood ratio
property that the mapping

x 7→
fX|Y (x|y)
fX|Y (x|y′)

is nondecreasing whenever y′ ≤ y. Here fX|Y (·|y) is the conditional density of X
given Y = y.

(iii) Show that if ρ ≥ 0, then the joint density fX,Y (·) has the Total Positivity of
Order 2 (TP2) property, i.e.,

fX,Y (x′, y) fX,Y (x, y′) ≤ fX,Y (x, y) fX,Y (x′, y′),
(
x′ < x, y′ < y

)
.

See (Tong, 1990, Chapter 4, Section 4.3.1, Fact 4.3.1 and Theorem 4.3.1).
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Exercise 23.17 (Price’s Theorem). Let X be a centered Gaussian n-vector of covariance
matrix Λ. Let λ(j,`) = E

[
X(j)X(`)

]
be the Row-j Column-` entry of Λ. Let fX(x; Λ)

denote the density of X (when Λ is nonsingular).

(i) Expressing the FT of the partial derivative of a function in terms of the FT of the
original function and using the characteristic function of a Gaussian (23.46), derive
Plackett’s Identities

∂fX(x; Λ)

∂λ(j,j)
=

1

2

∂2fX(x; Λ)

∂(x(j))2
,

∂fX(x; Λ)

∂λ(j,`)
=
∂2fX(x; Λ)

∂x(j)∂x(`)
, j 6= `.

(ii) Using integration by parts, derive Price’s Theorem: if h : Rn → R is twice con-
tinuously differentiable with h and its first and second derivatives growing at most
polynomially in ‖x‖ as ‖x‖ → ∞, then

∂E
[
h(X)

]
∂λ(j,`)

=

∫
Rn

∂2h(x)

∂x(j)∂x(`)
fX(x; Λ) dx, j 6= `.

(See (Adler, 1990, Chapter 2, Section 2.2) for the case where Λ is singular.)

(iii) Show that if in addition to the assumptions of Part (ii) we also assume that for
some j 6= `

∂2h(x)

∂x(j)∂x(`)
≥ 0, x ∈ Rn, (23.77)

then E[h(X)] is a nondecreasing function of λ(j,`).

(iv) Conclude that if h(x) =
∏n
ν=1 gν(x

(ν)), where for each ν ∈ {1, . . . , n} the function
gν : R → R is nonnegative, nondecreasing, twice continuously differentiable, and
satisfying the growth conditions of h in Part (ii), then

E

[
n∏
ν=1

gν
(
X(ν))]

is monotonically nondecreasing in λ(j,`) whenever j 6= `.

(v) By choosing gν(·) to approximate the step function α 7→ I
{
α ≥ ζ(ν)

}
for properly

chosen ζ(ν), prove Slepian’s Inequality: if X ∼ N (µ,Λ), then for every choice of
ξ(1), . . . , ξ(n) ∈ R

Pr
[
X(1) ≥ ξ(1), . . . , X(n) ≥ ξ(n)

]
is monotonically nondecreasing in λ(j,`) whenever j 6= `. See (Tong, 1990, Chap-
ter 5, Section 5.1.4, Theorem 5.1.7).

(vi) Modify the arguments in Parts (iv) and (v) to show that if X ∼ N (µ,Λ), then for
every choice of ξ(1), . . . , ξ(n) ∈ R

Pr
[
X(1) ≤ ξ(1), . . . , X(n) ≤ ξ(n)

]
is monotonically nondecreasing in λ(j,`) whenever j 6= `. See (Adler, 1990, Chap-
ter 2, Section 2.2, Corollary 2.4).

Exercise 23.18 (Jointly Gaussians of Equal Sign). Let X and Y be jointly Gaussian and
centered with positive variances and correlation coefficient ρ. Prove that

Pr
[
XY > 0

]
=

1

2
+
φ

π
,

where −π/2 ≤ φ ≤ π/2 is such that sinφ = ρ. We propose the following approach.
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(i) Show that it suffices to prove the result when X and Y are of unit variance.

(ii) Show that, for such X and Y , if we define

W =
1√

1− ρ2
X − ρ√

1− ρ2
Y, Z = Y,

then W and Z are IID N (0, 1).

(iii) Show that X and Y can be expressed as

X = R sin(Θ + φ), Y = R cosΘ,

where φ is as defined before, Θ is uniformly distributed over the interval [−π, π),

R is independent of Θ, and fR(r) = r e−r
2/2 I{r > 0}.

(iv) Justify the calculation

Pr
[
XY > 0

]
= 2Pr

[
X > 0, Y > 0

]
= 2Pr

[
sin(Θ + φ) > 0, cosΘ > 0

]
=

1

2
+
φ

π
.

Hint: Exercise 19.7 may be useful for Part (iii).



Chapter 24

Complex Gaussians and Circular Symmetry

24.1 Introduction

This chapter introduces the complex Gaussian distribution and the circular sym-
metry property. We start with the scalar case and then extend these notions to
random vectors. We rely heavily on Chapter 17 for the basic properties of complex
random variables and on Chapter 23 for the properties of the multivariate Gaussian
distribution.

24.2 Scalars

24.2.1 Standard Complex Gaussians

Definition 24.2.1 (Standard Complex Gaussian). A standard complex Gaus-
sian is a complex random variable whose real and imaginary parts are independent
N (0, 1/2) random variables.

If W is a standard complex Gaussian, then its density is given by

fW (w) =
1
π
e−|w|

2
, w ∈ C, (24.1)

because

fW (w) = fRe(W ),Im(W )

(
Re(w), Im(w)

)
= fRe(W )

(
Re(w)

)
fIm(W )

(
Im(w)

)
=

1√
π
e−Re(w)2 1√

π
e− Im(w)2

=
1
π
e−|w|

2
, w ∈ C,

where the first equality follows from the definition of the density fW (w) of a
CRV W at w ∈ C as the joint density fRe(W ),Im(W ) of its real and imaginary
parts (Re(W ), Im(W )) evaluated at

(
Re(w), Im(w)

)
(Section 17.3.1); the second

494
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because the real and imaginary parts of a standard complex Gaussian are indepen-
dent; the third because the real and imaginary parts of a standard Gaussian are
zero-mean variance-1/2 real Gaussians whose density can thus be computed from
(19.6) (by substituting 1/2 for σ2); and where the final equality follows because for
any complex number w we have Re(w)2 + Im(w)2 = |w|2.
Because the real and imaginary parts of a standard complex Gaussian W are of
zero mean, it follows that

E[W ] = E[Re(W )] + i E[Im(W )]
= 0.

And because they are each of variance 1/2, it follows from (17.14c) that a standard
complex Gaussian W has unit-variance

Var[W ] = E
[
|W |2

]
= 1. (24.2)

Moreover, since a standard complex Gaussian is of zero mean and since its real
and imaginary parts are of equal variance and uncorrelated, a standard Gaussian
is proper (Definition 17.3.1 and Proposition 17.3.2), i.e.,

E[W ] = 0 and E
[
W 2
]

= 0. (24.3)

Finally note that, by (24.1), the density fW (·) of a standard complex Gaussian
is radially-symmetric, i.e., its value at w ∈ C depends on w only via its mod-
ulus |w|. A CRV whose density is radially-symmetric is said to be circularly-
symmetric, but the definition of circular symmetry applies also to complex ran-
dom variables that do not have a density. This is the topic of the next section.

24.2.2 Circular Symmetry

Definition 24.2.2 (Circularly-Symmetric CRV). A CRV Z is said to be circularly-
symmetric if for any deterministic φ ∈ [−π, π) the distribution of eiφZ is identical
to the distribution of Z:

eiφZ
L= Z, φ ∈ [−π, π). (24.4)

Note 24.2.3. If the expectation of a circularly-symmetric CRV is defined, then it
must be zero.

Proof. Let Z be circularly-symmetric. It then follows from (24.4) that eiφZ and Z
are of equal expectation, so

E[Z] = E
[
eiφZ

]
= eiφE[Z] , φ ∈ [−π, π),

which, by considering a φ for which eiφ 6= 1, implies that E[Z] must be zero.

To shed some light on the definition of circular symmetry we shall need Proposi-
tion 24.2.5 ahead, which is highly intuitive but a bit cumbersome to state. Before
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stating it we provide its discrete counterpart, which is a bit easier to state: it
makes formal the intuition that if after giving the wheel-of-fortune an arbitrary
spin, you give it another fair spin, then the combined result is a fair spin that does
not depend on the initial spin. The case η = 2 is critical in cryptography. It shows
that taking the mod-2 sum of a binary source sequence with a sequence of IID
random bits results in a sequence that is independent of the source sequence.

Proposition 24.2.4. Fix a positive integer η, and define the set A = {0, . . . , η−1}.
Let N be a RV taking value in the set A. Then the following statements are
equivalent:

(a) The RV N is uniformly distributed over the set A.

(b) For any integer-valued RV K that is independent of N , the RV (N+K) mod η
is independent of K and uniformly distributed over A.1

Proof. We first show (b) ⇒ (a). To this end, define K to be a RV that takes on
the value zero deterministically. Being deterministic, it is independent of every
RV, and in particular of N . Statement (b) thus guarantees that (N + 0) mod η is
uniformly distributed over A. Since we have assumed from the outset that N takes
value in A, it follows that (N + 0) mod η = N , so the uniformity of (N + 0) mod η
over A implies the uniformity of N over A.

We next show (a) ⇒ (b). To this end, we need to show that if N is uniformly
distributed over A and if K is independent of N , then2

Pr
[(

(N +K) mod η
)

= a
∣∣∣K = k

]
=

1
η
,
(
k ∈ Z, a ∈ A

)
. (24.5)

By the independence of N and K it follows that

Pr
[(

(N+K) mod η
)

= a
∣∣∣K = k

]
= Pr

[(
(N+k) mod η

)
= a

]
,
(
k ∈ Z, a ∈ A

)
,

so to prove (24.5) it suffices to prove

Pr
[(

(N + k) mod η
)

= a
]

=
1
η
,
(
k ∈ Z, a ∈ A

)
. (24.6)

This can be proved as follows. Because N is uniformly distributed over A, it follows
thatN+k is uniformly distributed over the set {k, k+1, . . . , k+η−1}. And, because
the mapping m 7→ (m mod η) is a one-to-one mapping from {k, k+1, . . . , k+η−1}
onto A, this implies that (N + k) mod η is also uniformly distributed over A, thus
establishing (24.6).

Proposition 24.2.5. Let Θ be a RV taking value in [−π, π). Then the following
statements are equivalent:

1Here m mod η is the remainder of dividing m by η, i.e., the unique ν ∈ A such that m − ν
is an integer multiple of η. E.g. 17 mod 8 = 1.

2Recall that the random variables X and Y are independent if, and only if, the conditional
distribution of X given Y is equal to the marginal distribution of X.
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−π + φ π + φ

+π

−π

Figure 24.1: The function ξ 7→
(
ξ mod [−π,+π)

)
plotted for ξ ∈ [−π + φ, π + φ).

(a) The RV Θ is uniformly distributed over [−π, π).

(b) For any real RV Φ that is independent of Θ, the RV (Θ + Φ) mod [−π, π) is
independent of Φ and uniformly distributed over the interval [−π, π).3

Proof. The proof is similar to the proof of Proposition 24.2.4 but with an added
twist. The twist is needed because if X has a uniform density and if a function g
is one-to-one (injective) and onto (surjective), then g(X) need not be uniformly
distributed. (For example, if X ∼ U ([0, 1]) and if g : [0, 1] → [0, 1] maps ξ to ξ2,
then g(X) is not uniform.)

To prove that (b) implies (a) we simply apply (b) to the deterministic RV Φ = 0.

We next prove that (a) implies (b). As in the discrete case, it suffices to show that
if Θ is uniformly distributed over [−π, π), then for any deterministic φ ∈ R the
distribution of (Θ + φ) mod [−π, π) is uniform over [−π, π), irrespective of φ. To
this end we first note that because Θ is uniform over [−π, π) it follows that Θ+φ is
uniform over [φ−π, φ+π). Consider now the mapping g : [φ−π, φ+π)→ [−π, π)
defined by g : ξ 7→

(
ξ mod [−π, π)

)
. This function is a one-to-one mapping onto

[−π, π) and is differentiable except at the point ξ∗ ∈ [φ − π, φ + π) satisfying
ξ∗ mod [−π, π) = π, i.e., the point ξ∗ ∈ [φ−π, φ+π) of the form ξ∗ = 2πm+π for
some integerm. At all other points its derivative is 1; see Figure 24.1. (Incidentally,
−π + φ is mapped to a negative number if φ < ξ∗ and to a positive number if
φ > ξ∗. In Figure 24.1 we assume the latter.) Applying the formula for computing
the density of g(X) from the density of X (Theorem 17.3.4) we find that if Θ + φ
is uniform over [φ− π, φ+ π), then g(φ+ Θ) is uniform over [−π, π).

With the aid of Proposition 24.2.5 we can now give alternative characterizations
of circular symmetry.

3Here x mod [−π, π) is the unique ξ ∈ [−π, π) such that x− ξ is an integer multiple of 2π.
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Proposition 24.2.6 (Characterizing Circular Symmetry). Let Z be a CRV with
a density. Then each of the following statements is equivalent to the statement
that Z is circularly-symmetric:

(a) The distribution of eiφZ is identical to the distribution of Z, for any deter-
ministic φ ∈ [−π, π).

(b) The CRV Z has a radially-symmetric density function, i.e., a density fZ(·)
whose value at z depends on z only via its modulus |z|.

(c) The CRV Z can be written as Z = ReiΘ, where R ≥ 0 and Θ are independent
real random variables and Θ ∼ U ([−π, π)).

Proof. Statement (a) is the definition of circular symmetry (Definition 24.2.2).

The proof of (a) ⇒ (b) is slightly obtuse because the density of a CRV is not
unique.4 We begin by noting that if Z is of density fZ(·), then by (17.34) the
CRV eiφZ is of density w 7→ fZ(e−iφw). Thus, if Z L= eiφZ and if Z is of density
fZ(·), then Z is also of density w 7→ fZ(e−iφw). Consequently, if Z is circularly-
symmetric, then for every φ ∈ [−π, π) the mapping w 7→ fZ(e−iφw) is a density
for Z. We can therefore conclude that the mapping

w 7→ 1
2π

∫ π

−π
fZ(e−iφw) dφ

is also a density for Z, and this function is radially-symmetric.

The fact that (b) ⇒ (c) follows because if we define R to be the magnitude of Z
and Θ to be its argument, then Z = ReiΘ, and

fR,Θ(r, θ) = rfZ(r eiθ)
= rfZ(r)

=
(
2πrfZ(r)

) 1
2π
,

where the first equality follows from (17.29) and the second from our assumption
that fZ(z) depends on z only via its modulus |z|. The joint density of R,Θ is thus
of a product form, thereby indicating that R and Θ are independent. And it does
not depend on θ, thus indicating that its marginal Θ is uniformly distributed.

We finally show that (c) ⇒ (a). To that end we assume that R ≥ 0 and Θ are
independent with Θ being uniformly distributed over [−π, π) and proceed to show
that ReiΘ is circularly-symmetric, i.e., that

ReiΘ
L= Rei(Θ+φ), φ ∈ [−π, π). (24.7)

To prove (24.7) we note that

ei(Θ+φ) = ei((Θ+φ) mod [−π,π))

L= eiΘ, (24.8)

4And not all the functions that are densities for a given circularly-symmetric CRV Z are
radially-symmetric. The radial symmetry can be broken on a set of Lebesgue measure zero. We
can therefore only claim that there exists “a” radially-symmetric density function for Z.
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where the first equality follows from the periodicity of the complex exponentials,
and where the equality in distribution follows from Proposition 24.2.5 because
Θ ∼ U ([−π, π)). The proof is now completed by noting that (24.7) follows from
(24.8) and from the independence of R and Θ. (If X is independent of Y , if X is
independent of Z, and if Y L= Z, then (X,Y ) L= (X,Z) and hence XY L= XZ.)

Example 24.2.7. Let the CRV Z be given by Z = eiΦ, where Φ ∼ U ([−π, π)).
Then Z is uniformly distributed over the unit circle {z : |z| = 1} and is circularly-
symmetric. It does not have a density.

24.2.3 Properness and Circular Symmetry

Proposition 24.2.8. Every finite-variance circularly-symmetric CRV is proper.

Proof. Let Z be a finite-variance circularly-symmetric CRV. By Note 24.2.3 it
follows that E[Z] = 0. To conclude the proof it remains to show that E

[
Z2
]

= 0.
To this end we note that

E
[
Z2
]

= e−i2φE
[(
eiφZ

)2]
= e−i2φE

[
Z2
]
, φ ∈ [−π, π), (24.9)

where the first equality follows by rewriting Z2 as e−i2φ
(
eiφZ

)2, and where the
second equality follows because the circular symmetry of Z guarantees that Z
and eiφZ have the same law, so the expectation of their squares must be equal.
But (24.9) cannot be satisfied for all φ ∈ [−π, π) (or for that matter for any φ such
that ei2φ 6= 1) unless E

[
Z2
]

= 0.

Note 24.2.9. Not every proper CRV is circularly-symmetric.

Proof. Consider the CRV Z that takes on the four values 1 + i, 1− i, −1 + i, and
−1− i equiprobably. Its real and imaginary parts are independent, each taking on
the values ±1 equiprobably. Computing E[Z] and E

[
Z2
]

we find that they are both
zero, so Z is proper. To see that Z is not circularly-symmetric consider the random
variable eiπ/4Z. Its distribution is different from the distribution of Z because Z
takes value in the set {1 + i,−1 + i, 1 − i,−1 − i}, and eiπ/4Z takes value in the
rotated set {

√
2,−
√

2,
√

2i,−
√

2i}.

The fact that not every proper CRV is circularly-symmetric is not surprising be-
cause whether a CRV is proper or not is determined solely by its mean and by the
covariance matrix of its real and imaginary parts, whereas circular symmetry has
to do with the entire distribution.

24.2.4 Complex Gaussians

The definition of a complex Gaussian builds on the definition of a real Gaussian
vector (Definition 23.1.1).
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Definition 24.2.10 (Complex Gaussian). A complex Gaussian is a CRV whose
real and imaginary parts are jointly Gaussian real random variables. A centered
complex Gaussian is a complex Gaussian of zero mean.

An example of a complex Gaussian is the standard complex Gaussian, which we
encountered in Section 24.2.1.

The class of complex Gaussians is closed under multiplication by deterministic
complex numbers. Thus, if Z is a complex Gaussian and if α ∈ C is deterministic,
then αZ is also a complex Gaussian. Indeed,(

Re(αZ)
Im(αZ)

)
=
(

Re(α) − Im(α)
Im(α) Re(α)

)(
Re(Z)
Im(Z)

)
,

so the claim follows from the fact that multiplying a real Gaussian vector by a
deterministic real matrix results in a real Gaussian vector (Proposition 23.6.3).
We leave it to the reader to verify that, more generally, if Z is a complex Gaussian
and if α, β ∈ C are deterministic, then αZ+βZ∗ is also a complex Gaussian. (This
is a special case of Proposition 24.3.9 ahead.)

Not every centered complex Gaussian can be expressed as the scaling of a standard
complex Gaussian by some complex number. But the following result characterizes
those that can:

Proposition 24.2.11.

(i) For every centered complex Gaussian Z we can find coefficients α, β ∈ C so
that

Z
L= αW + βW ∗, (24.10)

where W is a standard complex Gaussian.

(ii) A centered complex Gaussian Z is proper if, and only if, there exists some
α ∈ C such that Z L= αW , where W is a standard complex Gaussian.

Proof. We begin with Part (i). First note that since Z is a complex Gaussian, its
real and imaginary parts are jointly Gaussian, and it follows from Corollary 23.6.13
that there exist deterministic real numbers a(1,1), a(1,2), a(2,1), a(2,2) such that(

Re(Z)
Im(Z)

)
L=
(
a(1,1) a(1,2)

a(2,1) a(2,2)

)(
W1

W2

)
, (24.11)

where W1 and W2 are independent real standard Gaussians. Next note that by
direct computation(

Re(αW + βW ∗)
Im(αW + βW ∗)

)
=

(
Re(α)+Re(β)√

2

Im(β)−Im(α)√
2

Im(β)+Im(α)√
2

Re(α)−Re(β)√
2

)(√
2 Re(W )√
2 Im(W )

)
. (24.12)

Since, by the definition of a standard complex Gaussian W ,(
W1

W2

)
L=
(√

2 Re(W )√
2 Im(W )

)
(24.13)
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it follows from (24.11), (24.12), and (24.13) that if α and β are chosen so that(
Re(α)+Re(β)√

2

Im(β)−Im(α)√
2

Im(β)+Im(α)√
2

Re(α)−Re(β)√
2

)
=
(
a(1,1) a(1,2)

a(2,1) a(2,2)

)
,

i.e., if

α =
1√
2

((
a(1,1) + a(2,2)

)
+ i
(
a(2,1) − a(1,2)

))
,

β =
1√
2

((
a(1,1) − a(2,2)

)
+ i
(
a(2,1) + a(1,2)

))
,

then (
Re(Z)
Im(Z)

)
L=
(

Re(αW + βW ∗)
Im(αW + βW ∗)

)
,

and (24.10) is satisfied.

We next turn to Part (ii). One direction is straightforward: if Z L= αW , then Z
must be proper because from (24.3) it follows that E[αW ] = αE[W ] = 0 and
E
[
(αW )2

]
= α2E

[
W 2
]

= 0.

We next prove the other direction that if Z is a proper complex Gaussian, then
Z

L= αW for some α ∈ C and some standard complex Gaussian W . Let Z be a
proper complex Gaussian. By Part (i) it follows that there exist α, β ∈ C such that
(24.10) is satisfied. Consequently, for this choice of α and β we have

0 = E
[
Z2
]

= E
[
(αW + βW ∗)2

]
= α2E

[
W 2
]
+ 2αβE[WW ∗] + β2E

[
(W ∗)2

]
= 2αβ,

where the first equality follows because Z is proper; the second because α and β
have been chosen so that (24.10) holds; the third by opening the brackets and using
the linearity of expectation; and the fourth by (24.3) and (24.2). It follows that
either α or β must be zero. SinceW L= W ∗, there is no loss in generality in assuming
that β = 0, thus establishing the existence of α ∈ C such that Z L= αW .

By Proposition 24.2.11 (ii) we conclude that if Z is a proper complex Gaussian, then
Z

L= αW for some α ∈ C and some standard complex Gaussian W . Consequently,
the density of such a CRV Z (that is not deterministically zero) is given by

fZ(z) =
fW (z/α)
|α|2

=
1

π|α|2
e
− |z|2

|α|2 , z ∈ C,

where the first equality follows from the way the density of a CRV behaves under
linear transformations (Theorem 17.3.7 or Lemma 17.4.6), and where the second
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equality follows from (24.1). We thus conclude that if Z is a proper complex Gaus-
sian, then its density is radially-symmetric, and Z must be circularly-symmetric.
The reverse is also true: since every complex Gaussian is of finite variance, and since
every finite-variance circularly-symmetric CRV is also proper (Proposition 24.2.8),
we conclude that every circularly-symmetric complex Gaussian is proper. Thus:

Proposition 24.2.12. A complex Gaussian is circularly-symmetric if, and only if,
it is proper.

The picture that thus emerges is the following.

(i) Every finite-variance circularly-symmetric CRV is proper.

(ii) Some proper CRVs are not circularly symmetric.

(iii) A Gaussian CRV is circularly-symmetric, if and only if, it is proper.

We shall soon see that these observations extend to vectors too. In fact, the reader
is encouraged to consult Figure 24.2 on Page 508, which holds also for CRVs.

24.3 Vectors

24.3.1 Standard Complex Gaussian Vectors

Definition 24.3.1 (Standard Complex Gaussian Vector). A standard complex
Gaussian vector is a complex random vector whose components are IID and each
of them is a standard complex Gaussian random variable.

If W is a standard complex Gaussian n-vector, then, by the independence of its n
components and by (24.1), its density is given by

fW(w) =
1
πn

e−w†w . w ∈ Cn. (24.14)

By the independence of its components and by (24.3)

E[W] = 0 and E
[
WWT

]
= 0. (24.15)

Thus, every standard complex Gaussian vector is proper (Section 17.4.2). By the
independence of the components and by (24.2) it also follows that

E
[
WW†] = In, (24.16)

where we remind the reader that In denotes the n× n identity matrix.

24.3.2 Circularly-Symmetric Complex Random Vectors

Definition 24.3.2 (Circularly-Symmetric Complex Random Vectors). We say that
the complex random vector Z is circularly-symmetric if for every φ ∈ [−π, π)
the law of eiφZ is identical to the law of Z.
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An equivalent definition can be given in terms of linear functionals:

Proposition 24.3.3 (Circular Symmetry and Linear Functionals). Each of the fol-
lowing statements is equivalent to the statement that the complex random n-vector Z
is circularly-symmetric.

(a) For every φ ∈ [−π, π) the law of the complex random vector eiφZ is the same
as the law of Z:

eiφZ L= Z, φ ∈ [−π, π). (24.17)

(b) For every deterministic vector α ∈ Cn, the CRV αTZ is circularly-symmetric:

eiφαTZ L= αTZ,
(
α ∈ Cn, φ ∈ [−π, π)

)
. (24.18)

Proof. Statement (a) is just the definition of circular symmetry. We next show
that the two statements (a) and (b) are equivalent. We begin by proving that (a)
implies (b). This is the easy part because applying the same linear functional to
two random vectors that have the same law results in random variables that have
the same law. Consequently, (24.17) implies (24.18).

We now prove that (b) implies (a). We thus assume (24.18) and set out to prove
(24.17). By Theorem 17.4.4 it follows that to establish (24.17) it suffices to show
that the random vectors on the RHS and LHS of (24.17) have the same character-
istic function, i.e., that

E

[
ei Re

(
$† eiφ Z

)]
= E

[
ei Re($†Z)

]
, $ ∈ Cn. (24.19)

But this readily follows from (24.18) because upon substituting $† for αT in
(24.18) we obtain that

$†Z L= $† eiφ Z, $ ∈ Cn,

and this implies (24.19), because if Z1
L= Z2, then E[g(Z1)] = E[g(Z2)] for any

measurable function g and, in particular, for the function g : ξ 7→ ei Re(ξ).

The following proposition demonstrates that circular symmetry is preserved by
linear transformations.

Proposition 24.3.4 (Circular Symmetry and Linear Transformations). Let Z be a
circularly-symmetric complex random n-vector and let A be a deterministic complex
m×n matrix. Then the complex random m-vector AZ is also circularly-symmetric.

Proof. By Proposition 24.3.3 it follows that to establish that AZ is circularly-
symmetric it suffices to show that for every deterministic α ∈ Cm the random
variable αTAZ is circularly-symmetric. To show this, fix some arbitrary α ∈ Cm.
Because Z is circularly-symmetric, it follows from Proposition 24.3.3 that for every
deterministic vector β ∈ Cn, the random variable βTZ is circularly-symmetric.
Choosing β = ATα establishes that αTAZ is circularly-symmetric.
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24.3.3 Proper vs. Circularly-Symmetric Vectors

We now extend the relationship between properness and circular symmetry to
vectors:

Proposition 24.3.5 (Circular Symmetry Implies Properness).

(i) Every finite-variance circularly-symmetric random vector is proper.

(ii) Some proper random vectors are not circularly-symmetric.

Proof. Part (ii) requires no proof because a CRV can be viewed as a complex
random vector taking value in C1, and we have already seen in Section 24.2.3 an
example of a CRV which is proper but not circularly-symmetric (Note 24.2.9).

We now prove Part (i). Let Z be a finite-variance circularly-symmetric random
n-vector. To establish that Z is proper we will show that for every α ∈ Cn the
CRV αTZ is proper (Proposition 17.4.2). To this end, fix an arbitrary α ∈ Cn.
By Proposition 24.3.3 it follows that the CRV αTZ is circularly-symmetric. And
because Z is of finite variance, so is αTZ. Being a circularly-symmetric CRV of
finite variance, it follows from Section 24.2.3 that αTZ must be proper.

24.3.4 Complex Gaussian Vectors

Definition 24.3.6 (Complex Gaussian Vectors). A complex random n-vector Z is
said to be a complex Gaussian vector if the real random 2n-vector(

Re
(
Z(1)

)
, . . . ,Re

(
Z(n)

)
, Im

(
Z(1)

)
, . . . , Im

(
Z(n)

))T

(24.20)

consisting of the real and imaginary parts of its components is a real Gaussian
vector. A centered complex Gaussian vector is a zero-mean complex Gaussian
vector.

Note that, Theorem 23.6.7 notwithstanding, the distribution of a centered complex
Gaussian vector is not uniquely specified by its covariance matrix. It is uniquely
specified by the covariance matrix if the Gaussian vector is additionally known to
be proper. This is a direct consequence of the following proposition.

Proposition 24.3.7. The distribution of a centered complex Gaussian vector Z is
uniquely specified by the matrices

K = E
[
ZZ†

]
and L = E

[
ZZT

]
.

Proof. Let R be the real 2n-vector that results from stacking the real part of Z on
top of its imaginary part as in (24.20). We will prove the proposition by showing
that the matrices K and L uniquely specify the distribution of R.

Since Z is a complex Gaussian n-vector, R is a real Gaussian 2n-vector. Since Z is
of zero mean, so is R. Consequently, the distribution of R is fully characterized by
its covariance matrix E

[
RRT

]
(Theorem 23.6.7). The proof will thus be concluded
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once we show that the matrices L and K determine the covariance matrix of R.
Indeed, as we next verify,

E
[
RRT

]
=

1
2

(
Re(K) + Re(L) Im(L)− Im(K)
Im(L) + Im(K) Re(K)− Re(L)

)
. (24.21)

To verify (24.21) one needs to compute each of the block entries separately. We
shall see how this is done by computing the top-right entry. The rest of the entries
are left for the reader to verify.

E
[
Re(Z) Im(Z)T

]
= E

[(
Z + Z∗

2

)(
Z− Z∗

2i

)T
]

= E

[(
Z + Z∗

2

)(
ZT − Z†

2i

)]
=

1
2

(
E
[
ZZT

]
− E

[
Z∗Z†

]
2i

−
E
[
ZZ†

]
− E

[
Z∗ZT

]
2i

)

=
1
2
(
Im(L)− Im(K)

)
.

Corollary 24.3.8. The distribution of a proper complex Gaussian vector is uniquely
specified by its covariance matrix.

Proof. Follows from Proposition 24.3.7 by noting that by specifying that a complex
Gaussian is proper we are specifying that the matrix L is zero (Definition 17.4.1).

Proposition 24.3.9 (Linear Transformations of Complex Gaussians). If Z is a
complex Gaussian n-vector and if A and B are deterministic m × n complex ma-
trices, then the m-vector

AZ + BZ∗

is a complex Gaussian.

Proof. Define the complex random m-vector C , AZ + BZ∗. To prove that C is
Gaussian we recall that linearly transforming a real Gaussian vector yields a real
Gaussian vector (Proposition 23.6.3), and we note that the real random 2m-vector
whose components are the real and imaginary parts of C can be expressed as the
result of applying a linear transformation to the real Gaussian 2n-vector whose
components are the real and imaginary parts of the components of Z:(

Re(C)
Im(C)

)
=
(

Re(A) + Re(B) Im(B)− Im(A)
Im(A) + Im(B) Re(A)− Re(B)

)(
Re(Z)
Im(Z)

)
.

Proposition 24.3.10 (Characterizing Complex Gaussian Vectors). Each of the
following statements is equivalent to the statement that Z is a complex Gaussian
n-vector.

(a) The real random vector whose 2n components correspond to the real and
imaginary parts of Z is a real Gaussian vector.
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(b) For every deterministic vector α ∈ Cn, the CRV αTZ is a complex Gaussian
random variable.

(c) There exist complex n×m matrices A and B and a vector µ ∈ Cn such that

Z L= AW + BW∗ + µ

for some standard complex Gaussian random m-vector W.

Proof. Statement (a) is just the definition of a Gaussian complex random vector.

We next prove the equivalence of (a) and (b). That (a) implies (b) follows from
Proposition 24.3.9 (by substituting αT for A and 0 for B).

To prove that (b) ⇒ (a) it suffices (by Definition 24.3.6 and Theorem 23.6.17) to
show that (b) implies that any real linear functional of the real random 2n-vector
comprising the real and imaginary parts of Z is a real Gaussian random variable,
i.e., that for every choice of the real constants α(1), . . . , α(n) and β(1), . . . , β(n) the
random variable

n∑
j=1

α(j) Re
(
Z(j)

)
+

n∑
j=1

β(j) Im
(
Z(j)

)
(24.22)

is a Gaussian real random variable. To that end we rewrite (24.22) as
n∑
j=1

α(j) Re
(
Z(j)

)
+

n∑
j=1

β(j) Im
(
Z(j)

)
= αT Re

(
Z
)

+ βT Im
(
Z
)

(24.23)

= Re
(
(α− iβ)TZ

)
, (24.24)

where we define the real vectors α and β as α , (α(1), . . . , α(n))T ∈ Rn and
β , (β(1), . . . , β(n))T ∈ Rn. Now (b) implies that (α − iβ)TZ is a Gaussian
complex random variable, so its real part Re((α − iβ)TZ) must be a real Gaus-
sian random variable (Definition 24.2.10 and Proposition 23.6.6), thus establishing
that (b) implies that (24.22) is a real Gaussian random variable.

We next turn to proving the equivalence of (a) and (c). That (c) implies (a) follows
directly from Proposition 24.3.9 applied to the Gaussian vector W. The proof of
the implication (a) ⇒ (c) is very similar to the proof of its scalar version (24.10).
We first note that since we can choose µ = E[Z], it suffices to prove the result for
the centered case. Now (a) implies that there exist n × n matrices D,E,F,G such
that (

Re(Z)
Im(Z)

)
L=
(

D E
F G

)(
W1

W2

)
, (24.25)

where W1 and W2 are independent real standard Gaussian n-vectors (Defini-
tion 23.1.1). On the other hand(

Re(AW + BW∗)
Im(AW + BW∗)

)
=

(
Re(A)+Re(B)√

2

Im(B)−Im(A)√
2

Im(B)+Im(A)√
2

Re(A)−Re(B)√
2

)(√
2 Re(W)√
2 Im(W)

)
. (24.26)

If W is a standard complex Gaussian, then(√
2 Re(W)√
2 Im(W)

)
L=
(
W1

W2

)
,
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where W1 and W2 are as above. Consequently, the representations (24.25) and
(24.26) agree if (

D E
F G

)
=

(
Re(A)+Re(B)√

2

Im(B)−Im(A)√
2

Im(B)+Im(A)√
2

Re(A)−Re(B)√
2

)
,

i.e., if we set

A =
1√
2

(
(D + G) + i(F− E)

)
,

B =
1√
2

(
(D− G) + i(F + E)

)
.

24.3.5 Proper Complex Gaussian Vectors

A proper complex Gaussian vector is a complex Gaussian vector that is also proper
(Definition 17.4.1). Thus, Z is a proper complex Gaussian vector if it is a centered
complex Gaussian vector satisfying E

[
ZZT

]
= 0.

Recall that, by Proposition 24.3.5, every finite-variance circularly-symmetric com-
plex random vector is also proper, but that some random vectors are proper and not
circularly-symmetric. We next show that for Gaussian vectors, circular symmetry
is equivalent to properness.

Proposition 24.3.11 (For Complex Gaussians, Proper = Circularly-Symmetric).
A complex Gaussian vector is proper if, and only if, it is circularly-symmetric.

Proof. Every circularly-symmetric complex Gaussian is proper, because every com-
plex Gaussian is of finite-variance, and every finite-variance circularly-symmetric
complex random vector is proper (Proposition 24.3.5).

We now turn to the reverse implication, i.e., that if a complex Gaussian vector
is proper, then it is circularly-symmetric. Assume that Z is a proper Gaussian
n-vector. We will prove that Z is circularly-symmetric using Proposition 24.3.3 by
showing that for every deterministic vector α ∈ Cn the random variable αTZ is
circularly-symmetric.

To that end, fix some arbitrary α ∈ Cn. Since Z is a Gaussian vector, it follows that
αTZ is a Gaussian CRV (Proposition 24.3.9 with the substitution of αT for A and
0 for B). Moreover, since Z is proper, so is αTZ (Proposition 17.4.2). We have thus
established that αTZ is a proper Gaussian CRV and hence, by Proposition 24.2.12,
also circularly-symmetric.

The relationship between circular symmetry, properness, and Gaussianity is illus-
trated in Figure 24.2.

We next address the existence of a proper complex Gaussian of a given covariance
matrix. We first recall that we say that a complex n × n matrix K is complex
positive semidefinite and write K � 0 if α†Kα is a nonnegative real number for
every α ∈ Cn. Recall also that an n × n complex matrix K is a complex positive
definite matrix if, and only if, there exists a complex n × n matrix S such that
K = SS†; see (Axler, 1997, Chapter 7, Theorem 7.27).
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random vectors

finite-variance

proper

circularly symmetric

Gaussian

Figure 24.2: The relationship between circular symmetry, Gaussianity, and proper-
ness. The outer region corresponds to all complex random vectors. Within that is
the set of all vectors whose components are of finite variance. Within it is the family
of all proper random vectors. The slanted lines indicate the circularly-symmetric
vectors, and the gray area corresponds to the Gaussian vectors. The same relations
hold for scalars and for stochastic processes.

Proposition 24.3.12.

(i) Given any n×n complex positive semidefinite matrix K, there exists a proper
complex Gaussian n-vector whose covariance matrix is K.

(ii) The distribution of a proper Gaussian complex vector is fully specified by its
covariance matrix.

(iii) If Z is a proper complex Gaussian n-vector of nonsingular covariance matrix
K, then its density is given by:

fZ(z) =
1

πn det K
e−z†K−1z, z ∈ Cn. (24.27)

Note 24.3.13. We denote the distribution of a proper Gaussian complex vector of
covariance matrix K by

NC(0,K) .

Proof. To prove (i) we note that since K is positive semidefinite, it follows that
there exists an n× n matrix S such that

K = SS†. (24.28)
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Consider now the vector
Z = SW, (24.29)

where W is a standard complex Gaussian n-vector. We will show that Z has the
desired properties. First, it must be Gaussian because it is the result of applying
a deterministic linear mapping to the Gaussian vector W (Proposition 24.3.9). It
is centered because W is centered (24.15) and because E[SW] = SE[W]. It is
proper because it is the result of linearly transforming the proper complex random
vector W (Proposition 17.4.3 and (24.15)). Finally, its covariance matrix is

E
[
(SW)(SW)†

]
= E

[
SWW†S†

]
= SE

[
WW†]S†

= SInS
†

= K.

Part (ii) was proved in Corollary 24.3.8.

To prove (iii) we use (24.29) & (24.28) along with the change of variables formula
(Lemma 17.4.6) and the density of a standard Gaussian complex random vector
(24.14) to obtain

fZ(z) =
1

|det S|2
fW(S−1z)

=
1

πn det(SS†)
e−(S−1z)†S−1z

=
1

πn det KZZ
e−z†K−1z, z ∈ Cn.

24.4 Exercises

Exercise 24.1 (The Complex Conjugate of a Circularly-Symmetric CRV). Must the com-
plex conjugate of a circularly-symmetric CRV be circularly-symmetric?

Exercise 24.2 (Scaled Circularly-Symmetric CRV). Show that if Z is circularly-symmetric
and if α ∈ C is deterministic, then the distribution of αZ depends on α only via its
magnitude |α|.

Exercise 24.3 (The n-th Power of a Circularly-Symmetric CRV). Show that if Z is a
circularly-symmetric CRV and if n is a positive integer, then Zn is circularly-symmetric.

Exercise 24.4 (The Characteristic Function of Circularly-Symmetric CRVs). Show that a
CRV Z is circularly-symmetric if, and only if, its characteristic function ΦZ(·) is radially-
symmetric in the sense that ΦZ($) depends on $ only via its magnitude |$|.

Exercise 24.5 (Multiplying Independent CRVs). Show that the product of two indepen-
dent complex random variables is circularly-symmetric whenever (at least) one of them
is circularly-symmetric.
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Exercise 24.6 (The Complex Conjugate of a Gaussian CRV). Must the complex conjugate
of a Gaussian CRV be Gaussian?

Exercise 24.7 (Independent Components). Show that if the complex random variables
W and Z are circularly-symmetric and independent, then the random vector (W,Z)T is
circularly-symmetric.

Exercise 24.8 (The Characteristic Function of a Proper Complex Gaussian Vector).
Compute the characteristic function of a proper complex Gaussian vector of covariance
matrix K.

Exercise 24.9 (Jointly Circularly-Symmetric Complex Gaussians). As in Definition 23.7.1,
we can also define jointly complex Gaussians and jointly circularly-symmetric complex
Gaussians. Extend the results of Section 23.7 by showing:

(i) Two centered jointly complex Gaussian vectors Z1 and Z2 are independent if, and
only if, they satisfy

E
[
Z1Z

†
2

]
= 0 and E

[
Z1Z

T
2

]
= 0.

(ii) Two jointly circularly-symmetric complex Gaussian vectors Z1 and Z2 are indepen-
dent if, and only if, they satisfy

E
[
Z1Z

†
2

]
= 0.

(iii) If Z1,Z2 are centered jointly complex Gaussians, then, conditional on Z2 = z2, the
complex random vector Z1 is a complex Gaussian such that

E
[(

Z1 − E[Z1 |Z2 = z2]
)(

Z1 − E[Z1 |Z2 = z2]
)† ∣∣∣Z2 = z2

]
and

E
[(

Z1 − E[Z1 |Z2 = z2]
)(

Z1 − E[Z1 |Z2 = z2]
)T ∣∣∣Z2 = z2

]
do not depend on z2 and such that the conditional mean E[Z1 |Z2 = z2] can be
expressed as Az2 + Bz∗2 for some matrices A and B that do not depend on z2.

(iv) If Z1,Z2 are jointly circularly-symmetric complex Gaussians, then, conditional on
Z2 = z2, the complex random vector Z1 is a circularly-symmetric complex Gaussian
of a covariance matrix that does not depend on z2 and of a mean that can be
expressed as Az2 for some matrix A that does not depend on z2.

Exercise 24.10 (Limits of Complex Gaussians). Extend the definition of almost-sure con-
vergence (23.71) to complex random vectors, and show that if the complex Gaussian
d-vectors Z1,Z2, . . . converge to Z almost surely, then Z must be a complex Gaussian.

Exercise 24.11 (Limits of Circularly-Symmetric Complex Random Variables). Consider
a sequence Z1, Z2, . . . of circularly-symmetric complex random variables that converges
almost surely to the CRV Z. Show that Z must be circularly-symmetric. Extend this
result to complex random vectors.

Hint: Consider the characteristic functions of Z,Z1, Z2, . . ., and recall the proof of Theo-
rem 19.9.1.
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Exercise 24.12 (Limits of Circularly-Symmetric Complex Gaussians). Let Z1, Z2, . . . be
a sequence of circularly-symmetric complex Gaussians that converges almost surely to
the CRV Z. Show that Z must be a circularly-symmetric Gaussian. Extend to complex
random vectors.

Hint: Either combine Exercises 24.10 & 24.11 or prove directly using the characteristic
function as in the proof of Theorem 19.9.1.



Chapter 25

Continuous-Time Stochastic Processes

25.1 Notation

Recall from Section 12.2 that a continuous-time stochastic process
(
X(t), t ∈ R

)
is a family of random variables that are defined on a common probability space
(Ω,F , P ) and that are indexed by the real line (time). We denote by X(t) the
time-t sample of

(
X(t), t ∈ R

)
, i.e., the random variable to which t is mapped

(the RV indexed by t). This RV is sometimes also called the state at time t.
Rather than writing

(
X(t), t ∈ R

)
, we sometimes denote the SP by

(
X(t)

)
or

by X. Perhaps the clearest way to denote the process is as a mapping:

X : Ω× R→ R, (ω, t) 7→ X(ω, t).

For a fixed t ∈ R, the time-t sample X(t) is the mapping X(·, t) from Ω to the real
line, i.e., the RV ω 7→ X(ω, t) indexed by t. If we fix ω ∈ Ω and view X(ω, ·) as a
mapping t 7→ X(ω, t), then we obtain a function of time. This function is called a
trajectory, sample-path, path, sample-function, or realization.

ω 7→ X(ω, t) time-t sample for a fixed t ∈ R (random variable)
t 7→ X(ω, t) trajectory for a fixed ω ∈ Ω (function of time)

Recall also from Section 12.2 that the process is centered if for every t ∈ R the
RV X(t) is of zero mean. It is of finite variance if for every t ∈ R the RV X(t)
is of finite variance.

25.2 The Finite-Dimensional Distributions

The finite-dimensional distributions (FDDs) of a continuous-time SP is the family
of all joint distributions of n-tuples of the form (X(t1), . . . , X(tn)), where n can
be any positive integer and t1, . . . , tn ∈ R are arbitrary epochs. To specify the
FDDs of a SP

(
X(t)

)
one must thus specify for every n ∈ N and for every choice of

512
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the epochs t1, . . . , tn ∈ R the distribution of the n-tuple
(
X(t1), . . . , X(tn)

)
. This

is a conceptually clear if formidable task. We denote the cumulative distribution
function of the n-tuple (X(t1), . . . , X(tn)) by

Fn
(
ξ1, . . . , ξn; t1, . . . , tn

)
, Pr

[
X(t1) ≤ ξ1, . . . , X(tn) ≤ ξn

]
.

We next show that the FDDs of every SP
(
X(t)

)
must satisfy two key properties:

the symmetry property and the consistency property. The symmetry property
is that Fn(·; ·) is unaltered when we simultaneously permute its right arguments
(the t’s) and its left arguments (the ξ’s) by the same permutation. That is, for
every n ∈ N; every choice of the epochs t1, . . . , tn ∈ R; every ξ1, . . . , ξn ∈ R; and
every permutation π on {1, . . . , n}

Fn
(
ξπ(1), . . . , ξπ(n); tπ(1), . . . , tπ(n)

)
= Fn

(
ξ1, . . . , ξn; t1, . . . , tn

)
. (25.1)

This property is a generalization to n-tuples of the obvious fact that if X and Y are
random variables, then Pr[X ≤ x, Y ≤ y] = Pr[Y ≤ y,X ≤ x] for every x, y ∈ R.

The consistency property is that whenever n ∈ N and t1, . . . , tn, ξ1, . . . , ξn ∈ R,

lim
ξn→∞

Fn
(
ξ1, . . . , ξn−1, ξn; t1, . . . , tn−1, tn

)
= Fn−1

(
ξ1, . . . , ξn−1; t1, . . . , tn−1

)
.

(25.2)
This property is a consequence of the fact that the set{

ω ∈ Ω : X(ω, t1) ≤ ξ1, . . . , X(ω, tn−1) ≤ ξn−1, X(ω, tn) ≤ ξn
}

is increasing in ξn and converges as ξn tends to infinity to the set{
ω ∈ Ω : X(ω, t1) ≤ ξ1, . . . , X(ω, tn−1) ≤ ξn−1

}
.

The key result on the existence of stochastic processes of given FDDs is Kol-
mogorov’s Existence Theorem, which states that the symmetry and consistency
properties suffice for a family of finite-dimensional distributions to correspond to
the FDDs of some SP.

Theorem 25.2.1 (Kolmogorov’s Existence Theorem). Let G1(·; ·), G2(·; ·), . . . be
a sequence of functions Gn : Rn × Rn → [0, 1] satisfying

1) that for every n ≥ 1 and every t1, . . . , tn ∈ R the function Gn(·; t1, . . . , tn) is
a valid joint distribution function;1

2) the symmetry property

Gn
(
ξπ(1), . . . , ξπ(n); tπ(1), . . . , tπ(n)

)
= Gn

(
ξ1, . . . , ξn; t1, . . . , tn

)
,

t1, . . . , tn, ξ1, . . . , ξn ∈ R, π a permutation on {1, . . . , n}; (25.3)

1 A function F : Rn → [0, 1] is a valid joint distribution function if there exist random variables
X1, . . . , Xn whose joint distribution function is F (·), i.e.,

Pr[X1 ≤ ξ1, . . . , Xn ≤ ξn] = F (ξ1, . . . , ξn), ξ1, . . . , ξn ∈ R.
Not every function F : Rn → [0, 1] is a valid joint distribution function. For example, a valid joint
distribution function must be monotonic in each variable. See, for example, (Billingsley, 1995,
Theorem 12.5) for a characterization of joint distribution functions.
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3) and the consistency property

lim
ξn→∞

Gn(ξ1, . . . , ξn−1, ξn; t1, . . . , tn−1, tn)

= Gn−1(ξ1, . . . , ξn−1; t1, . . . , tn−1),
t1, . . . , tn, ξ1, . . . , ξn ∈ R. (25.4)

Then there exists a SP
(
X(t)

)
whose FDDs are given by {Gn(·; ·)} in the sense

that
Pr
[
X(t1) ≤ ξ1, . . . , X(tn) ≤ ξn

]
= Gn

(
ξ1, . . . , ξn; t1, . . . , tn

)
for every n ∈ N, all t1, . . . , tn ∈ R, and all ξ1, . . . , ξn ∈ R.

Proof. See, for example, (Billingsley, 1995, Chapter 7, Section 36), (Cramér and
Leadbetter, 2004, Section 3.3), (Grimmett and Stirzaker, 2001, Section 8.6), or
(Doob, 1990, Chapter I § 5).

In the study of n-tuples of random variables we can use the joint distribution
function to answer, at least in principle, most of our probability questions. When it
comes to stochastic processes, however, there are interesting questions that cannot
be answered using the FDDs. For example, it can be shown that the probability
of the event that the SP

(
X(t)

)
produces a sample-path that is continuous at time

zero cannot be computed from the FDDs. This is not due to our limited analytic
capabilities but rather because there exist two stochastic processes of identical
FDDs where for one process this event is of zero probability whereas for the other
it is of probability one (Cramér and Leadbetter, 2004, Section 3.6). Fortunately,
most of the questions of interest to us in Digital Communications can be answered
based on the FDDs.

An exception is a very subtle point related to measurability. From the FDDs alone
one cannot determine whether the trajectories are measurable functions of time,
i.e., whether it makes sense to talk about integrals of the form

∫∞
−∞ x(ω, t) dt. This

issue will be revisited in Section 25.9.

The above discussion motivates us to define the set of events whose probability
can be determined from the FDDs using the axioms of probability, i.e., using the
rules that the probability of the set of all possible outcomes Ω is one and that
the probability of a countable union of disjoint events is the infinite sum of the
probabilities of the events. In the mathematical literature what we are defining is
called the σ-algebra generated by

(
X(t), t ∈ R

)
or the σ-algebra generated

by the cylindrical sets of
(
X(t), t ∈ R

)
.2 For the classical definition see, for

example, (Billingsley, 1995, Section 36).

Definition 25.2.2 (σ-Algebra Generated by a SP). The σ-algebra generated
by a SP

(
X(t), t ∈ R

)
which is defined over the probability space (Ω,F , P ) is

the set of events (i.e., elements of F) whose probability can be computed from the
FDDs of

(
X(t)

)
using only the axioms of probability.

2It is the smallest σ-algebra with respect to which all the random variables
(
X(t), t ∈ R

)
are

measurable.
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We now rephrase our previous statement about continuity as saying that the set
of ω ∈ Ω for which the function t 7→ X(ω, t) is continuous at t = 0 is not in the
σ-algebra generated by

(
X(t)

)
. The probability of such sets cannot be inferred

from the FDDs alone. If such sets are assigned a probability it must be based on
some additional information that is not captured by the FDDs.

The FDDs provide a natural way to define independence between stochastic pro-
cesses.

Definition 25.2.3 (Independent Stochastic Processes). Two stochastic processes(
X(t)

)
and

(
Y (t)

)
defined on the same probability space (Ω,F , P ) are said to be

independent stochastic processes if for every n ∈ N and any choice of the
epochs t1, . . . , tn ∈ R, the n-tuples (X(t1), . . . , X(tn)) and (Y (t1), . . . , Y (tn)) are
independent.

25.3 Definition of a Gaussian SP

By far the most important processes for modeling noise in Digital Communications
are the Gaussian processes. Fortunately, these processes are among the mathemat-
ically most tractable. The definition of a Gaussian SP builds on that of a Gaussian
vector (Definition 23.1.1).

Definition 25.3.1 (Gaussian Stochastic Processes). A SP
(
X(t)

)
is said to be a

Gaussian stochastic process if for every n ∈ N and every choice of the epochs
t1, . . . , tn ∈ R, the random vector (X(t1), . . . , X(tn))T is Gaussian.

Note 25.3.2. Gaussian stochastic processes are of finite variance.

Proof. If
(
X(t)

)
is a Gaussian process, then a fortiori at each epoch t ∈ R, the

random variable X(t) is a univariate Gaussian (choose n = 1 in the above defini-
tion) and hence, by the definition of the univariate distribution (Definition 19.3.1),
of finite variance.

One of the things that make Gaussian processes tractable is the ease with which
their FDDs can be specified.

Proposition 25.3.3 (The FDDs of a Gaussian SP). If
(
X(t)

)
is a centered Gaus-

sian SP, then all its FDDs are determined by the mapping that specifies the covari-
ance between any two of its samples:

(t1, t2) 7→ Cov
[
X(t1), X(t2)

]
, t1, t2 ∈ R. (25.5)

Proof. Let
(
X(t)

)
be a centered Gaussian SP. We shall show that for any choice of

the epochs t1, . . . , tn ∈ R we can compute the joint distribution of X(t1), . . . X(tn)
from the mapping (25.5). To this end we note that since

(
X(t)

)
is a Gaussian

SP, the random vector (X(t1), . . . X(tn))T is Gaussian (Definition 25.3.1). Conse-
quently, its distribution is fully specified by its mean vector and covariance matrix
(Theorem 23.6.7). Its mean vector is zero, because we assumed that

(
X(t)

)
is cen-

tered. To conclude the proof we thus only need to show that the covariance matrix
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of (X(t1), . . . X(tn))T is determined by the mapping (25.5). But this is obvious
because the covariance matrix of (X(t1), . . . X(tn))T is the n× n matrix

Cov[X(t1), X(t1)] Cov[X(t1), X(t2)] · · · Cov[X(t1), X(tn)]
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

Cov[X(tn), X(t1)] Cov[X(tn), X(t2)] · · · Cov[X(tn), X(tn)]

 , (25.6)

and each of the entries in this matrix is specified by the mapping (25.5).

Things become even simpler if the Gaussian process is wide-sense stationary
(Definition 25.4.2 ahead). In this case the RHS of (25.5) is determined by t1 − t2,
so the mapping (25.5) (and hence all the FDDs) is determined by the mapping
τ 7→ Cov[X(t), X(t+ τ)]. But before discussing wide-sense stationary Gaussian
stochastic processes in Section 25.5, we first define stationarity and wide-sense
stationarity for general processes that are not necessarily Gaussian.

25.4 Stationary Continuous-Time Processes

Our treatment of stationary continuous-time processes is similar to the treatment
of their discrete-time counterparts (Chapter 13). The following is the continuous-
time analogue of Definition 13.2.1.

Definition 25.4.1 (Stationary Continuous-Time SP). We say that a continuous-
time SP

(
X(t)

)
is stationary (or strict sense stationary, or strongly sta-

tionary) if for every n ∈ N, any epochs t1, . . . , tn ∈ R, and every τ ∈ R,(
X(t1 + τ), . . . , X(tn + τ)

) L=
(
X(t1), . . . , X(tn)

)
. (25.7)

By considering the case where n = 1 we obtain that if
(
X(t)

)
is stationary, then

all its samples have the same distribution

X(t) L= X(t+ τ), t, τ ∈ R. (25.8)

That is, the distribution of the random variable X(t) does not depend on t. By
considering n = 2 we obtain that if

(
X(t)

)
is stationary, then the joint distribution

of any two of its samples depends on how far apart they are and not on the absolute
time at which they are taken(

X(t1), X(t2)
) L=

(
X(t1 + τ), X(t2 + τ)

)
, t1, t2, τ ∈ R. (25.9)

That is, the joint distribution of
(
X(t1), X(t2)

)
can be computed from t2 − t1.

As we did for discrete-time processes (Definition 13.3.1), we can also define wide-
sense stationarity of continuous-time processes. Recall that a process

(
X(t)

)
is

said to be of finite variance if at every time t ∈ R the random variable X(t) is of
finite variance.
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Definition 25.4.2 (Wide-Sense Stationary Continuous-Time SP). A continuous-
time SP

(
X(t)

)
is said to be wide-sense stationary (or weakly stationary or

second-order stationary) if the following three conditions are met:

1) It is of finite variance.

2) Its mean is constant

E
[
X(t)

]
= E
[
X(t+ τ)

]
, t, τ ∈ R. (25.10)

3) The covariance between its samples satisfies

Cov
[
X(t1), X(t2)

]
= Cov

[
X(t1 + τ), X(t2 + τ)

]
, t1, t2, τ ∈ R. (25.11)

By considering the case where t1 = t2 in (25.11), we obtain that all the samples of
a WSS SP have the same variance:

Var
[
X(t)

]
= Var

[
X(0)

]
, t ∈ R. (25.12)

Note 25.4.3. Every finite-variance stationary SP is WSS.

Proof. This follows because (25.8) implies (25.10), and because (25.9) implies
(25.11).

The reverse is not true: some WSS processes are not stationary. (Wide-sense
stationarity concerns only means and covariances, whereas stationarity has to do
with distributions.)

The following definition of the autocovariance function of a continuous-time WSS
SP is the analogue of Definition 13.5.1.

Definition 25.4.4 (Autocovariance Function). The autocovariance function
KXX : R→ R of a WSS continuous-time SP

(
X(t)

)
is defined for every τ ∈ R by

KXX(τ) , Cov
[
X(t+ τ), X(t)

]
, (25.13)

where the RHS does not depend on t because
(
X(t)

)
is assumed to be WSS.

By evaluating (25.13) at τ = 0 and using (25.12), we can express the variance
of X(t) in terms of the autocovariance function KXX as

Var
[
X(t)

]
= KXX(0), t ∈ R. (25.14)

We end this section with a few simple inequalities related to WSS stochastic pro-
cesses and their autocovariance functions.

Lemma 25.4.5. Let
(
X(t)

)
be a WSS SP of autocovariance function KXX . Then∣∣KXX(τ)

∣∣ ≤ KXX(0), τ ∈ R, (25.15)

E
[
|X(t)|

]
≤
√

KXX(0) + E[X(0)]2, t ∈ R, (25.16)

and
E
[∣∣X(t)X(t′)

∣∣] ≤ KXX(0) + E[X(0)]2 , t, t′ ∈ R. (25.17)
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Proof. Inequality (25.15) follows from the Covariance Inequality (Corollary 3.5.2):

|KXX(τ)| =
∣∣Cov[X(t+ τ), X(t)]

∣∣
≤
√

Var[X(t+ τ)]
√

Var[X(t)]
= KXX(0),

where the last equality follows from (25.14).

Inequality (25.16) follows from the nonnegativity of the variance of |X(t)| and the
assumption that

(
X(t)

)
is WSS:

0 ≤ Var[|X(t)|]

= E
[
X2(t)

]
−
(
E[|X(t)|]

)2
= Var[X(t)] +

(
E[X(t)]

)2 − (E[|X(t)|]
)2

= KXX(0) +
(
E[X(0)]

)2 − (E[|X(t)|]
)2
.

Finally, Inequality (25.17) follows from the Cauchy-Schwarz Inequality for random
variables (Theorem 3.5.1) ∣∣E[UV ]

∣∣ ≤√E[U2]E[V 2]

by substituting |X(t)| for U and |X(t′)| for V and by noting that

E
[
|X(t)|2

]
= E

[
X2(t)

]
= Var

[
X(t)

]
+
(
E[X(t)]

)2
= KXX(0) +

(
E[X(0)]

)2
, t ∈ R.

25.5 Stationary Gaussian Stochastic Processes

For Gaussian stochastic processes we do not distinguish between stationarity and
wide-sense stationarity. The reason is that, while for general processes the two
concepts are different (in that every finite-variance stationary SP is WSS, but not
every WSS SP is stationary), for Gaussian stochastic processes the two concepts are
equivalent. These relationships between stationarity and wide-sense stationarity for
general stochastic processes and for Gaussian stochastic processes are illustrated
in Figure 25.1.

Proposition 25.5.1 (Stationary Gaussian Stochastic Processes).

(i) A Gaussian SP is stationary if, and only if, it is WSS.

(ii) The FDDs of a centered stationary Gaussian SP are fully specified by its
autocovariance function.

Proof. We begin by proving (i). One direction has only little to do with Gaus-
sianity. Since every Gaussian SP is of finite variance (Note 25.3.2), and since every
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stochastic processes

finite-variance

WSS

(strictly) stationary

Gaussian

Figure 25.1: The relationship between wide-sense stationarity, Gaussianity, and
strict-sense stationarity. The outer region corresponds to all stochastic processes.
Within it is the set of all finite-variance processes and within that the set of all wide-
sense stationary processes. The slanted lines indicate the strict-sense stationary
processes, and the gray area corresponds to the Gaussian stochastic processes.

finite-variance stationary SP is WSS (Note 25.4.3), it follows that every stationary
Gaussian SP is WSS.

Gaussianity plays a much more important role in the proof of the reverse direction,
namely, that every WSS Gaussian SP is stationary. We prove this by showing that
if
(
X(t)

)
is Gaussian and WSS, then for every n ∈ N and any t1, . . . , tn, τ ∈ R

the joint distribution of X(t1), . . . , X(tn) is identical to the joint distribution of
X(t1 + τ), . . . , X(tn + τ). To this end, let n ∈ N and t1, . . . , tn, τ ∈ R be fixed.

Because
(
X(t)

)
is Gaussian, (X(t1), . . . , X(tn))T and (X(t1 + τ), . . . , X(tn + τ))T

are both Gaussian vectors (Definition 25.3.1). And since
(
X(t)

)
is WSS, the two

are of the same mean vector (see (25.10)). The former’s covariance matrix is


Cov[X(t1), X(t1)] · · · Cov[X(t1), X(tn)]

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

Cov[X(tn), X(t1)] · · · Cov[X(tn), X(tn)]





520 Continuous-Time Stochastic Processes

and the latter’s is
Cov[X(t1 + τ), X(t1 + τ)] · · · Cov[X(t1 + τ), X(tn + τ)]

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

Cov[X(tn + τ), X(t1 + τ)] · · · Cov[X(tn + τ), X(tn + τ)]

 .

Since
(
X(t)

)
is WSS, the two covariance matrices are identical (see (25.11)). But

two Gaussian vectors of equal mean vectors and of equal covariance matrices have
identical distributions (Theorem 23.6.7), so the distribution of (X(t1), . . . , X(tn))T

is identical to that of (X(t1+τ), . . . , X(tn+τ))T. Since this has been established for
all choices of n ∈ N and all choices of t1, . . . , tn, τ ∈ R, the SP

(
X(t)

)
is stationary.

Part (ii) follows from Proposition 25.3.3 and the definition of wide-sense stationar-
ity. Indeed, by Proposition 25.3.3, all the FDDs of a centered Gaussian SP

(
X(t)

)
are determined by the mapping (25.5). If

(
X(t)

)
is additionally WSS, then the

RHS of (25.5) can be computed from t1 − t2 and is given by KXX(t1 − t2), so the
mapping (25.5) is fully specified by the autocovariance function KXX .

25.6 Properties of the Autocovariance Function

Many of the definitions and results on continuous-time WSS stochastic processes
have analogous discrete-time counterparts. But some technical issues are encoun-
tered only in continuous time. For example, most results on continuous-time WSS
stochastic processes require that the autocovariance function of the process be
continuous at the origin, i.e., satisfy

lim
δ→0

KXX(δ) = KXX(0), (25.18)

and this condition has no discrete-time counterpart. As we next show, this condi-
tion is equivalent to the condition

lim
δ→0

E
[(
X(t+ δ)−X(t)

)2] = 0, t ∈ R. (25.19)

This equivalence follows from the identity

E
[(
X(t)−X(t+ δ)

)2] = 2
(
KXX(0)− KXX(δ)

)
, t, δ ∈ R, (25.20)

which can be proved as follows. We first note that it suffices to prove it for centered
processes, and for such processes we then compute:

E
[(
X(t)−X(t+ δ)

)2] = E
[
X2(t)− 2X(t)X(t+ δ) +X2(t+ δ)

]
= E

[
X2(t)

]
− 2E

[
X(t)X(t+ δ)

]
+ E

[
X2(t+ δ)

]
= KXX(0)− 2 KXX(δ) + KXX(0)

= 2
(
KXX(0)− KXX(δ)

)
,
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where the first equality follows by opening the square; the second by the linearity of
expectation; the third by the definition of KXX ; and the final equality by collecting
terms.

We note here that if the autocovariance function of a WSS process is continuous
at the origin, then it is continuous everywhere. In fact, it is uniformly continuous:

Lemma 25.6.1. If the autocovariance function of a WSS continuous-time SP is
continuous at the origin, then it is a uniformly continuous function.

Proof. We first note that it suffices to prove the lemma for centered processes.
Let

(
X(t)

)
be such a process. For every τ, δ ∈ R we then have∣∣KXX(τ + δ)− KXX(τ)

∣∣ = ∣∣E[X(τ + δ)X(0)]− E[X(τ)X(0)]
∣∣

=
∣∣E[(X(τ + δ)−X(τ)

)
X(0)

]∣∣
=
∣∣Cov

[
X(τ + δ)−X(τ), X(0)

]∣∣
≤
√

E
[(
X(τ + δ)−X(τ)

)2]√
E[X2(0)]

=
√

2
(
KXX(0)− KXX(δ)

)√
KXX(0)

=
√

2 KXX(0)
(
KXX(0)− KXX(δ)

)
, (25.21)

where the equality in the first line follows from the definition of the autocovariance
function because

(
X(t)

)
is centered; the equality in the second line by the linearity

of expectation; the equality in the third line by the definition of the covariance
between two zero-mean random variables; the inequality in the fourth line by the
Covariance Inequality (Corollary 3.5.2); the equality in the fifth line by (25.20);
and the final equality by trivial algebra. The uniform continuity of KXX now
follows from (25.21) by noting that its RHS does not depend on τ and that, by our
assumption about the continuity of KXX at zero, it tends to zero as δ → 0.

We next derive two important properties of autocovariance functions and then
demonstrate in Theorem 25.6.2 that these properties characterize those functions
that can arise as the autocovariance functions of a WSS SP. These properties are
the continuous-time analogues of (13.12) & (13.13), and the proofs are almost
identical. We first state the properties and then proceed to prove them.

The first property is that the autocovariance function KXX of any continuous-time
WSS process

(
X(t)

)
is a symmetric function

KXX(−τ) = KXX(τ), τ ∈ R. (25.22)

The second is that it is a positive definite function in the sense that for every
n ∈ N, and for every choice of the coefficients α1, . . . , αn ∈ R and of the epochs
t1, . . . , tn ∈ R

n∑
ν=1

n∑
ν′=1

αναν′ KXX(tν − tν′) ≥ 0. (25.23)
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To prove (25.22) we calculate

KXX(τ) = Cov
[
X(t+ τ), X(t)

]
= Cov

[
X(t′), X(t′ − τ)

]
= Cov

[
X(t′ − τ), X(t′)

]
= KXX(−τ), τ ∈ R,

where the first equality follows from the definition of KXX(τ) (25.13); the second
by defining t′ , t + τ ; the third because Cov[X,Y ] = Cov[Y,X] (for real random
variables); and the final equality by the definition of KXX(−τ) (25.13).

To prove (25.23) we compute
n∑
ν=1

n∑
ν′=1

αναν′ KXX(tν − tν′) =
n∑
ν=1

n∑
ν′=1

αναν′Cov[X(tν), X(tν′)]

= Cov

[ n∑
ν=1

ανX(tν),
n∑

ν′=1

αν′X(tν′)
]

= Var

[ n∑
ν=1

ανX(tν)
]

(25.24)

≥ 0.

The next theorem demonstrates that Properties (25.22) and (25.23) characterize
the autocovariance functions of WSS stochastic processes (cf. Theorem 13.5.2).

Theorem 25.6.2. Every symmetric positive definite function is the autocovariance
function of some stationary Gaussian SP.

Proof. The proof is based on Kolmogorov’s Existence Theorem (Theorem 25.2.1)
and is only sketched here. Let K(·) be a symmetric and positive definite function
from R to R. The idea is to consider for every n ∈ N and for every choice of the
epochs t1, . . . , tn ∈ R the joint distribution function Gn(·; t1, . . . , tn) corresponding
to the centered multivariate Gaussian distribution of covariance matrix

K(t1 − t1) K(t1 − t2) · · · K(t1 − tn)
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

K(tn − t1) K(tn − t2) · · · K(tn − tn)


and to verify that the sequence {Gn(·; ·)} satisfies the symmetry and consistency
requirements of Kolmogorov’s Existence Theorem. The details, which can be found
in (Doob, 1990, Chapter II, Section § 3, Theorem 3.1), are omitted.

25.7 The Power Spectral Density of a Continuous-Time SP

Under suitable conditions, engineers usually define the power spectral density of a
WSS SP as the Fourier Transform of its autocovariance function. There is nothing
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wrong with this definition, and we encourage the reader to think about the PSD
in this way.3 We, however, prefer a slightly more general definition that allows us
also to consider discontinuous spectra and, more importantly, allows us to infer
that any integrable, nonnegative, symmetric function is the PSD of some Gaus-
sian SP (Proposition 25.7.3). Fortunately, the two definitions agree whenever the
autocovariance function is continuous and integrable.

Before defining the PSD, we pause to discuss the Fourier Transform of the auto-
covariance. If the autocovariance function KXX of a WSS SP

(
X(t)

)
is integrable,

i.e., if ∫ ∞

−∞

∣∣KXX(τ)
∣∣ dτ <∞, (25.25)

then we can discuss its FT K̂XX . The following proposition summarizes the main
properties of the FT of continuous integrable autocovariance functions.

Proposition 25.7.1. If the autocovariance function KXX is continuous at the origin
and integrable, then its Fourier Transform K̂XX is nonnegative

K̂XX(f) ≥ 0, f ∈ R (25.26)

and symmetric
K̂XX(−f) = K̂XX(f), f ∈ R. (25.27)

Moreover, the Inverse Fourier Transform recovers KXX in the sense that4

KXX(τ) =
∫ ∞

−∞
K̂XX(f) ei2πfτ df, τ ∈ R. (25.28)

Proof. This result can be deduced from three results in (Feller, 1971, Chap-
ter XIX): the theorem in Section 3, Bochner’s Theorem in Section 2, and Lemma 2
in Section 2.

Definition 25.7.2 (The PSD of a Continuous-Time WSS SP). We say that the
WSS continuous-time SP

(
X(t)

)
is of power spectral density (PSD) SXX if SXX

is a nonnegative, symmetric, integrable function from R to R whose Inverse Fourier
Transform is the autocovariance function KXX of

(
X(t)

)
:

KXX(τ) =
∫ ∞

−∞
SXX(f) ei2πfτ df, τ ∈ R. (25.29)

A few remarks regarding this definition:

3Engineers can, however, be a bit sloppy in that they sometimes speak of a SP whose PSD
is discontinuous, e.g., the Brickwall function f 7→ I{|f | ≤ W}. This is inconsistent with their
definition because the FT of an integrable function must be continuous (Theorem 6.2.11), and
consequently if the autocovariance function is integrable then its FT cannot be discontinuous.
Our more general definition does not suffer from this problem and allows for discontinuous PSDs.

4Recall that without additional assumptions one is not guaranteed that the Inverse Fourier
Transform of the Fourier Transform of a function will be identical to the original function. Here we
need not make any additional assumptions because we already assumed that the autocovariance
function is continuous and because autocovariance functions are positive definite.
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(i) By the uniqueness of the IFT (the analogue of Theorem 6.2.12 for the IFT) it
follows that if two functions are PSDs of the same WSS SP, then they must be
equal except on a set of frequencies of Lebesgue measure zero. Consequently,
we shall often speak of “the” PSD as though it were unique.

(ii) By Proposition 25.7.1, if KXX is continuous and integrable, then
(
X(t)

)
has

a PSD in the sense of Definition 25.7.2, and this PSD is the FT of KXX .
There are, however, autocovariance functions that are not integrable and
that nonetheless have a PSD in the sense of Definition 25.7.2. For example,
τ 7→ sinc(τ).

Thus, every continuous autocovariance function that has a PSD in the en-
gineers’ sense (i.e., that is integrable) also has the same PSD according to
our definition, but our definition is more general in that some autocovariance
functions that have a PSD according to our definition are not integrable and
therefore do not have a PSD in the engineers’ sense.

(iii) By substituting τ = 0 in (25.29) and using (25.14) we can express the variance
of X(t) in terms of the PSD SXX as

Var
[
X(t)

]
= KXX(0) =

∫ ∞

−∞
SXX(f) df, t ∈ R. (25.30)

(iv) Only processes with continuous autocovariance functions have PSDs, because
the RHS of (25.29), being the IFT of an integrable function, must be contin-
uous (Theorem 6.2.11 (ii)).

(v) It can be shown that if the autocovariance function can be written as the
IFT of some integrable function, then this latter function must be nonneg-
ative (except on a set of frequencies of Lebesgue measure zero). This is the
continuous-time analogue of Proposition 13.6.3.

The nonnegativity, symmetry, and integrability conditions characterize PSDs in
the following sense:

Proposition 25.7.3. Every nonnegative, symmetric, integrable function is the PSD
of some stationary Gaussian SP whose autocovariance function is continuous.

Proof. Let S(·) be some integrable, nonnegative, and symmetric function from R
to the nonnegative reals. Define K(·) to be its IFT

K(τ) =
∫ ∞

−∞
S(f) ei2πfτ df, τ ∈ R. (25.31)

We shall verify that K(·) satisfies the hypotheses of Theorem 25.6.2, namely, that
it is symmetric and positive definite. It will then follow from Theorem 25.6.2 that
there exists a stationary Gaussian SP

(
X(t)

)
whose autocovariance function KXX

is equal to K(·) and is thus given by

KXX(τ) =
∫ ∞

−∞
S(f) ei2πfτ df, τ ∈ R. (25.32)
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This will establish that
(
X(t)

)
is of PSD S(·). The continuity of KXX will follow

from the continuity of the IFT of integrable functions (Theorem 6.2.11).

To conclude the proof we need to show that the function K(·) defined in (25.31)
is symmetric and positive definite. The symmetry follows from our assumption
that S(·) is symmetric:

K(−τ) =
∫ ∞

−∞
S(f) ei2πf(−τ) df

=
∫ ∞

−∞
S(−f̃) ei2πf̃τ df̃

=
∫ ∞

−∞
S(f̃) ei2πf̃τ df̃

= K(τ), τ ∈ R,

where the first equality follows from (25.31); the second from the change of variable
f̃ , −f ; the third by the symmetry of S(·); and the final equality again by (25.31).

We next prove that K(·) is positive definite. To that end we fix some n ∈ N, some
constants α1, . . . , αn ∈ R, and some epochs t1, . . . , tn ∈ R and compute:

n∑
ν=1

n∑
ν′=1

αναν′K(tν − tν′) =
n∑
ν=1

n∑
ν′=1

αναν′

∫ ∞

−∞
S(f) ei2πf(tν−tν′ ) df

=
∫ ∞

−∞
S(f)

( n∑
ν=1

n∑
ν′=1

αναν′ e
i2πf(tν−tν′ )

)
df

=
∫ ∞

−∞
S(f)

( n∑
ν=1

n∑
ν′=1

αν e
i2πftν αν′ e

−i2πftν′

)
df

=
∫ ∞

−∞
S(f)

( n∑
ν=1

αν e
i2πftν

)( n∑
ν′=1

αν′ e
i2πftν′

)∗
df

=
∫ ∞

−∞
S(f)

∣∣∣∣ n∑
ν=1

αν e
i2πftν

∣∣∣∣2 df

≥ 0,

where the first equality follows from (25.31); the subsequent equalities by simple
algebra; and the last inequality from our assumption that S(·) is nonnegative.

25.8 The Spectral Distribution Function

In this section we shall state without proof Bochner’s Theorem on continuous
positive definite functions and discuss its application to continuous autocovariance
functions. We shall then define the spectral distribution function of WSS stochastic
processes. The concept of a spectral distribution function is more general than
that of a PSD, because every WSS with a continuous autocovariance function has
a spectral distribution function, but only some have a PSD. Nevertheless, for our
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purposes, the notion of PSD will suffice, and the results of this section will not be
used in the rest of the book.

Recall that the characteristic function ΦX(·) of a RV X is the mapping from R
to C defined by

$ 7→ E
[
ei$X

]
, $ ∈ R. (25.33)

If X is symmetric (i.e., has a symmetric distribution) in the sense that

Pr[X ≥ x] = Pr[X ≤ −x], x ∈ R, (25.34)

then ΦX(·) only takes on real values and is a symmetric function, as the following
argument shows. The symmetry of the distribution of X implies that X and −X
have the same distribution, which implies that their exponentiations have the same
law

ei$X
L= e−i$X , $ ∈ R, (25.35)

and a fortiori that the expectation of the two exponentials are equal

E
[
ei$X

]
= E

[
e−i$X

]
, $ ∈ R. (25.36)

The LHS of (25.36) is ΦX($), and the RHS is ΦX(−$), thus demonstrating the
symmetry of ΦX(·). To establish that (25.34) also implies that ΦX(·) is real, we
note that, by (25.36),

ΦX($) = E
[
ei$X

]
=

1
2

(
E
[
ei$X

]
+ E
[
e−i$X

])
= E

[
ei$X + e−i$X

2

]
= E
[
cos($X)

]
, $ ∈ R,

which is real. Here the first equality follows from (25.33); the second from (25.36);
and the third from the linearity of expectation.

Bochner’s Theorem establishes a correspondence between continuous, symmetric,
positive definite functions and characteristic functions.

Theorem 25.8.1 (Bochner’s Theorem). Let the mapping Φ(·) from R to R be
continuous. Then the following two conditions are equivalent:

a) Φ(·) is the characteristic function of some RV having a symmetric distribu-
tion.

b) Φ(·) is a symmetric positive definite function satisfying Φ(0) = 1.

Proof. See (Feller, 1971, Chapter XIX, Section 2) or (Loève, 1963, Chapter IV,
Section 14) or (Katznelson, 1976, Chapter VI, Section 2.8).

Bochner’s Theorem is the key to understanding autocovariance functions:
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Proposition 25.8.2. Let
(
X(t)

)
be a WSS SP whose autocovariance function KXX

is continuous. Then:

(i) There exists a symmetric RV S such that

KXX(τ) = KXX(0)E
[
ei2πτS

]
, τ ∈ R. (25.37)

(ii) If KXX(0) > 0, then the distribution of S in (25.37) is uniquely determined
by KXX , and

(
X(t)

)
has a PSD if, and only if, S has a density.

Proof. If KXX(0) = 0, then
(
X(t)

)
is deterministic in the sense that for every

epoch t ∈ R the variance of X(t) is zero. By the inequality |KXX(τ)| ≤ KXX(0)
(Lemma 25.4.5, (25.15)) it follows that if KXX(0) = 0 then KXX(τ) = 0 for all
τ ∈ R, and (25.37) holds in this case for any choice of S and there is nothing else
to prove.

Consider now the case KXX(0) > 0. To prove Part (i) we note that because KXX is
by assumption continuous, and because all autocovariance functions are symmetric
and positive definite (see (25.22) and (25.23)), it follows that the mapping

τ 7→ KXX(τ)
KXX(0)

, τ ∈ R

is a continuous, symmetric, positive definite mapping that takes on the value one
at τ = 0. Consequently, by Bochner’s Theorem, there exists a RV R of a symmetric
distribution such that

KXX(τ)
KXX(0)

= E
[
eiτR

]
, τ ∈ R.

It follows that if we define S as R/(2π) then (25.37) will hold, and Part (i) is thus
also established for the case where KXX(0) > 0.

We now conclude the treatment of the case KXX(0) > 0 by proving Part (ii) for
this case. That the distribution of S is unique follows because (25.37) implies that

E
[
ei$S

]
=

KXX($/(2π))
KXX(0)

, $ ∈ R,

so KXX determines the characteristic function of S and hence also its distribution
(Theorem 17.4.4).

Because the distribution of S is symmetric, if S has a density then it also has a
symmetric density. Denote by fS(·) a symmetric density function for S. In terms
of fS(·) we can rewrite (25.37) as

KXX(τ) =
∫ ∞

−∞
KXX(0) fS(s) ei2πsτ ds, τ ∈ R,

so the nonnegative symmetric function KXX(0) fS(·) is a PSD of
(
X(t)

)
. Con-

versely, if
(
X(t)

)
has PSD SXX , then

KXX(τ) =
∫ ∞

−∞
SXX(f) ei2πfτ df, τ ∈ R, (25.38)
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and (25.37) holds with S having the density

fS(s) =
SXX(s)
KXX(0)

, s ∈ R. (25.39)

(The RHS of (25.39) is symmetric, nonnegative, and integrates to 1 by (25.30).)

Proposition 25.8.2 motivates us to define the spectral distribution function of a
continuous autocovariance function (or of a WSS SP having such an autocovariance
function) as follows.

Definition 25.8.3 (Spectral Distribution Function). The spectral distribution
function of a continuous autocovariance function KXX is the mapping

ξ 7→ KXX(0) Pr[S ≤ ξ], (25.40)

where S is a random variable for which (25.37) holds.

25.9 The Average Power

We next address the average power in the sample-paths of a SP. We would like to
better understand formal expressions of the form

1
T

∫ T/2

−T/2

X2(ω, t) dt

for a SP
(
X(t)

)
defined on the probability space (Ω,F , P ). Recalling that if we fix

ω ∈ Ω then we can view the trajectory t 7→ X(ω, t) as a function of time, we would
like to think about the integral above as the time-integral of the square of the
trajectory t 7→ X(ω, t). Since the result of this integral is a (nonnegative) number
that depends on ω, we would like to view this result as a nonnegative RV

ω 7→ 1
T

∫ T/2

−T/2

X2(ω, t) dt, ω ∈ Ω.

Mathematicians, however, would object to our naive approach on two grounds. The
first is that it is prima facie unclear whether for every fixed ω ∈ Ω the mapping
t 7→ X2(ω, t) is sufficiently well-behaved to allow us to discuss its integral. (It may
not be Lebesgue measurable.) The second is that, even if this integral could be
carried out for every ω ∈ Ω, it is prima facie unclear that the result would be a
RV. While it would certainly be a mapping from Ω to the extended reals (allowing
for +∞), it is not clear that it would satisfy the technical measurability conditions
that random variables must meet.5

5By “X is a random variable possibly taking on the value +∞” we mean that X is a mapping
from Ω to R ∪ {+∞} with the set {ω ∈ Ω : X(ω) ≤ ξ} being an event for every ξ ∈ R and with
the set {ω ∈ Ω : X(ω) = +∞} also being an event.
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To address these objections we shall assume that
(
X(t)

)
is a “measurable stochastic

process.” This is a technical condition that will be foreign to most readers and
that will be inessential to the rest of this book. We mention it here because, in
order to be mathematically honest, we shall have to slip this attribute into some
of the theorems that we shall later state. Nothing will be lost on readers who
replace “measurable stochastic process” with “stochastic process satisfying a mild
technical condition.”

Fortunately, this technical condition is, indeed, very mild. For example, Propo-
sition 25.7.3 still holds if we slip in the attribute “measurable” before the words
“Gaussian process.” Similarly, in Theorem 25.6.2, if we add the hypothesis that
the given function is continuous at the origin, then we can slip in the attribute
“measurable” before the words “stationary Gaussian stochastic process.”6

For the benefit of readers who are familiar with Measure Theory, we provide the
following definition.

Definition 25.9.1 (Measurable SP). Let
(
X(t), t ∈ R

)
be a SP defined over the

probability space (Ω,F , P ). We say that the process is a measurable stochastic
process if the mapping (ω, t) 7→ X(ω, t) is a measurable mapping from Ω×R to R
when the range R is endowed with the Borel σ-algebra on R and when the domain
Ω×R is endowed with the σ-algebra defined by the product of F on Ω by the Borel
σ-algebra on R.

The nice thing about measurable stochastic processes is that if
(
X(t)

)
is a measur-

able SP, then for every ω ∈ Ω the trajectory t 7→ X(ω, t) is a Borel (and hence also
Lebesgue) measurable function of time; see (Halmos, 1950, Chapter 7, Section 34,
Theorem B) or (Billingsley, 1995, Chapter 3, Section 18, Theorem 18.1 (ii)). More-
over, for such processes we can sometimes use Fubini’s Theorem to swap the order
in which we compute time-integrals and expectations; see (Halmos, 1950, Chap-
ter 7, Section 36) or (Billingsley, 1995, Chapter 3, Section 18, Theorem 18.3 (ii)).

We can now state the main result of this section regarding the average power in a
WSS SP.

Proposition 25.9.2 (Power in a Centered WSS SP). If
(
X(t)

)
is a measurable,

centered, WSS SP defined over the probability space (Ω,F , P ) and having the au-
tocovariance function KXX , then for every a, b ∈ R satisfying a < b the mapping

ω 7→ 1
b− a

∫ b

a

X2(ω, t) dt (25.41)

defines a RV (possibly taking on the value +∞) satisfying

1
b− a

E

[∫ b

a

X2(t) dt
]

= KXX(0). (25.42)

6These are but very special cases of a much more general result that states that given FDDs
corresponding to a WSS SP of an autocovariance that is continuous at the origin, there exists
a SP of the given FDDs that is also measurable. See, for example, (Doob, 1990, Chapter II,
Section § 2, Theorem 2.6). (Replacing the values ±∞ with zero may ruin the separability but
not the measurability.)
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Proof. The proof of (25.42) is straightforward and merely requires swapping the
order of integration and expectation. This swap can be justified using Fubini’s The-
orem. Heuristically, the swapping of expectation and integration can be justified by
thinking about the integral as being a Riemann integral that can be approximated
by finite sums and by then recalling the linearity of expectation that guarantees
that the expectation of a finite sum is the sum of the expectations. We then have

E

[∫ b

a

X2(t) dt
]

=
∫ b

a

E
[
X2(t)

]
dt

=
∫ b

a

KXX(0) dt

= (b− a) KXX(0),

where the first equality follows by swapping the integration with the expectation;
the second because our assumption that

(
X(t)

)
is centered implies that for every

t ∈ R the RV X(t) is centered and by (25.13); and the final equality because the
integrand is constant.

That (25.41) is a RV (possibly taking on the value +∞) follows from Fubini’s
Theorem.

Recalling Definition 14.6.1 of the power in a SP as

lim
T→∞

E

[
1
T

∫ T/2

−T/2

X2(t) dt
]
,

we conclude:

Corollary 25.9.3. The power in a centered, measurable, WSS SP
(
X(t)

)
of auto-

covariance function KXX is equal to KXX(0).

25.10 Linear Functionals

For the problem of detecting continuous-time signals corrupted by noise, we shall
be interested in stochastic integrals of the form∫ ∞

−∞
X(t) s(t) dt (25.43)

for WSS stochastic processes
(
X(t)

)
defined over a probability space (Ω,F , P )

and for properly well-behaved deterministic functions s(·). We would like to think
about the result of such an integral as defining a RV

ω 7→
∫ ∞

−∞
X(ω, t) s(t) dt (25.44)

that maps each ω ∈ Ω to the real number that is the result of the integration
over time of the product of the trajectory t 7→ X(ω, t) corresponding to ω by the
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deterministic function t 7→ s(t). That is, each ω is mapped to the inner product
between its trajectory t 7→ X(ω, t) and the function s(·).
This is an excellent way of thinking about such integrals, but we do run into
some mathematical objections similar to those we encountered in Section 25.9.
For example, it is not obvious that for each ω ∈ Ω the mapping t 7→ X(ω, t) s(t)
is a sufficiently well-behaved function for the time-integral to be defined. As we
shall see, for this reason we must impose certain restrictions on s(·), and we will
not claim that t 7→ X(ω, t) s(t) is integrable for every ω ∈ Ω but only for ω’s in
some subset of Ω having probability one. Also, even if this issue is addressed, it is
unclear that the mapping of ω to the result of the integration is a RV. While it is
clearly a mapping from Ω to the reals, it is unclear that it satisfies the additional
mathematical requirement of measurability, i.e., that for every ξ ∈ R the set{

ω ∈ Ω :
∫ ∞

−∞
X(ω, t) s(t) dt ≤ ξ

}
be an event, i.e., an element of F .

We ask the reader to take it on faith that these issues can be resolved and to focus
on the relatively straightforward computation of the mean and variance of (25.44).
The resolution of the measurability issues is provided in Proposition 25.10.1, whose
proof is recommended only to readers with background in Measure Theory.

We shall assume throughout that
(
X(t)

)
is WSS and that the deterministic function

s : R→ R is integrable. We begin by heuristically deriving the mean:

E

[∫ ∞

−∞
X(t) s(t) dt

]
=
∫ ∞

−∞
E
[
X(t) s(t)

]
dt

=
∫ ∞

−∞
E
[
X(t)

]
s(t) dt

= E
[
X(0)

] ∫ ∞

−∞
s(t) dt, (25.45)

with the following heuristic justification. The first equality follows by swapping
the expectation with the time-integration; the second because s(·) is deterministic;
and the last equality from our assumption that

(
X(t)

)
is WSS, which implies that(

X(t)
)

is of constant mean: E[X(t)] = E[X(0)] for all t ∈ R.

We next heuristically derive the variance of the integral in terms of the autocovari-
ance function KXX of the process

(
X(t)

)
. We begin by considering the case where(

X(t)
)

is of zero mean. In this case we have

Var

[∫ ∞

−∞
X(t) s(t) dt

]
= E

[(∫ ∞

−∞
X(t) s(t) dt

)2
]

= E

[(∫ ∞

−∞
X(t) s(t) dt

)(∫ ∞

−∞
X(τ) s(τ) dτ

)]
= E

[∫ ∞

−∞

∫ ∞

−∞
X(t) s(t)X(τ) s(τ) dtdτ

]
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=
∫ ∞

−∞

∫ ∞

−∞
s(t) s(τ) E

[
X(t)X(τ)

]
dtdτ

=
∫ ∞

−∞

∫ ∞

−∞
s(t) KXX(t− τ) s(τ) dtdτ, (25.46)

where the first equality follows because (25.45) and our assumption that
(
X(t)

)
is centered combine to guarantee that

∫
X(t) s(t) dt is of zero mean; the second

by writing a2 as a times a; the third by writing the product of integrals over R
as a double integral (i.e., as an integral over R2); the fourth by swapping the
double-integral with the expectation; and the final equality by the definition of the
autocovariance function (Definition 25.4.4) and because

(
X(t)

)
is centered.

There are two equivalent ways of writing the RHS of (25.46) that we wish to point
out. The first is obtained from (25.46) by changing the integration variables from
(t, τ) to (σ, τ), where σ , t− τ and by performing the integration first over τ and
then over σ:

Var

[∫ ∞

−∞
X(t) s(t) dt

]
=
∫ ∞

−∞

∫ ∞

−∞
s(t) KXX(t− τ) s(τ) dtdτ

=
∫ ∞

−∞

∫ ∞

−∞
s(σ + τ) KXX(σ) s(τ) dσ dτ

=
∫ ∞

−∞
KXX(σ)

∫ ∞

−∞
s(σ + τ) s(τ) dτ dσ

=
∫ ∞

−∞
KXX(σ) Rss(σ) dσ, (25.47)

where Rss is the self-similarity function of s (Definition 11.2.1 and Section 11.4).

The second equivalent way of writing (25.46) can be derived from (25.47) when(
X(t)

)
is of PSD SXX . Since (25.47) has the form of an inner product, we can use

Proposition 6.2.4 to write this inner product in the frequency domain by noting
that the FT of Rss is f 7→ |ŝ(f)|2 (see (11.35)) and that KXX is the IFT of its
PSD SXX . The result is that

Var

[∫ ∞

−∞
X(t) s(t) dt

]
=
∫ ∞

−∞
SXX(f)

∣∣ŝ(f)
∣∣2 df. (25.48)

We next show that (25.46) (and hence also (25.47) & (25.48), which are equivalent
ways of writing (25.46)) remains valid also when

(
X(t)

)
is of mean µ (not neces-

sarily zero). To see this we can consider the zero-mean SP
(
X̃(t)

)
defined at every

epoch t ∈ R by X̃(t) = X(t)− µ and formally compute

Var

[∫ ∞

−∞
X(t) s(t) dt

]
= Var

[∫ ∞

−∞

(
X̃(t) + µ

)
s(t) dt

]
= Var

[∫ ∞

−∞
X̃(t) s(t) dt+ µ

∫ ∞

−∞
s(t) dt

]
= Var

[∫ ∞

−∞
X̃(t) s(t) dt

]
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=
∫ ∞

−∞

∫ ∞

−∞
s(t) KX̃X̃(t− τ) s(τ) dtdτ

=
∫ ∞

−∞

∫ ∞

−∞
s(t) KXX(t− τ) s(τ) dtdτ, (25.49)

where the first equality follows from the definition of X̃(t) as X(t)− µ; the second
by the linearity of integration; the third because adding a deterministic quantity
to a RV does not change its covariance; the fourth by (25.46) applied to the zero-
mean process

(
X̃(t)

)
; and the final equality because the autocovariance function

of
(
X̃(t)

)
is the same as the autocovariance function of

(
X(t)

)
(Definition 25.4.4).

As above, once a result is proved for centered stochastic processes, its extension
to WSS stochastic processes with a mean can be straightforward. Consequently,
we shall often derive our results for centered WSS stochastic processes and leave
it to the reader to extend them to mean-µ stochastic processes by expressing such
stochastic processes as the sum of a zero-mean SP and the deterministic constant µ.

As promised, we now state the results about the mean and variance of (25.44) in
a mathematically defensible proposition.

Proposition 25.10.1 (Mean and Variance of Linear Functionals of a WSS SP).
Let

(
X(t)

)
be a measurable WSS SP defined over the probability space (Ω,F , P )

and having the autocovariance function KXX . Let s : R→ R be some deterministic
integrable function. Then:

(i) For every ω ∈ Ω the mapping t 7→ X(ω, t) s(t) is Lebesgue measurable.

(ii) The set

N ,

{
ω ∈ Ω :

∫ ∞

−∞

∣∣X(ω, t) s(t)
∣∣ dt =∞

}
(25.50)

is an event and is of probability zero.

(iii) The mapping from Ω \ N to R defined by

ω 7→
∫ ∞

−∞
X(ω, t) s(t) dt (25.51)

is measurable with respect to F .

(iv) The mapping from Ω to R defined by

ω 7→


∫ ∞

−∞
X(ω, t) s(t) dt if ω /∈ N ,

0 otherwise,
(25.52)

defines a random variable.

(v) The mean of this RV is

E
[
X(0)

] ∫ ∞

−∞
s(t) dt.
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(vi) Its variance is ∫ ∞

−∞

∫ ∞

−∞
s(t) KXX(t− τ) s(τ) dτ dt, (25.53)

which can also be expressed as∫ ∞

−∞
KXX(σ) Rss(σ) dσ, (25.54)

where Rss is the self-similarity function of s.

(vii) If
(
X(t)

)
is of PSD SXX , then the variance of this RV can be expressed as∫ ∞

−∞
SXX(f)

∣∣ŝ(f)
∣∣2 df. (25.55)

Proof. Part (i) follows because the measurability of the process
(
X(t)

)
guarantees

that for every ω ∈ Ω the mapping t 7→ X(ω, t) is Borel measurable and hence a
fortiori Lebesgue measurable; see (Billingsley, 1995, Chapter 3, Section 18, Theo-
rem 18.1 (ii)).

If s happens to be Borel measurable, then Parts (ii)–(v) follow directly by Fubini’s
Theorem (Billingsley, 1995, Chapter 3, Section 18, Theorem 18.3) because in this
case the mapping (ω, t) 7→ X(ω, t) s(t) is measurable (with respect to the product
of F by the Borel σ-algebra on the real line) and because∫ ∞

−∞
E
[∣∣X(t) s(t)

∣∣] dt =
∫ ∞

−∞
E[|X(t)|] |s(t)|dt

≤
√

E[X2(0)]
∫ ∞

−∞
|s(t)|dt

<∞,

where the first inequality follows from (25.16), and where the second inequality
follows from our assumption that s is integrable.

To prove Parts (i)–(v) for the case where s is Lebesgue measurable but not Borel
measurable, recall that every Lebesgue measurable function is equal (except on
a set of Lebesgue measure zero) to a Borel measurable function (Rudin, 1974,
Chapter 7, Lemma 1), and note that the RHS of (25.50) and the mappings in
(25.51) and (25.52) are unaltered when s is replaced with a function that is identical
to it outside a set of Lebesgue measure zero.

We next prove Part (vi) under the assumption that
(
X(t)

)
is centered. The more

general case then follows from the argument leading to (25.49). To prove Part (vi)
we need to justify the steps leading to (25.46). For the reader’s convenience we
repeat these steps here and then proceed to justify them.

Var

[∫ ∞

−∞
X(t) s(t) dt

]
= E

[(∫ ∞

−∞
X(t) s(t) dt

)2
]

= E

[(∫ ∞

−∞
X(t) s(t) dt

)(∫ ∞

−∞
X(τ) s(τ) dτ

)]
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= E

[∫ ∞

−∞

∫ ∞

−∞
X(t) s(t)X(τ) s(τ) dtdτ

]
=
∫ ∞

−∞

∫ ∞

−∞
s(t) s(τ) E[X(t)X(τ)] dtdτ

=
∫ ∞

−∞

∫ ∞

−∞
s(t) KXX(t− τ) s(τ) dtdτ.

The first equality holds because for centered processes, by Part (v), the RV on the
LHS is of zero mean; the second follows by writing a2 as a times a; the third follows
because for ω’s satisfying

∫
|X(ω, t) s(t)|dt < ∞ we can use Fubini’s Theorem to

replace the iterated integrals with a double integral and because other ω’s occur
with zero probability and therefore do not influence the expectation; the fourth
equality entails swapping the expectation with the integration over R2 and can be
justified by Fubini’s Theorem because, by (25.17),∫ ∞

−∞

∫ ∞

−∞

∣∣s(t) s(τ)∣∣E[∣∣X(t)X(τ)
∣∣] dtdτ ≤ KXX(0)

∫ ∞

−∞

∫ ∞

−∞
|s(t)| |s(τ)|dtdτ

= KXX(0) ‖s‖21
<∞;

and the final equality follows from the definition of the autocovariance function
(Definition 25.4.4).

Having derived (25.53) we can derive (25.54) by following the steps leading to
(25.47). The only issue that needs clarification is the justification for replacing
the integral over R2 with the iterated integrals. This is justified using Fubini’s
Theorem by noting that, by (25.15), |KXX(σ)| ≤ KXX(0) and that s is integrable:∫ ∞

−∞
|s(τ)|

∫ ∞

−∞

∣∣s(σ + τ) KXX(σ)
∣∣ dσ dτ ≤ KXX(0)

∫ ∞

−∞
|s(τ)|

∫ ∞

−∞
|s(σ + τ)|dσ dτ

= KXX(0) ‖s‖21
<∞.

Finally, Part (vii) follows from (25.54) and from Proposition 6.2.4 by noting that,
by (11.34) & (11.35), Rss is integrable and of FT

R̂ss(f) =
∣∣ŝ(f)

∣∣2, f ∈ R,

and that, by Definition 25.7.2, if SXX is the PSD of
(
X(t)

)
, then SXX is integrable

and its IFT is KXX , i.e.,

KXX(σ) =
∫ ∞

−∞
SXX(f) ei2πfσ df.

Note 25.10.2.

(i) In the future we shall sometimes write∫ ∞

−∞
X(t) s(t) dt
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instead of the mathematically more explicit (25.52) & (25.50). Sometimes,
however, we shall make the argument ω ∈ Ω more explicit:

(∫ ∞

−∞
X(t) s(t) dt

)
(ω) =


∫ ∞

−∞
X(ω, t) s(t) dt if

∫∞
−∞

∣∣X(ω, t) s(t)
∣∣ dt <∞,

0 otherwise.

(ii) If s1 and s2 are indistinguishable integrable real signals (Definition 2.5.2),
then the random variables

∫∞
−∞X(t)s1(t) dt and

∫∞
−∞X(t)s2(t) dt are identi-

cal.

(iii) For every α ∈ R ∫ ∞

−∞
X(t)

(
α s(t)

)
dt = α

∫ ∞

−∞
X(t) s(t) dt. (25.56)

(iv) We caution the very careful readers that if s1 and s2 are integrable func-
tions, then there may be some ω’s in Ω for which the stochastic integral(∫∞
−∞X(t) (s1(t) + s2(t)) dt

)
(ω) is not equal to the sum of the stochastic

integrals
(∫∞
−∞X(t) s1(t) dt

)
(ω) and

(∫∞
−∞X(t) s2(t) dt

)
(ω). This can hap-

pen, for example, if the trajectory t 7→ X(ω, t) corresponding to ω is such
that either

∫
|X(ω, t) s1(t)|dt or

∫
|X(ω, t) s2(t)|dt is infinite, but not both.

Fortunately, as we shall see in Lemma 25.10.3, such ω’s occur with zero prob-
ability.

(v) The value that we have chosen to assign to the integral in (25.52) when ω is
in N is immaterial. Such ω’s occur with zero probability, so this value does
not influence the distribution of the integral.7

Lemma 25.10.3 (“Almost” Linearity of Stochastic Integration). Let
(
X(t)

)
be

a measurable WSS SP, let s1, . . . , sm : R → R be integrable, and let γ1, . . . , γm be
real. Then the random variables

ω 7→

(∫ ∞

−∞
X(t)

( m∑
j=1

γj sj(t)
)

dt

)
(ω) (25.57)

and

ω 7→
m∑
j=1

γj

((∫ ∞

−∞
X(t) sj(t) dt

)
(ω)

)
(25.58)

differ on at most a set of ω’s of probability zero. In particular, the two random
variables have the same distribution.

Note 25.10.4. In view of this lemma we shall write, somewhat imprecisely,∫ ∞

−∞
X(t)

(
α1 s1(t) + α2 s2(t)

)
dt = α1

∫ ∞

−∞
X(t) s1(t) dt+ α2

∫ ∞

−∞
X(t) s2(t) dt.

7The value zero is convenient because it guarantees that (25.56) holds even for ω’s for which
the mapping t 7→ X(ω, t) s(t) is not integrable.
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Proof of Lemma 25.10.3. Let (Ω,F , P ) be the probability space over which the
SP
(
X(t)

)
is defined. Define the function

s0 : t 7→
m∑
j=1

γj sj(t) (25.59)

and the sets

Nj =
{
ω ∈ Ω :

∫ ∞

−∞

∣∣X(ω, t) sj(t)
∣∣ dt =∞

}
, j = 0, 1, . . . ,m.

By (25.59) and the Triangle Inequality (2.12)

∣∣X(ω, t) s0(t)
∣∣ ≤ m∑

j=1

|γj | |X(ω, t) sj(t)|, ω ∈ Ω, t ∈ R,

which implies that

N0 ⊆
m⋃
j=1

Nj .

By the Union Bound (or more specifically by Corollary 21.5.2 (i)), the set on the
RHS is of probability zero. The proof is concluded by noting that, outside this
set, the random variables (25.57) and (25.58) are identical. This follows because,
for ω’s outside this set, all the integrals are finite so linearity holds.

25.11 Linear Functionals of Gaussian Processes

We continue our discussion of integrals of the form
∫
X(t) s(t) dt, but this time with

the additional assumption that
(
X(t)

)
is Gaussian. The main result of this section

is Proposition 25.11.1, which states that, subject to some technical conditions, the
result of this integral is a Gaussian RV. In fact, Proposition 25.11.1 is a bit more
general and addresses expressions of the form∫ ∞

−∞
X(t) s(t) dt+

n∑
ν=1

ανX(tν), (25.60)

where
(
X(t)

)
is a stationary Gaussian process, s : R → R is integrable, n is an

arbitrary nonnegative integer, and the coefficients α1, . . . , αn ∈ R and the epochs
t1, . . . , tn ∈ R are arbitrary. It shows that, subject to the additional technical
condition that

(
X(t)

)
is measurable, the result of (25.60) is a Gaussian RV. Con-

sequently, its distribution is fully specified by its mean and variance, which, as we
shall see, can be easily computed from the autocovariance function KXX .

The proof of the Gaussianity of (25.60) (Proposition 25.11.1 ahead) is technical,
so we encourage the reader to focus on the following heuristic argument. Suppose
that the integral is a Riemann integral and that we can therefore approximate it
with a finite sum ∫ ∞

−∞
X(t) s(t) dt ≈

K∑
k=−K

δ X(δk) s(δk)
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for some large enough K and small enough δ > 0. (Do not bother trying to sort
out the exact sense in which this approximation holds. This is, after all, a heuristic
argument.) Consequently, we can approximate (25.60) by∫ ∞

−∞
X(t) s(t) dt+

n∑
ν=1

ανX(tν) ≈
K∑

k=−K

δ s(δk)X(δk) +
n∑
ν=1

ανX(tν). (25.61)

But the RHS of the above is just a linear combination of the random variables

X(−Kδ), . . . , X(Kδ), X(t1), . . . , X(tν),

which are jointly Gaussian because
(
X(t)

)
is a Gaussian SP. Since a linear func-

tional of jointly Gaussian random variables is Gaussian (Theorem 23.6.17), the
RHS of (25.61) is Gaussian, thus making it plausible that its LHS is also Gaussian.

Before stating the main result of this section in a mathematically defensible way,
we now proceed to compute the mean and variance of (25.60). We assume that s(·)
is integrable and that

(
X(t)

)
is measurable and WSS. (Gaussianity is inessential

for the computation of the mean and variance.) The computation is very similar
to the one leading to (25.45) and (25.46). For the mean we have:

E

[∫ ∞

−∞
X(t) s(t) dt+

n∑
ν=1

ανX(tν)
]

= E

[∫ ∞

−∞
X(t) s(t) dt

]
+

n∑
ν=1

ανE
[
X(tν)

]
= E[X(0)]

(∫ ∞

−∞
s(t) dt+

n∑
ν=1

αν

)
, (25.62)

where the first equality follows from the linearity of expectation and where the
second equality follows from (25.45) and from the wide-sense stationarity of

(
X(t)

)
,

which implies that E[X(t)] = E[X(0)], for all t ∈ R.

For the purpose of computing the variance of (25.60), we assume that
(
X(t)

)
is

centered. The result continues to hold if
(
X(t)

)
has a nonzero mean, because the

mean of
(
X(t)

)
does not influence the variance of (25.60). We begin by expanding

the variance as

Var

[∫ ∞

−∞
X(t) s(t) dt+

n∑
ν=1

ανX(tν)
]

= Var

[∫ ∞

−∞
X(t) s(t) dt

]

+ Var

[ n∑
ν=1

ανX(tν)
]

+ 2
n∑
ν=1

ανCov

[∫ ∞

−∞
X(t) s(t) dt,X(tν)

]
(25.63)

and by noting that, by (25.47),

Var

[∫ ∞

−∞
X(t) s(t) dt

]
=
∫ ∞

−∞
KXX(σ) Rss(σ) dσ (25.64)

and that, by (25.24),

Var

[ n∑
ν=1

ανX(tν)
]

=
n∑
ν=1

n∑
ν′=1

αναν′ KXX(tν − tν′). (25.65)
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To complete the computation of the variance of (25.60) it remains to compute the
covariance in the last term in (25.63):

E

[
X(tν)

∫ ∞

−∞
X(t) s(t) dt

]
= E

[∫ ∞

−∞
X(t)X(tν) s(t) dt

]
=
∫ ∞

−∞
s(t) E[X(t)X(tν)] dt

=
∫ ∞

−∞
s(t) KXX(t− tν) dt. (25.66)

Combining (25.63) with (25.64)–(25.66) we obtain

Var

[∫ ∞

−∞
X(t) s(t) dt+

n∑
ν=1

ανX(tν)
]

=
∫ ∞

−∞
KXX(σ) Rss(σ) dσ

+
n∑
ν=1

n∑
ν′=1

αναν′ KXX(tν − tν′) + 2
n∑
ν=1

αν

∫ ∞

−∞
s(t) KXX(t− tν) dt. (25.67)

We now state the main result about linear functionals of Gaussian stochastic pro-
cesses. The proof is recommended for mathematically-inclined readers only.

Proposition 25.11.1 (Linear Functional of Stationary Gaussian Processes). Con-
sider the setup of Proposition 25.10.1 with the additional assumption that the pro-
cess

(
X(t)

)
is Gaussian. Additionally introduce the coefficients α1, . . . , αn ∈ R and

the epochs t1, . . . , tn ∈ R for some n ∈ N. Then there exists an event N ∈ F of
zero probability such that for all ω /∈ N the mapping t 7→ X(ω, t) s(t) is a Lebesgue
integrable function:(

the mapping t 7→ X(ω, t) s(t) is in L1

)
, ω /∈ N , (25.68a)

and the mapping from Ω to R

ω 7→


∫ ∞

−∞
X(ω, t) s(t) dt+

n∑
ν=1

ανX(ω, tν) if ω /∈ N ,

0 otherwise
(25.68b)

is a Gaussian RV whose mean and variance are given in (25.62) and (25.67).

Proof. We prove this result when
(
X(t)

)
is centered. The extension to the more

general case follows by noting that adding a deterministic constant to a zero-mean
Gaussian results in a Gaussian. We also assume that s(·) is Borel measurable,
because once the theorem is established for this case it immediately also extends
to the case where s(·) is only Lebesgue measurable by noting that every Lebesgue
measurable function is equal almost everywhere to a Borel measurable function.

The existence of the event N and the fact that the mapping (25.68b) is a RV follow
from Proposition 25.10.1. We next show that the RV

Y (ω) ,


∫ ∞

−∞
X(ω, t) s(t) dt+

n∑
ν=1

ανX(ω, tν) if ω /∈ N ,

0 otherwise,
(25.69)



540 Continuous-Time Stochastic Processes

is Gaussian.

To that end, define for every k ∈ N the function

sk(t) =

{
s(t) if |t| ≤ k and |s(t)| ≤

√
k,

0 otherwise.
t ∈ R. (25.70)

Note that for every ω ∈ Ω

lim
k→∞

X(ω, t) sk(t) = X(ω, t) s(t), t ∈ R,

and ∣∣X(ω, t) sk(t)
∣∣ ≤ ∣∣X(ω, t) s(t)

∣∣, t ∈ R,

so, by the Dominated Convergence Theorem and (25.68a),

lim
k→∞

∫ ∞

−∞
X(ω, t) sk(t) dt =

∫ ∞

−∞
X(ω, t) s(t) dt, ω /∈ N . (25.71)

Define now for every k ∈ N the RV

Yk(ω) =


∫ ∞

−∞
X(ω, t) sk(t) dt+

n∑
ν=1

ανX(ω, tν) if ω /∈ N ,

0 otherwise.
(25.72)

It follows from (25.71) that the sequence Y1, Y2, . . . converges almost surely to Y .
To prove that Y is Gaussian, it thus suffices to prove that for every k ∈ N the RV
Yk is Gaussian (Theorem 19.9.1).

To prove that Yk is Gaussian, we begin by showing that it is of finite variance. To
that end, it suffices to show that the RV

Ỹk(ω) ,

{∫∞
−∞X(ω, t) sk(t) dt if ω /∈ N ,

0 otherwise
(25.73)

is of finite variance. We prove this by using the definition of sk(·) (25.70) and by
using the Cauchy-Schwarz Inequality to show that for every ω /∈ N

Ỹ 2
k (ω) =

(∫ ∞

−∞
X(ω, t) sk(t) dt

)2

=
(∫ k

−k
X(ω, t) sk(t) dt

)2

≤
∫ k

−k
X2(ω, t) dt

∫ k

−k
s2k(t) dt

≤
(∫ k

−k
X2(ω, t) dt

)
2k2,

where the equality in the first line follows from the definition of Ỹk (25.73); the
equality in the second line from the definition of sk(·) (25.70); the inequality in the
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third line from the Cauchy-Schwarz Inequality; and the final inequality again by
(25.70). Since N is an event of probability zero, it follows from this inequality that

E
[
Ỹ 2
k

]
≤ 4k3 KXX(0) <∞,

thus establishing that Ỹk, and hence also Yk, is of finite variance.

To prove that Yk is Gaussian we shall use some results about the Hilbert space
L2(Ω,F , P ) of (the equivalence classes of) the random variables that are defined
over (Ω,F , P ) and that have a finite second moment; see, for example, (Shiryaev,
1996, Chapter II, Section 11). Let G denote the closed linear subspace of L2(Ω,F , P )
that is generated by the random variables

(
X(t), t ∈ R

)
. Thus, G contains all fi-

nite linear combinations of the random variables
(
X(t), t ∈ R

)
as well as the

mean-square limits of such linear combinations. Since the process
(
X(t), t ∈ R

)
is Gaussian, it follows that all such linear combinations are Gaussian. And since
mean-square limits of Gaussian random variables are Gaussian (Theorem 19.9.1),
it follows that G contains only random variables that have a Gaussian distribu-
tion (Shiryaev, 1996, Chapter II, Section 13, Paragraph 6). To prove that Yk is
Gaussian it thus suffices to show that it is an element of G.
To prove that Yk is an element of G, decompose Yk as

Yk = Y G
k + Y ⊥

k , (25.74)

where Y G
k is the projection of Yk onto G and where Y ⊥

k is consequently perpendic-
ular to every element of G and a fortiori to all the random variables

(
X(t), t ∈ R

)
:

E
[
X(t)Y ⊥

k

]
= 0, t ∈ R. (25.75)

Since Yk is of finite variance, this decomposition is possible and

E
[(
Y G
k

)2]
,E
[(
Y ⊥
k

)2]
<∞. (25.76)

To prove that Yk is an element of G we shall next show that E
[(
Y ⊥
k

)2] = 0 or,
equivalently (in view of (25.74)), that

E
[
YkY

⊥
k

]
= 0. (25.77)

To establish (25.77) we evaluate its LHS as follows:

E
[
YkY

⊥
k

]
= E

[(∫ ∞

−∞
X(t) sk(t) dt+

n∑
ν=1

ανX(tν)
)
Y ⊥
k

]

= E

[(∫ ∞

−∞
X(t) sk(t) dt

)
Y ⊥
k

]
+

n∑
ν=1

αν E
[
X(tν)Y ⊥

k

]︸ ︷︷ ︸
0

= E

[(∫ ∞

−∞
X(t) sk(t) dt

)
Y ⊥
k

]
=
∫ ∞

−∞
E
[
X(t) sk(t)Y ⊥

k

]
dt



542 Continuous-Time Stochastic Processes

=
∫ ∞

−∞
E
[
X(t)Y ⊥

k

]︸ ︷︷ ︸
0

sk(t) dt

= 0,

where the first equality follows from the definition of Yk (25.72); the second from
the linearity of expectation; the third from the orthogonality (25.75); the fourth by
an application of Fubini’s Theorem that we shall justify shortly; the fifth because
sk(·) is a deterministic function; and the final equality again by (25.75). This
establishes (25.77) subject to a verification that the conditions of Fubini’s Theorem
are satisfied, a verification we conduct now. That (ω, t) 7→ X(ω, t)Y ⊥

k (ω) sk(t) is
measurable follows because

(
X(t), t ∈ R

)
is a measurable SP; Y ⊥

k , being a RV,
is measurable with respect to F ; and because the Borel measurability of s(·) also
implies the Borel measurability of sk(·). The integrability of this function follows
from the Cauchy-Schwarz Inequality for random variables∫ ∞

−∞
E
[∣∣X(t)Y ⊥

k

∣∣] |sk(t)|dt ≤ ∫ ∞

−∞

√
E[X2(t)]

√
E
[(
Y ⊥
k

)2] |sk(t)|dt
≤
√

KXX(0)
√

E
[(
Y ⊥
k

)2] 2k
√
k

<∞,

where the second inequality follows from the definition of sk(·) (25.70), and where
the third inequality follows from (25.76). This justifies the use of Fubini’s Theorem
in the proof of (25.77). We have thus demonstrated that Yk is in G, and hence, like
all elements of G, is Gaussian. This concludes the proof of the Gaussianity of Yk
for every k ∈ N and hence the Gaussianity of Y .

It only remains to verify that the mean and variance of Y are as stated in the
theorem. The only part of the derivation of (25.67) that we have not yet justified
is the derivation of (25.66) and, in particular, the swapping of the expectation and
integration. But this is easily justified using Fubini’s Theorem because, by (25.17),∫ ∞

−∞
E
[∣∣X(tν)X(t)

∣∣] |s(t)|dt ≤ (KXX(0) + E[X(0)]2
)
‖s‖1 <∞. (25.78)

Proposition 25.11.1 is extremely powerful because it allows us to determine the
distribution of a linear functional of a Gaussian SP from its mean and variance.
In the next section we shall extend this result and show that any finite number of
linear functionals of a Gaussian SP are jointly Gaussian. Their joint distribution
is thus fully determined by the mean vector and the covariance matrix, which, as
we shall see, can be readily computed from the autocovariance function.

25.12 The Joint Distribution of Linear Functionals

Let us now shift our focus from the distribution of a single linear functional to the
joint distribution of a collection of such functionals. Specifically, we consider m
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functionals ∫ ∞

−∞
X(t) sj(t) dt+

nj∑
ν=1

αj,νX
(
tj,ν
)
, j = 1, . . . ,m (25.79)

of the measurable, stationary Gaussian SP
(
X(t)

)
. Here the m real-valued sig-

nals s1, . . . , sm are integrable, n1, . . . , nm are in N, and αj,ν , tj,ν are deterministic
constants for all ν ∈ {1, . . . , nj}.
The main result of this section is that if

(
X(t)

)
is a Gaussian SP, then the random

variables in (25.79) are jointly Gaussian.

Theorem 25.12.1 (Linear Functionals of a Gaussian SP Are Jointly Gaussian).
The m linear functionals

∫ ∞

−∞
X(t) sj(t) dt+

nj∑
ν=1

αj,νX
(
tj,ν
)
, j = 1, . . . ,m

of a measurable, stationary, Gaussian SP
(
X(t)

)
are jointly Gaussian, whenever

m ∈ N; the m functions {sj}mj=1 are integrable functions from R to R; the inte-
gers {nj} are nonnegative; and the coefficients {αj,ν} and the epochs {tj,ν} are
deterministic real numbers for all j ∈ {1, . . . ,m} and all ν ∈ {1, . . . , nj}.

Proof. It suffices to show that any linear combination of these linear function-
als has a univariate Gaussian distribution (Theorem 23.6.17). This follows from
Proposition 25.11.1 and Lemma 25.10.3 because, by Lemma 25.10.3, for any choice
of the coefficients γ1, . . . , γm ∈ R the linear combination

γ1

(∫ ∞

−∞
X(t) s1(t) dt+

n1∑
ν=1

α1,νX
(
t1,ν
))

+ · · ·

+ γm

(∫ ∞

−∞
X(t) sm(t) dt+

nm∑
ν=1

αm,νX
(
tm,ν

))
has the same distribution as the linear functional∫ ∞

−∞
X(t)

( m∑
j=1

γj sj(t)
)

dt+
m∑
j=1

nj∑
ν=1

γjαj,νX
(
tj,ν
)
,

which, by Proposition 25.11.1, has a univariate Gaussian distribution.

It follows from Theorem 25.12.1 that if
(
X(t)

)
is a measurable, stationary, Gaussian

SP, then the joint distribution of the random variables in (25.79) is fully specified
by their means and their covariance matrix. If

(
X(t)

)
is centered, then by (25.62)

these random variables are centered, so their joint distribution is determined by
their covariance matrix. We next show how this covariance matrix can be computed
from the autocovariance function KXX . To this end we assume that

(
X(t)

)
is
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centered, and expand the covariance between any two such functionals as follows:

Cov

[∫ ∞

−∞
X(t) sj(t) dt+

nj∑
ν=1

αj,νX(tj,ν),
∫ ∞

−∞
X(t) sk(t) dt+

nk∑
ν′=1

αk,ν′X(tk,ν′)

]

= Cov

[∫ ∞

−∞
X(t) sj(t) dt,

∫ ∞

−∞
X(t) sk(t) dt

]
+

nj∑
ν=1

αj,νCov

[
X(tj,ν),

∫ ∞

−∞
X(t) sk(t) dt

]
+

nk∑
ν′=1

αk,ν′Cov

[
X(tk,ν′),

∫ ∞

−∞
X(t) sj(t) dt

]

+
nj∑
ν=1

nk∑
ν′=1

αj,ναk,ν′Cov
[
X(tj,ν), X(tk,ν′)

]
, j, k ∈ {1, . . . ,m}. (25.80)

The second and third terms on the RHS can be computed from the autocovariance
function KXX using (25.66). The fourth term can be computed from KXX by noting
that Cov[X(tj,ν), X(tk,ν′)] = KXX(tj,ν−tk,ν′) (Definition 25.4.4). We now evaluate
the first term:

Cov

[∫ ∞

−∞
X(t) sj(t) dt,

∫ ∞

−∞
X(t) sk(t) dt

]
= E

[∫ ∞

−∞
X(t) sj(t) dt

∫ ∞

−∞
X(τ) sk(τ) dτ

]
= E

[∫ ∞

−∞

∫ ∞

−∞
X(t) sj(t)X(τ) sk(τ) dtdτ

]
=
∫ ∞

−∞

∫ ∞

−∞
E[X(t)X(τ)] sj(t) sk(τ) dtdτ

=
∫ ∞

−∞

∫ ∞

−∞
KXX(t− τ) sj(t) sk(τ) dtdτ, (25.81)

which is the generalization of (25.53). By changing variables from (t, τ) to (t, σ),
where σ , t− τ , we can obtain the generalization of (25.54). Starting from (25.81)

Cov

[∫ ∞

−∞
X(t) sj(t) dt,

∫ ∞

−∞
X(t) sk(t) dt

]
=
∫ ∞

−∞

∫ ∞

−∞
KXX(t− τ) sj(t) sk(τ) dtdτ

=
∫ ∞

−∞
KXX(σ)

∫ ∞

−∞
sj(t) sk(t− σ) dtdσ

=
∫ ∞

−∞
KXX(σ)

∫ ∞

−∞
sj(t)~sk(σ − t) dtdσ

=
∫ ∞

−∞
KXX(σ)

(
sj ?~sk

)
(σ) dσ. (25.82)

If
(
X(t)

)
is of PSD SXX , then we can rewrite (25.82) in the frequency domain

using Proposition 6.2.4 in much the same way that we rewrote (25.46) in the form
(25.48):

Cov

[∫ ∞

−∞
X(t) sj(t) dt,

∫ ∞

−∞
X(t) sk(t) dt

]
=
∫ ∞

−∞
SXX(f) ŝj(f) ŝ∗k(f) df, (25.83)
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where we have used the fact that the FT of sj ?~sk is the product of the FT of sj
and the FT of ~sk, and that the FT of ~sk is f 7→ ŝk(−f), which, because sk is real,
is also given by f 7→ ŝ∗k(f).

The key second-order properties of linear functionals of measurable WSS stochastic
processes are summarized in the following theorem. Using these properties and
(25.80) we can compute the covariance matrix of the linear functionals in (25.79),
a matrix which fully specifies their joint distribution whenever

(
X(t)

)
is a centered

Gaussian SP.

Theorem 25.12.2 (Covariance Properties of Linear Functionals of a WSS SP).
Let

(
X(t)

)
be a measurable WSS SP.

(i) If the real signal s is integrable, then

Var

[∫ ∞

−∞
X(t) s(t) dt

]
=
∫ ∞

−∞
KXX(σ) Rss(σ) dσ, (25.84)

where Rss is the self-similarity function of s. Furthermore, for every fixed
epoch τ ∈ R

Cov

[∫ ∞

−∞
X(t) s(t) dt,X(τ)

]
=
∫ ∞

−∞
s(t) KXX(τ − t) dt, τ ∈ R. (25.85)

If s1, s2 are real-valued integrable signals, then

Cov

[∫ ∞

−∞
X(t) s1(t) dt,

∫ ∞

−∞
X(t) s2(t) dt

]
=
∫ ∞

−∞
KXX(σ)

(
s1 ?~s2

)
(σ) dσ.

(25.86)

(ii) If
(
X(t)

)
is of PSD SXX , then for s, s1, s2, and τ as above

Var

[∫ ∞

−∞
X(t) s(t) dt

]
=
∫ ∞

−∞
SXX(f)

∣∣ŝ(f)
∣∣2 df, (25.87)

Cov

[∫ ∞

−∞
X(t) s(t) dt,X(τ)

]
=
∫ ∞

−∞
SXX(f) ŝ(f) ei2πfτ df, (25.88)

and

Cov

[∫ ∞

−∞
X(t) s1(t) dt,

∫ ∞

−∞
X(t) s2(t) dt

]
=
∫ ∞

−∞
SXX(f) ŝ1(f) ŝ∗2(f) df.

(25.89)

Proof. Most of these claims have already been proved. Indeed, (25.84) was proved
in Proposition 25.10.1 (vi), and (25.85) was proved in Proposition 25.11.1 using
Fubini’s Theorem and (25.78). However, (25.86) was only derived heuristically
in (25.81) and (25.82). To rigorously justify this derivation one can use Fubini’s
Theorem, or use the relation

Cov[X,Y ] =
1
2

(
Var[X + Y ]− Var[X]− Var[Y ]

)
and the result for the variance, namely, (25.84).

All the results in Part (ii) of this theorem follow from the corresponding results in
Part (i) using the definition of the PSD and Proposition 6.2.4.
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h(·)

(
X(t)

) (
X(t)

)
? h

Figure 25.2: Passing a SP
(
X(t)

)
through a stable filter of impulse response h(·).

If
(
X(t)

)
is measurable and WSS, then so is the output

(
X(t)

)
?h. If, additionally,(

X(t)
)

is of PSD SXX , then the output is of PSD f 7→ SXX(f) |ĥ(f)|2. If
(
X(t)

)
is

additionally Gaussian, then so is the output.

25.13 Filtering WSS Processes

We next discuss the result of passing a WSS SP through a stable filter, i.e., the
convolution of a SP with a deterministic integrable function. Our main result is
that, subject to some technical conditions, the following hold:

(i) Passing a WSS SP through a stable filter produces a WSS SP.

(ii) If the input to the filter is of PSD SXX , then the output of the filter is of
PSD f 7→ SXX(f) |ĥ(f)|2, where ĥ(·) is the filter’s frequency response.

(iii) If the input to the filter is a Gaussian SP, then so is the output.

We state this result in Theorem 25.13.2. But first we must define the convolution
of a SP with an integrable deterministic signal. Our approach is to build on our
definition of linear functionals of WSS stochastic processes (Section 25.10) and to
define the convolution of

(
X(t)

)
with h(·) as the SP that maps every epoch t ∈ R

to the RV ∫ ∞

−∞
X(σ)h(t− σ) dσ,

where the above integral is the linear functional∫ ∞

−∞
X(σ) s(σ) dσ with s : σ 7→ h(t− σ).

With this approach the key results will follow by applying Theorem 25.12.2 with
the proper substitutions.

Definition 25.13.1 (Filtering a Stochastic Process). The convolution of a mea-
surable, WSS SP

(
X(t)

)
with an integrable function h : R→ R is denoted by(

X(t)
)
? h

and is defined as the SP that maps every t ∈ R to the RV∫ ∞

−∞
X(σ)h(t− σ) dσ, (25.90)
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where the stochastic integral in (25.90) is the stochastic integral that was defined
in Note 25.10.2

(
X(t)

)
?h : (ω, t) 7→


∫ ∞

−∞
X(ω, σ)h(t− σ) dσ if

∫∞
−∞

∣∣X(ω, σ)h(t− σ)
∣∣ dσ <∞,

0 otherwise.

Theorem 25.13.2. Let
(
Y (t)

)
be the result of convolving the measurable, cen-

tered, WSS SP
(
X(t)

)
of autocovariance function KXX with the integrable function

h : R→ R.

(i) The SP
(
Y (t)

)
is centered, measurable, and WSS with autocovariance func-

tion
KYY = KXX ?Rhh, (25.91)

where Rhh is the self-similarity function of h (Section 11.4).

(ii) If
(
X(t)

)
is of PSD SXX , then

(
Y (t)

)
is of PSD

SYY (f) =
∣∣ĥ(f)

∣∣2 SXX(f), f ∈ R. (25.92)

(iii) For every t, τ ∈ R,

E
[
X(t)Y (t+ τ)

]
=
(
KXX ?h

)
(τ), (25.93)

where the RHS does not depend on t.8

(iv) If
(
X(t)

)
is Gaussian, then so is

(
Y (t)

)
. Moreover, for every choice of

n,m ∈ N and for every choice of the epochs t1, . . . , tn, tn+1, . . . , tn+m ∈ R,
the random variables

X(t1), . . . , X(tn), Y (tn+1), . . . , Y (tn+m) (25.94)

are jointly Gaussian.9

Proof. For fixed t, τ ∈ R we use Definition 25.13.1 to express Y (t) and Y (t+ τ) as

Y (t) =
∫ ∞

−∞
X(σ) s1(σ) dσ, (25.95)

and
Y (t+ τ) =

∫ ∞

−∞
X(σ) s2(σ) dσ, (25.96)

where
s1 : σ 7→ h(t− σ), (25.97)

s2 : σ 7→ h(t+ τ − σ). (25.98)

8Two stochastic processes
(
X(t)

)
and

(
Y (t)

)
are said to be jointly wide-sense stationary

if each is WSS and if E[X(t)Y (t+ τ)] does not depend on t.
9That is,

(
X(t)

)
and

(
Y (t)

)
are jointly Gaussian processes.
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We are now ready to prove Part (i). That
(
Y (t)

)
is centered follows from the

representation of Y (t) in (25.95) & (25.97) as a linear functional of
(
X(t)

)
and

from the hypothesis that
(
X(t)

)
is centered (Proposition 25.10.1).

To establish that
(
Y (t)

)
is WSS we use the representations (25.95)–(25.98) and

Theorem 25.12.2 regarding the covariance between two linear functionals as follows.

Cov
[
Y (t+ τ), Y (t)

]
= Cov

[∫ ∞

−∞
X(σ) s2(σ) dσ,

∫ ∞

−∞
X(σ) s1(σ) dσ

]
=
∫ ∞

−∞
KXX(σ)

(
s2 ?~s1

)
(σ) dσ, (25.99)

where the convolution can be evaluated as(
s2 ?~s1

)
(σ) =

∫ ∞

−∞
s2(µ)~s1(σ − µ) dµ

=
∫ ∞

−∞
h(t+ τ − µ)h(t+ σ − µ) dµ

=
∫ ∞

−∞
h(µ̃+ τ − σ)h(µ̃) dµ̃

= Rhh(τ − σ), (25.100)

where µ̃ , t+ σ − µ. Combining (25.99) with (25.100) yields

Cov
[
Y (t+ τ), Y (t)

]
=
(
KXX ?Rhh

)
(τ), t, τ ∈ R, (25.101)

where the RHS does not depend on t. This establishes that
(
Y (t)

)
is WSS and

proves (25.91).10

To conclude the proof of Part (i) we now show that
(
Y (t)

)
is measurable. The proof

is technical and requires background in Measure Theory. Readers are encouraged
to skip it and move on to the proof of Part (ii).

We first note that, as in the proof of Proposition 25.10.1, it suffices to prove the
result for impulse response functions h that are Borel measurable; the extension
to Lebesgue measurable functions will then follow by approximating h by a Borel
measurable function that differs from it on a set of Lebesgue measure zero (Rudin,
1974, Chapter 7, Lemma 1) and by then applying Part (ii) of Note 25.10.2. We
hence now assume that h is Borel measurable.

We shall prove that
(
Y (t)

)
is measurable by proving that the (nonstationary)

process (ω, t) 7→ Y (ω, t)/(1 + t2) is measurable. This we shall prove using Fubini’s
Theorem applied to the function from (Ω× R)× R to R defined by(

(ω, t), σ
)
7→ X(ω, σ)h(t− σ)

1 + t2
,
(
(ω, t) ∈ Ω× R, σ ∈ R

)
. (25.102)

This function is measurable because, by assumption,
(
X(t)

)
is measurable and

because the measurability of the function h(·) implies the measurability of the

10That
(
Y (t)

)
is of finite variance follows from (25.101) by setting τ = 0 and noting that

the convolution on the RHS of (25.101) is between a bounded function (KXX) and an integrable
function (Rhh) and is thus defined and finite at every τ ∈ R and a fortiori at τ = 0.
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function (t, σ) 7→ h(t − σ) (as proved, for example, in (Rudin, 1974, p. 157)). We
next verify that this function is integrable. To that end, we first integrate its
absolute value over (ω, t) and then over σ. The integral over (ω, t) is given by∫ ∞

t=−∞

E[|X(σ)|] |h(t− σ)|
1 + t2

dt ≤
√

KXX(0)
∫ ∞

t=−∞

|h(t− σ)|
1 + t2

dt,

where the inequality follows from (25.16) and from our assumption that
(
X(t)

)
is

centered. We next need to integrate the RHS over σ. Invoking Fubini’s Theorem
to exchange the order of integration over t and σ we obtain that the integral of the
absolute value of the function defined in (25.102) is upper-bounded by∫ ∞

σ=−∞

√
KXX(0)

∫ ∞

t=−∞

|h(t− σ)|
1 + t2

dtdσ =
√

KXX(0)
∫ ∞

t=−∞

∫ ∞

σ=−∞

|h(t− σ)|
1 + t2

dσ dt

=
√

KXX(0)
∫ ∞

t=−∞

‖h‖1
1 + t2

dt

= π
√

KXX(0) ‖h‖1
<∞.

Having established that the function in (25.102) is measurable and integrable, we
can now use Fubini’s Theorem to deduce that its integral over σ is measurable as
a mapping of (ω, t), i.e., that the mapping

(ω, t) 7→
∫ ∞

σ=−∞

X(ω, σ)h(t− σ)
1 + t2

dσ (25.103)

is measurable. Since the RHS of (25.103) is Y (ω, t)/(1 + t2), we conclude that the
mapping (ω, t) 7→ Y (ω, t)/(1 + t2) is measurable and hence also (ω, t) 7→ Y (ω, t).

We next prove Part (ii) using (25.91) and Proposition 6.2.5. Because h is integrable,
its self-similarity function Rhh is integrable and of FT

R̂hh(f) =
∣∣ĥ(f)

∣∣2, f ∈ R (25.104)

(Section 11.4). And since, by assumption,
(
X(t)

)
is of PSD SXX , it follows that SXX

is integrable and that its IFT is KXX :

KXX(τ) =
∫ ∞

−∞
SXX(f) ei2πfτ df, τ ∈ R. (25.105)

Consequently, by Proposition 6.2.5,

(
KXX ?Rhh

)
(τ) =

∫ ∞

−∞

∣∣ĥ(f)
∣∣2 SXX(f) ei2πfτ df, τ ∈ R.

Combining this with (25.91) yields

KYY (τ) =
∫ ∞

−∞

∣∣ĥ(f)
∣∣2 SXX(f) ei2πfτ df, τ ∈ R,
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and thus establishes that the PSD of
(
Y (t)

)
is as given in (25.92).

We next turn to Part (iii). To establish (25.93) we use the representation (25.96)
& (25.98) and Theorem 25.12.2:

E
[
X(t)Y (t+ τ)

]
= Cov

[
X(t),

∫ ∞

−∞
X(σ) s2(σ) dσ

]
=
∫ ∞

−∞
s2(σ) KXX(t− σ) dσ

=
∫ ∞

−∞
h(t+ τ − σ) KXX(t− σ) dσ

=
∫ ∞

−∞
KXX(−µ)h(τ − µ) dµ

=
∫ ∞

−∞
KXX(µ)h(τ − µ) dµ

=
(
KXX ?h

)
(τ), τ ∈ R,

where µ , σ − t, and where we have used the symmetry of the autocovariance
function.

Finally, we prove Part (iv). The proof is a simple application of Theorem 25.12.1.
To prove that

(
Y (t)

)
is a Gaussian process we need to show that, for every pos-

itive integer n and for every choice of the epochs t1, . . . , tn, the random variables
Y (t1), . . . , Y (tn) are jointly Gaussian. This follows directly from Theorem 25.12.1
because Y (tν) can be expressed as

Y (tν) =
∫ ∞

−∞
X(σ)h(tν − σ) dσ

=
∫ ∞

−∞
X(σ) sν(σ) dσ, ν = 1, . . . , n,

where
sν : σ 7→ h(tν − σ), ν = 1, . . . , n

are all integrable.

The joint Gaussianity of the random variables in (25.94) can also be deduced from
Theorem 25.12.1. Indeed, X(tν) can be trivially expressed as the functional

X(tν) =
∫ ∞

−∞
X(σ) sν(σ) dσ + ανX(tν), ν = 1, . . . , n

when sν is chosen to be the zero function and when αν is chosen as 1, and Y (tν)
can be similarly expressed as

Y (tν) =
∫ ∞

−∞
X(σ) sν(σ) dσ + ανX(tν), ν = n+ 1, . . . , n+m

when sν : σ 7→ h(tν − σ) and αν = 0.
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The mathematically astute reader may have noted that, in defining the result of
passing a WSS SP through a stable filter of impulse response h, we did not preclude
the possibility that for every ω there may be some epochs t for which the mapping
σ 7→ X(ω, σ)h(t − σ) is not integrable. So far, we have only established that
for every epoch t the set Nt of ω’s for which this mapping is not integrable is of
probability zero.

We next show that if h is well-behaved in the sense that it is not only integrable
but also satisfies ∫ ∞

−∞
h2(t) (1 + t2) dt <∞, (25.106)

then whenever ω is outside some set N ⊂ Ω of probability zero, the mapping
σ 7→ X(ω, σ)h(t − σ) is integrable for all t ∈ R. Thus, for ω’s outside this set of
probability zero, we can think of the response of the filter as being the convolution
of the trajectory t 7→ X(ω, t) and the impulse response t 7→ h(t). For such ω’s this
convolution never blows up.

We show this in two steps. In the first step we note that if h satisfies (25.106) and
if the trajectory t 7→ X(ω, t) satisfies∫ ∞

−∞

X2(ω, t)
1 + t2

dt <∞, (25.107)

then the function σ 7→ X(ω, σ)h(t − σ) is integrable for every t ∈ R (Proposi-
tion 3.4.4).

In the second step we show that outside a set of ω’s of probability zero, all the
trajectories t 7→ X(ω, t) satisfy (25.107):

Lemma 25.13.3. Let
(
X(t)

)
be a WSS measurable SP defined over the probability

space (Ω,F , P ). Then

E

[∫ ∞

−∞

X2(t)
1 + t2

dt
]
<∞, (25.108)

and the set {
ω ∈ Ω :

∫ ∞

−∞

X2(ω, t)
1 + t2

dt <∞
}

(25.109)

is an event of probability one.

Proof. Since
(
X(t)

)
is measurable, the mapping

(ω, t) 7→ X2(ω, t)
1 + t2

(25.110)

is nonnegative and measurable. By Fubini’s Theorem it follows that if we define

W (ω) ,
∫ ∞

−∞

X2(ω, t)
1 + t2

dt, ω ∈ Ω, (25.111)
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then W is a nonnegative RV taking value in the interval [0,∞]. Consequently, the
set {ω ∈ Ω : W (ω) <∞} is measurable. Moreover, by Fubini’s Theorem,

E[W ] =
∫ ∞

−∞
E

[
X2(t)
1 + t2

]
dt

=
∫ ∞

−∞

E
[
X2(t)

]
1 + t2

dt

= E
[
X2(0)

] ∫ ∞

−∞

1
1 + t2

dt

= π E
[
X2(0)

]
<∞.

Thus, W is a RV taking value in the interval [0,∞] and having finite expectation,
so the event {ω ∈ Ω : W (ω) <∞} must be of probability one.

25.14 The PSD Revisited

Theorem 25.13.2 describes the PSD of the output of a stable filter that is fed a
WSS SP

(
X(t)

)
. By integrating this PSD, we obtain the value at the origin of the

autocovariance function of the filter’s output (see (25.30)). Since the latter is the
power of the filter’s output (Corollary 25.9.3), we have:

Theorem 25.14.1 (Wiener-Khinchin). If a measurable, centered, WSS SP
(
X(t)

)
of autocovariance function KXX is passed through a stable filter of impulse response
h : R→ R, then the average power of the filter’s output is given by

Power of X ? h = 〈KXX ,Rhh〉 . (25.112)

If, additionally,
(
X(t)

)
is of PSD SXX , then this power is given by

Power of X ? h =
∫ ∞

−∞
SXX(f)

∣∣ĥ(f)
∣∣2 df. (25.113)

Proof. To prove (25.112), we note that by (25.91) the autocovariance function of
the filtered process is KXX ?Rhh, which evaluates at the origin to (25.112). The
result thus follows from Proposition 25.9.2, which shows that the power in the
filtered process is given by its autocovariance function evaluated at the origin.

To prove (25.113), we note that KXX is the IFT of SXX and that, by (11.35),
R̂hh(f) = |ĥ(f)|2, so the RHS of (25.113) is equal to the RHS of (25.112) by
Proposition 6.2.4.

We next show that for WSS stochastic processes, the operational PSD (Defini-
tion 15.3.1) and the PSD (Definition 25.7.2) are equivalent. That is, a WSS SP
has an operational PSD if, and only if, it has a PSD, and if the two exist, then they
are equal (outside a set of frequencies of Lebesgue measure zero). Before stating
this as a theorem, we present a lemma that will be needed in the proof. It is very
much in the spirit of Lemma 15.3.2.
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Lemma 25.14.2. Let g : R→ R be a symmetric continuous function satisfying the
condition that for every integrable real signal h : R→ R∫ ∞

−∞
g(t) Rhh(t) dt = 0. (25.114)

Then g is the all-zero function.

Proof. For every a > 0 consider the function

h(t) =
1√
a

I{|t| ≤ a/2}, t ∈ R

whose self-similarity function is

Rhh(t) =
(

1− |t|
a

)
I{|t| ≤ a}, t ∈ R. (25.115)

Since h is integrable, it follows from (25.114) that

0 =
∫ ∞

−∞
g(t) Rhh(t) dt

= 2
∫ ∞

0

g(t) Rhh(t) dt

= 2
∫ a

0

g(t)
(
1− t

a

)
dt, a > 0, (25.116)

where the second equality follows from the hypothesis that g(·) is symmetric and
from the symmetry of Rhh, and where the third equality follows from (25.115).
Defining

G(t) =
∫ t

0

g(ξ) dξ, t ≥ 0, (25.117)

and using integration by parts, we obtain from (25.116) that

0 = G(ξ)
(
1− ξ

a

)∣∣∣∣a
0

+
1
a

∫ a

0

G(ξ) dξ, a > 0,

from which we obtain
aG(0) =

∫ a

0

G(ξ) dξ, a > 0.

Differentiating with respect to a yields

G(0) = G(a), a ≥ 0,

which combines with (25.117) to yield∫ a

0

g(t) dt = 0, a ≥ 0. (25.118)

Differentiating with respect to a and using the continuity of g (Rudin, 1976, Chap-
ter 6, Theorem 6.20) yields that g(a) is zero for all a ≥ 0 and hence, by its
symmetry, for all a ∈ R.
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Theorem 25.14.3 (The PSD and Operational PSD of a WSS SP). Let
(
X(t)

)
be a measurable, centered, WSS SP of a continuous autocovariance function KXX .
Let S(·) be a nonnegative, symmetric, integrable function. Then the following two
conditions are equivalent:

(a) KXX is the Inverse Fourier Transform of S(·).

(b) For every integrable h : R→ R, the power in X ? h is given by

Power of X ? h =
∫ ∞

−∞
S(f) |ĥ(f)|2 df. (25.119)

Proof. That (a) implies (b) follows from the Wiener-Khinchin Theorem because
(a) implies that

(
X(t)

)
is of PSD S(·). It remains to prove that (b) implies (a).

To this end we now assume that Condition (b) is satisfied and proceed to prove
that KXX must then be equal to the IFT of S(·). By Theorem 25.14.1, the power
in X ? h is given by (25.112). Consequently, Condition (b) implies that∫ ∞

−∞
S(f) |ĥ(f)|2 df =

∫ ∞

−∞
KXX(τ) Rhh(τ) dτ, (25.120)

for every integrable h : R→ R.

If h is integrable, then the FT of Rhh is the mapping f 7→ |ĥ(f)|2 (see (11.35)). If,
in addition, h is a real signal, then Rhh is a symmetric function, and its IFT is thus
identical to its FT (Proposition 6.2.3 (ii)). Thus, if h is real and integrable, then
the IFT of Rhh is the mapping f 7→ |ĥ(f)|2. (Using the dummy variable f for the
IFT is unusual but legitimate.) Consequently, by Proposition 6.2.4 (applied with
the substitution of S(·) for x and of Rhh for g),∫ ∞

−∞
S(f) |ĥ(f)|2 df =

∫ ∞

−∞
Ŝ(τ) Rhh(τ) dτ. (25.121)

By (25.120) & (25.121) and by the symmetry of S(·) (which implies that Ŝ = Š)
we obtain that ∫ ∞

−∞

(
Š(τ)− KXX(τ)

)
Rhh(τ) dτ = 0, h ∈ L1 . (25.122)

It thus follows from Lemma 15.3.2 that the mapping τ 7→ Š(τ) − KXX(τ) is the
all-zero function, and Condition (a) is established.

25.15 White Gaussian Noise

The most important continuous-time SP in Digital Communications is white
Gaussian noise, which is often used to model the additive noise in communi-
cation systems. In this section we define this process and study its key properties.
Our definition differs from the one in most textbooks, most notably in that we de-
fine white Gaussian noise only with respect to some given bandwidth W. We give
our reasons and comment on the implications in Section 25.15.2 after providing
our definition and deriving the key results.
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N0/2

f

SNN (f)

Figure 25.3: The PSD of a SP
(
N(t)

)
which is of double-sided spectral den-

sity N0/2 with respect to the bandwidth W.

25.15.1 Definition and Main Properties

The parameters defining white Gaussian noise are the bandwidth W with respect
to which the process is white and the double-sided spectral density N0/2.

Definition 25.15.1 (White Gaussian Noise). We say that
(
N(t)

)
is white Gaus-

sian noise of double-sided spectral density N0/2 with respect to the band-
width W if

(
N(t)

)
is a measurable, stationary, centered, Gaussian SP that has a

PSD SNN satisfying

SNN (f) =
N0

2
, f ∈ [−W,W ]. (25.123)

An example of the PSD of white Gaussian noise of double-sided spectral den-
sity N0/2 with respect to the bandwidth W is depicted in Figure 25.3. Note that
our definition of white Gaussian noise only specifies the PSD for frequencies f sat-
isfying |f | ≤ W. We leave the value of the PSD at other frequencies unspecified.
But the PSD should, of course, be a valid PSD, i.e., it must be nonnegative, sym-
metric, and integrable (Definition 25.7.2). Recall also that by Proposition 25.7.3
every nonnegative, symmetric, integrable function is the PSD of some measurable
stationary Gaussian SP.11

The following proposition summarizes the key properties of white Gaussian noise.
The reader is encouraged to recall the definition of an integrable function that is
bandlimited to W Hz (Definition 6.4.9); the definition of the inner product between
two energy-limited real signals (3.1); the definition of ‖s‖2 as

√
〈s, s〉; and the

definition of orthonormality of the functions φ1, . . . ,φm (Definition 4.6.1).

Proposition 25.15.2 (Key Properties of White Gaussian Noise). Let
(
N(t)

)
be

white Gaussian noise of double-sided spectral density N0/2 with respect to the band-
width W.

11As we have noted in the paragraph preceeding Definition 25.9.1, Proposition 25.7.3 can
be strengthened to also guarantee measurability. Every nonnegative, symmetric, and integrable
function is the PSD of some measurable, stationary, and Gaussian SP whose autocovariance
function is continuous.
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(i) If s is any integrable function that is bandlimited to W Hz, then∫ ∞

−∞
N(t) s(t) dt ∼ N

(
0,

N0

2
‖s‖22

)
.

(ii) If s1, . . . , sm are integrable functions that are bandlimited to W Hz, then the
m random variables∫ ∞

−∞
N(t) s1(t) dt, . . . ,

∫ ∞

−∞
N(t) sm(t) dt

are jointly Gaussian centered random variables of covariance matrix

N0

2


〈s1, s1〉 〈s1, s2〉 · · · 〈s1, sm〉
〈s2, s1〉 〈s2, s2〉 · · · 〈s2, sm〉

...
...

. . .
...

〈sm, s1〉 〈sm, s2〉 · · · 〈sm, sm〉

 .

(iii) If φ1, . . . ,φm are integrable functions that are bandlimited to W Hz and are
orthonormal, then the random variables∫ ∞

−∞
N(t)φ1(t) dt, . . . ,

∫ ∞

−∞
N(t)φm(t) dt

are IID N (0,N0/2).

(iv) If s is any integrable function that is bandlimited to W Hz, and if KNN is the
autocovariance function of

(
N(t)

)
, then

KNN ? s =
N0

2
s . (25.124)

(v) If s is an integrable function that is bandlimited to W Hz, then for every
epoch t ∈ R

Cov

[∫ ∞

−∞
N(σ) s(σ) dσ,N(t)

]
=

N0

2
s(t). (25.125)

Proof. Parts (i) and (iii) are special cases of Part (ii), so it suffices to prove
Parts (ii), (iv), and (v). We begin with Part (ii). We first note that since {sj}
are assumed to be integrable and bandlimited to W Hz, and since Note 6.4.12
guarantees that every bandlimited integrable signal is also of finite energy, it fol-
lows that the functions {sj} are energy-limited and the inner products 〈sj , sk〉 are
well-defined. By (25.89)

Cov

[∫ ∞

−∞
N(t) sj(t) dt,

∫ ∞

−∞
N(t) sk(t) dt

]
=
∫ ∞

−∞
SNN (f) ŝj(f) ŝ∗k(f) df

=
∫ W

−W

SNN (f) ŝj(f) ŝ∗k(f) df

=
N0

2

∫ W

−W

ŝj(f) ŝ∗k(f) df

=
N0

2
〈sj , sk〉 , j, k ∈ {1, . . . ,m},
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where the second equality follows because sj and sk are bandlimited to W Hz; the
third from (25.123); and the final equality from Parseval’s Theorem.

To prove Part (iv), we start with the definition of the convolution and compute(
KNN ? s

)
(t) =

∫ ∞

−∞
s(τ) KNN (t− τ) dτ

=
∫ ∞

−∞
s(τ)

∫ ∞

−∞
SNN (f) ei2πf(t−τ) df dτ

=
∫ ∞

−∞
SNN (f) ŝ(f) ei2πft df

=
∫ W

−W

SNN (f) ŝ(f) ei2πft df

=
N0

2

∫ W

−W

ŝ(f) ei2πft df

=
N0

2
s(t), t ∈ R,

where the second equality follows from the definition of the PSD of
(
N(t)

)
(Defini-

tion 25.7.2); the third by Proposition 6.2.5; the fourth because s is, by assumption,
bandlimited to W Hz (Proposition 6.4.10 cf. (c)); the fifth from our assumption
that

(
N(t)

)
is white with respect to the bandwidth W (25.123); and the final

equality from Proposition 6.4.10 (cf. (b)).

Part (v) now follows from (25.85) and Part (iv). Alternatively, it can be proved
using (25.88) and (25.123) as follows:

Cov

[∫ ∞

−∞
N(σ) s(σ) dσ,N(t)

]
=
∫ ∞

−∞
SNN (f) ŝ(f) ei2πft df

=
∫ W

−W

SNN (f) ŝ(f) ei2πft df

=
N0

2

∫ W

−W

ŝ(f) ei2πft df

=
N0

2
s(t), t ∈ R,

where the first equality follows from (25.88); the second because s is bandlimited
to W Hz (Proposition 6.4.10 cf. (c)); the third from (25.123); and the last from
Proposition 6.4.10 (cf. (b)).

25.15.2 Other Definitions

As we noted earlier, our definition of white Gaussian noise is different from the one
given in most textbooks on Digital Communications. The key difference is that we
define whiteness with respect to a certain bandwidth W, whereas most textbooks
do not add this qualifier. Thus, while we require that the PSD SNN (f) be equal
to N0/2 only for frequencies f satisfying |f | ≤ W (leaving SNN (f) unspecified at
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other frequencies), other textbooks require that SNN (f) be equal to N0/2 for all
frequencies f ∈ R. With our definition of white noise we can only prove that
(25.124) holds for integrable signals that are bandlimited to W Hz, whereas with
the other textbooks’ definition one could presumably derive this relationship for
all integrable functions.

We prefer our definition because there does not exist a Gaussian SP
(
N(t)

)
whose

PSD is equal to N0/2 at all frequencies. Indeed, the function of frequency that is
equal to N0/2 at all frequencies is not integrable and therefore does not qualify
as a PSD (Definition 25.7.2). Were such a PSD to exist, we would obtain from
(25.30) that such a process would have infinite variance and thus be neither WSS
(Definition 25.4.2) nor Gaussian (Note 25.3.2).

Requiring that (25.124) hold for all integrable (continuous) signals would require
that KNN be given by the product of N0/2 and Dirac’s delta, which opens a whole
can of worms. Nevertheless, the reader should be aware that in some books white
noise is defined as a centered, stationary Gaussian noise whose autocovariance
function is given by Dirac’s Delta scaled by N0/2 or, equivalently, whose PSD is
equal to N0/2 at all frequencies.

25.15.3 White Noise in Passband

Definition 25.15.3 (White Gaussian Noise in Passband). We say that
(
N(t)

)
is

white Gaussian noise of double-sided power spectral density N0/2 with
respect to the bandwidth W around the carrier frequency fc if

(
N(t)

)
is a

centered, measurable, stationary, Gaussian process that has a PSD SNN satisfying

SNN (f) =
N0

2
,
∣∣|f | − fc∣∣ ≤ W

2
, (25.126)

and if fc > W/2.

Note 25.15.4. For white Gaussian noise with respect to the bandwidth W around
the carrier frequency fc, all the claims of Proposition 25.15.2 hold provided that
we replace the requirement that the functions s, {sj}, and {φj} be integrable func-
tions that are bandlimited to W Hz with the requirement that they be integrable
functions that are bandlimited to W Hz around the carrier frequency fc.

25.16 Exercises

Exercise 25.1 (Constructing a SP from a RV). Let W be a standard Gaussian RV. Define
the continuous-time SP

(
X(t)

)
by

X(t) = e−|t|W, t ∈ R.

(i) Is
(
X(t)

)
a stationary SP?

(ii) Is
(
X(t)

)
a Gaussian SP?
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Exercise 25.2 (Delaying and Adding). Let
(
X(t)

)
be a stationary Gaussian SP of mean µx

and autocovariance function KXX . Define

Y (t) = X(t) +X(t− tD), t ∈ R,

where tD ∈ R is deterministic.

(i) Is
(
Y (t)

)
a Gaussian SP?

(ii) Compute the mean and the autocovariance function of
(
Y (t)

)
.

(iii) Is
(
Y (t)

)
stationary?

Exercise 25.3 (Random Variables and Stochastic Processes). Let the random variablesX
and Y be IID N

(
0, σ2

)
, and let

Z(t) = X cos(2πt) + Y sin(2πt), t ∈ R.

(i) Is Z(0.2) Gaussian?

(ii) Is
(
Z(t)

)
a Gaussian SP?

(iii) Is it stationary?

Exercise 25.4 (Stochastic Processes through Nonlinearities).

(i) Let
(
X(t)

)
be a stationary SP and let

Y (t) = g(X(t)), t ∈ R,

where g : R → R is some (Borel measurable) deterministic function. Show that the
SP

(
Y (t)

)
is stationary. Under what conditions is

(
Y (t)

)
WSS?

(ii) Let
(
X(t)

)
be a centered stationary Gaussian SP of autocovariance function KXX .

Let Y (t) = sgn(X(t)), where sgn(ξ) is equal to +1 whenever ξ ≥ 0 and is equal
to −1 otherwise. Is

(
Y (t)

)
centered? Is it WSS? If so, what is its autocovariance

function?

Hint: For Part (ii) recall Exercise 23.18.

Exercise 25.5 (WSS Stochastic Processes). Let A and B be IID random variables taking
on the values ±1 equiprobably. Define the SP

(
Z(t)

)
as

Z(t) = A cos(2πt) +B sin(2πt), t ∈ R.

(i) Is the SP
(
Z(t)

)
WSS?

(ii) Define the SP
(
W (t)

)
by W (t) = Z2(t). Is

(
W (t)

)
WSS?

Exercise 25.6 (Valid Autocovariance Functions). Let KXX and KYY be the autocovariance
functions of some WSS stochastic processes

(
X(t)

)
and

(
Y (t)

)
.

(i) Show that KXX + KYY is an autocovariance function of some WSS SP.

(ii) Repeat for τ 7→ KXX(τ)KYY (τ).

Exercise 25.7 (Time Reversal). Let KXX be the autocovariance function of some WSS
SP

(
X(t), t ∈ R

)
. Is the time-reversed SP (ω, t) 7→ X(ω,−t) WSS? If so, express its

autocovariance function in terms of KXX .
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Exercise 25.8 (Classifying Stochastic Processes). Let
(
X(t)

)
and

(
Y (t)

)
be independent

centered stationary Gaussian stochastic processes of unit variance and autocovariance
functions KXX and KYY . Define the stochastic processes

(
S(t)

)
,
(
T (t)

)
,
(
U(t)

)
,
(
V (t)

)
,

and
(
W (t)

)
at every t ∈ R as:

S(t) = X(t) + Y (t+ τ1), T (t) =X(t)Y (t+ τ2),

U(t) = X(t) +X(t+ τ3), V (t)=X(t)X(t+ τ4),

W (t) = X(t) +X(−t),

where τ1, τ2, τ3, τ4 ∈ R are deterministic. Which of these stochastic processes is Gaussian?
Which is WSS? Which is stationary?

Exercise 25.9 (A Linear Functional of a Gaussian SP). Let
(
X(t), t ∈ R

)
be a measurable

stationary Gaussian SP of mean 2 and of autocovariance function KXX : τ 7→ exp (−|τ |).
Compute

Pr

[∫ 2

0

X(t) dt ≥ 2

]
.

Exercise 25.10 (Two Filters). Let
(
X(t)

)
be a centered stationary Gaussian SP of auto-

covariance function KXX and PSD SXX . Define(
Y (t)

)
=
(
X(t)

)
? hy,

(
Z(t)

)
=
(
X(t)

)
? hz,

where hy,hz ∈ L1 . Thus,
(
Y (t)

)
is the result of passing

(
X(t)

)
through a stable filter of

impulse response hy and similarly
(
Z(t)

)
.

(i) What is the joint distribution of Y (t1) and Z(t2) for given epochs t1, t2 ∈ R?

(ii) Give a necessary and sufficient condition on ĥy, ĥz, and SXX for Y (17) to be
independent of Z(17).

(iii) Give a necessary and sufficient condition on ĥy, ĥz, and SXX for
(
Z(t)

)
to be

independent of
(
Y (t)

)
.

Exercise 25.11 (Linear Functionals of White Gaussian Noise). Find the distribution of∫ Ts

0

N(t) dt and of

∫ ∞

0

e−tN(t) dt

when
(
N(t), t ∈ R

)
is white Gaussian noise of double-sided PSD N0/2 with respect to

the bandwidth of interest. (Ignore the fact that the mappings t 7→ I{0 ≤ t ≤ Ts} and
t 7→ e−t I{t ≥ 0} are not bandlimited.)

Exercise 25.12 (Approximately White SP). Let
(
X(t), t ∈ R

)
be a measurable, centered,

stationary, Gaussian SP of autocovariance function

KXX(τ) =
BN0

4
e−B|τ |, τ ∈ R,

where N0,B > 0 are given constants. Throughout this problem N0 is fixed.

(i) Plot KXX for several values of B. What does KXX look like when B � 1? Show
that KXX(τ) > 0 for all τ ∈ R; that∫ ∞

−∞
KXX(τ) dτ =

N0

2
;
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and that for every δ > 0,

lim
B→∞

∫ δ

−δ
KXX(τ) dτ =

N0

2
.

(In this sense, KXX approximates Dirac’s Delta scaled by N0/2 when B is large.)

(ii) Compute E
[
X(t)2

]
. Plot this as a function of B, with N0 held fixed. What happens

when B � 1?

(iii) Compute the PSD SXX . Plot it for several values of B. What does it look like when
B � 1?

(iv) For the orthonormal signals defined for every t ∈ R by

φ1(t) =

{
1 if 0 ≤ t ≤ 1,

0 otherwise,
φ2(t) =


1 if 0 ≤ t ≤ 1

2
,

−1 if 1
2
< t ≤ 1,

0 otherwise

compute E
[
〈X,φ1〉 〈X,φ2〉

]
. What happens to this expression when B � 1?



Chapter 26

Detection in White Gaussian Noise

26.1 Introduction

In this chapter we finally address the detection problem in continuous time. The
setup is described in Section 26.2. The key result of this chapter is that—even
though in this setup the observation consists of a stochastic process (i.e., a contin-
uum of random variables)—the problem can be reduced without loss of optimality
to a finite-dimensional problem where the observation consists of a random vec-
tor. Before stating this result precisely in Section 26.4, we shall take a detour in
Section 26.3 to discuss the definition of sufficient statistics when the observation
consists of a continuous-time SP. The proof of the main result is delayed until Sec-
tion 26.8. In Section 26.5 we analyze the conditional law of the sufficient statistic
vector under each of the hypotheses. This analysis enables us in Section 26.6 to
derive an optimal guessing rule and in Section 26.7 to analyze its performance. Sec-
tion 26.9 addresses the front-end filter, which is a critical element of any practical
implementation of the decision rule. Extensions to passband detection are then de-
scribed in Section 26.10, followed by some examples in Section 26.11. Section 26.12
treats the problem of detection in “colored” noise, and the chapter concludes with
a discussion of the detection problem for mean signals that are not bandlimited.

26.2 Setup

A discrete random variable M (“message”) takes value in the setM = {1, . . . ,M},
where M ≥ 2, according to the a priori probabilities

πm = Pr[M = m], m ∈M, (26.1)

where π1, . . . , πM are positive1

πm > 0, m ∈M (26.2)

1There is no loss in generality in addressing the detection problem only for strictly positive
priors. Hypotheses that have a zero prior can be ignored at the receiver without loss in optimality.
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and sum to one ∑
m∈M

πm = 1. (26.3)

The observation consists of the continuous-time SP
(
Y (t), t ∈ R

)
, which, condi-

tional on M = m, can be expressed as

Y (t) = sm(t) +N(t), t ∈ R, (26.4)

where the “mean signals” s1, . . . , sM are real, deterministic, integrable signals that
are bandlimited to W Hz (Definition 6.4.9), and where the “noise”

(
N(t)

)
is inde-

pendent of M and is white Gaussian noise of double-sided spectral density N0/2
with respect to the bandwidth W (Definition 25.15.1). Based on the observa-
tion

(
Y (t)

)
we wish to guess M with the smallest possible probability of error.2

26.3 Sufficient Statistics when Observing a SP

The definition of sufficient statistics for the infinite-dimensional hypothesis testing
problem where the observation consists of a SP is conceptually very similar to the
definition in the finite-dimensional case where the observation consists of a random
vector (Definition 22.2.1). But some new technical difficulties do arise. Foremost is
that we cannot speak of the probability density function (in the usual sense) of the
observation given each of the hypotheses.3 Consequently, we need a new definition
that does not involve such densities.

26.3.1 Definition of Sufficient Statistics

Loosely speaking, a sufficient statistic for guessing a RV M taking value in the
finite setM based on an observation consisting of a SP

(
Y (t)

)
is a random vector

T = (T (1), . . . , T (d′))T that satisfies two conditions. The first is that it can be
computed from the observed SP, and the second is that—once we are given T—any
finite number of samples η ∈ N of the observations Y (t1), . . . , Y (tη) are irrelevant
for guessing M . Thus, once T has been revealed to us, our optimal guess for M
will not be improved if we are additionally given the values of

(
Y (t)

)
at any finite

number of (deterministic) epochs.

Recall the definition of the σ-algebra generated by the SP
(
Y (t)

)
(Definition 25.2.2)

and the definition of irrelevant data (Definition 22.5.1).

Definition 26.3.1 (Sufficient Statistic: Observable SP). We say that the random
vector T forms a sufficient statistic for guessing the RV M taking value in the
finite set M based on the observed SP

(
Y (t)

)
if the following two conditions hold:

2In mathematical terms we are looking for a mapping from the set of all sample-paths of(
Y (t)

)
to M that is measurable with respect to the σ-algebra generated by

(
Y (t)

)
and that

minimizes the probability of error among all such functions.
3One could, instead, speak of the Radon-Nikodym derivative with respect to a reference

measure, but we prefer not to pursue this approach.
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1) T is measurable with respect to the σ-algebra generated by
(
Y (t)

)
.

2) For every η ∈ N and every choice of the epochs t1, . . . , tη ∈ R, the η-tuple(
Y (t1), . . . , Y (tη)

)
is irrelevant for guessing M based on T.

Condition 2) is equivalent to

M(−−T(−−
(
Y (t1), . . . , Y (tη)

)
(26.5)

forming a Markov chain for any prior on M .

As we shall see in Section 26.4, such a sufficient statistic can always be found for
the setup described in Section 26.2.

26.3.2 Consequences of Sufficiency

It would have been nice if, in analogy with Proposition 22.2.2, we could have said
that if T forms a sufficient statistic for guessingM based on the observed SP

(
Y (t)

)
,

then the best performance in guessing M based on
(
Y (t)

)
can be achieved by a

decision rule that bases its decision on T. This statement is almost correct, but it
requires a qualification.

A pathological example that demonstrates the need for a qualification is the fol-
lowing. Suppose that M takes on the values 1 and 2 equiprobably and that R is a
RV that is independent of M and that has a density. For example, R could be a
mean-one exponential. Suppose further that, conditional on M = 1, the observed
SP
(
Y (t)

)
is deterministically zero, and that, conditional on M = 2, the observed

SP is zero at all times t ∈ R except at time R when it takes on the value 1. In
this case the conditional law of

(
Y (t1), . . . , Y (tη)

)
does not depend on whether the

conditioning is on M = 1 or on M = 2. Thus, if we define the RV T to equal 17 de-
terministically, then T forms a sufficient statistic for guessing M based on

(
Y (t)

)
.

The smallest probability of a guessing error based on T is 1/2.4 Nevertheless, a
detector that guesses “M = 1” if the observed trajectory is the all-zero function
and “M = 2” if the observed trajectory is discontinuous is correct with probability
one.

It is interesting to note that the latter guessing rule is not measurable with respect
to the σ-algebra generated by

(
Y (t)

)
. As the next theorem demonstrates, the qual-

ifier that we need to add is that we only consider guessing rules that are measurable
with respect to the σ-algebra generated by

(
Y (t)

)
. Barring this qualifier, if T is

sufficient, then there is no loss in optimality in basing our guess on T only.

Theorem 26.3.2. Consider the multi-hypothesis testing problem of guessing a RV M
taking value in the set M = {1, . . . ,M} based on an observation consisting of a
SP

(
Y (t), t ∈ R

)
. Let T be a random vector that forms a sufficient statistic for

guessing M based on
(
Y (t)

)
. Then no decision rule that is measurable with respect

to the σ-algebra generated by
(
Y (t)

)
can have a lower probability of error than an

optimal rule for guessing M based on T.

4This is also the smallest probability of error in guessing M based on
(
Y (t1), . . . , Y (tη)

)
,

irrespective of the (finite) value of the positive integer η and of the (deterministic) choice of the
epochs t1, . . . , tη .
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Proof. Let φ(·) be any decision rule that is measurable with respect to the σ-
algebra generated by

(
Y (t)

)
, i.e., a decision rule whose disjoint decision sets

Dm , φ−1(m), m ∈M

are all measurable with respect to this σ-algebra. The conditional probability that
the rule φ(·) guesses correctly is

Pr
(
φ(·) is correct

∣∣M = m
)

= Pr
[(
Y (t)

)
∈ Dm

∣∣M = m
]
, m ∈M. (26.6)

We shall show that φ(·) can be approximated by a decision rule φ̃(·) that bases its
decision on a finite number of samples Y (t1), . . . , Y (tη), where η ∈ N and where
t1, . . . , tη ∈ R are deterministic epochs. The approximation is in the sense that,
conditional on each m ∈ M, the probability of success of φ̃(·) is within ε of that
of φ(·). We shall then show that the best decision rule based on T is at least as
good as φ̃(·) and is thus also within ε of φ(·). Since these steps will be performed
for an arbitrary ε > 0, and since the performance of the best decoder based on T
does not depend on ε, this will demonstrate that φ(·) is no better than the best
decision rule based on T. And since φ(·) here is an arbitrary measurable decision
rule, it will follow that no measurable decision rule can outperform an optimal rule
based on T and the theorem will be proved.

To follow this outline we first need some basic set-theoretic notation. Given two
sets A and B we denote by A \ B the set consisting of those elements of A that
are not in B. We denote by A4B the symmetric set difference between A and B
consisting of those elements that are in one of the sets but not in the other. Thus,
A4B = (A \ B) ∪ (B \ A).5

A standard result from Measure Theory (Halmos, 1950, Exercise (8), Section 14)
guarantees that for every ε > 0 there exist epochs t1, . . . , tη ∈ R and sets D̂1, . . . D̂M

(not necessarily disjoint) that are all measurable with respect to the σ-algebra
generated by Y (t1), . . . , Y (tη) and such that

Pr
[(
Y (t)

)
∈ Dm′4D̂m′

∣∣M = m
]
<

ε

M
, m,m′ ∈M. (26.7)

Define now the disjoint sets D̃1, . . . , D̃M inductively by defining D̃1 = D̂1 and

D̃m = D̂m \
⋃

m′<m

D̃m′ , m ∈ {2, . . . ,M}. (26.8)

By construction, these sets are disjoint. And because D̂1, . . . , D̂M are measurable
with respect to the σ-algebra generated by Y (t1), . . . , Y (tη), so are D̃1, . . . , D̃M.

5As an aside we mention that the indicator functions of the sets A, B and A4B are related
via the relation

I{x ∈ A4B} = I{x ∈ A} ⊕ I{x ∈ B},
where ⊕ denotes exclusive-or, i.e., mod-2 addition (0⊕0 = 0, 0⊕1 = 1, 1⊕0 = 1, and 1⊕1 = 0).
This relationship simplifies the proof of some of the key properties of the symmetric set difference,
especially when combined with the analogous relation for intersection

I{x ∈ A ∩ B} = I{x ∈ A} I{x ∈ B},

where on the RHS of the above we use mod-2 multiplication.
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We next consider a decoder φ̃(·) that guesses “M = m” whenever the sample-path
of
(
Y (t)

)
is in the set D̃m. (If the sample-path of

(
Y (t)

)
does not fall in any of the

sets {D̃m}, then the decoder produces an error flag.) This decoder bases its guess
only on Y (t1), . . . , Y (tn) and yet, as we shall next show, succeeds with probability
that is at least within ε of the probability of success of φ(·), i.e.,

Pr
(
φ̃(·) is correct

∣∣M = m
)
≥ Pr

(
φ(·) is correct

∣∣M = m
)
− ε, m ∈M. (26.9)

This will imply, in particular, that when averaged over M

Pr
(
φ̃(·) is correct

)
≥ Pr

(
φ(·) is correct

)
− ε, (26.10)

irrespective of the prior on M . But by (26.5) an optimal decision rule based on T
is at least as good as φ̃(·) and is thus also within ε of φ(·).6 Since ε is arbitrary, it
follows that an optimal decision rule based on T is at least as good as φ(·), thus
proving the theorem.

To complete the proof it thus remains to prove (26.9). To that end we note that,
since for any sets A and B we have A ⊇ B∩A, it follows that D̂m ⊇ Dm ∩ D̂m and
hence, by (26.8),

D̃m ⊇
(
Dm ∩ D̂m

)
\
⋃

m′<m

D̃m′

⊇
(
Dm ∩ D̂m

)
\
⋃

m′<m

(
Dm′ ∪

(
D̂m′ \ Dm′

))
(26.11)

=
(
Dm ∩ D̂m

)
\
( ⋃
m′<m

Dm′ ∪
⋃

m′<m

(
D̂m′ \ Dm′

))
=
((
Dm ∩ D̂m

)
\
⋃

m′<m

Dm′

)
\
( ⋃
m′<m

(
D̂m′ \ Dm′

))
=
(
Dm ∩ D̂m

)
\
( ⋃
m′<m

(
D̂m′ \ Dm′

))
(26.12)

=
(
Dm \

(
Dm \ D̂m

))
\
( ⋃
m′<m

(
D̂m′ \ Dm′

))
= Dm \

((
Dm \ D̂m

)
∪
⋃

m′<m

(
D̂m′ \ Dm′

))
, (26.13)

where (26.11) follows because Dm′ ∪ (D̂m′ \ Dm′) = Dm′ ∪ D̂m′ ⊇ D̂m′ , and be-
cause, by construction, D̂m′ contains D̃m′ (see (26.8)); where the equality (26.12)
follows because the sets {Dm} are disjoint; and where the other equalities follow
by standard set-theoretic identities. It follows from (26.13) that

Dm ⊆ D̃m ∪
(
Dm \ D̂m

)
∪

⋃
m′<m

(
D̂m′ \ Dm′

)
, (26.14)

6An optimal decision rule based on T is the Maximum A Posteriori rule that computes
the conditional distribution of M given T. But the Markov condition (26.5) implies that the
conditional law of M given T is the same as the conditional law given T & (Y (t1), . . . , Y (tη)),
so an optimal decision rule based on T is as good as an optimal decision rule given T and
(Y (t1), . . . , Y (tη)) and is therefore at least as good as φ̃(·), which is based on (Y (t1), . . . , Y (tη))
alone.
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because for arbitrary sets A,B, C, the relation A ⊇ B \ C implies that B ⊆ A ∪ C.
From (26.14) and the Union-of-Events Bound (Theorem 21.5.1) we obtain

Pr
(
φ(·) is correct

∣∣M = m
)

= Pr
[(
Y (t)

)
∈ Dm

∣∣M = m
]

≤ Pr
[(
Y (t)

)
∈ D̃m

∣∣M = m
]
+ Pr

[(
Y (t)

)
∈
(
Dm \ D̂m

) ∣∣M = m
]

+
∑
m′<m

Pr
[(
Y (t)

)
∈ D̂m′ \ Dm′

∣∣M = m
]

≤ Pr
[(
Y (t)

)
∈ D̃m

∣∣M = m
]
+
∑
m′≤m

Pr
[(
Y (t)

)
∈ D̂m′4Dm′

∣∣M = m
]

≤ Pr
(
φ̃(·) is correct

∣∣M = m
)

+m
ε

M

≤ Pr
(
φ̃(·) is correct

∣∣M = m
)

+ ε, m ∈M,

where the first inequality follows from (26.14) and the Union-of-Events bound; the
second inequality follows because for any two sets A and B we have A\B ⊆ A4B
and also B \ A ⊆ A4B; the third inequality from (26.7); and the final inequality
because m ∈ {1, . . . ,M}. This concludes the proof by establishing (26.9).

26.4 Main Result

The main result of this chapter is Theorem 26.4.1, which provides a sufficient
statistic for the setup of Section 26.2. A more general version (Theorem 27.3.1)
will be proved in Chapter 27. Nevertheless, we have chosen to provide a separate
proof of Theorem 26.4.1 in Section 26.8 because the proof of this case is simpler.

Theorem 26.4.1 (Inner Products with the Mean Signals Suffice). In the setup
of Section 26.2, the random vector(∫ ∞

−∞
Y (t) s1(t) dt, . . . ,

∫ ∞

−∞
Y (t) sM(t) dt

)T

(26.15)

forms a sufficient statistic for guessing M based on
(
Y (t)

)
.

Proof. See Section 26.8.

Because the RV
∫
Y (t) sm(t) dt can be viewed as a mapping that maps each ω ∈ Ω

to the inner product between its trajectory t 7→ Y (ω, t) and the signal t 7→ sm(t),
we denote this random variable by 〈Y, sm〉.7 With this notation, the main result
is that the M inner products

〈Y, s1〉, . . . , 〈Y, sM〉 (26.16)

form a sufficient statistic for guessing M based on
(
Y (t)

)
.

7Here, as throughout, (Ω,F , P ) denotes the probability space over which all the random
variables and stochastic processes in the setup are defined.
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Figure 26.1: Computing the inner product between the observed SP and each of
the mean signals and then basing one’s decision on these inner products.

This theorem is extremely useful because in combination with Theorem 26.3.2 it
demonstrates that, without loss of optimality, we can limit ourselves to guessing
rules that use the observation to compute the M inner products (26.16) and that
then base their decision on these inner products. Figure 26.1 illustrates such de-
cision rules. The theorem thus helps us to convert the guessing problem from one
with a continuous-time observation

(
Y (t)

)
to a problem of the kind we addressed

in Section 21.3, where the observable is a finite-dimensional random vector (the
inner products vector, which takes value in in RM).

We can generalize Theorem 26.4.1 using the linearity of the stochastic integral
(Lemma 25.10.3). This generalization allows us to further reduce the dimension of
the sufficient statistic vector from the number of messages M to the dimension d
of the linear subspace span(s1, . . . , sM) spanned by the mean signals s1, . . . , sM:

d , Dim
(
span(s1, . . . , sM)

)
. (26.17)

Corollary 26.4.2. Let s̃1, . . . , s̃n be integrable signals that are bandlimited to W

Hz.8 If every mean signal can be written as a linear combination of (s̃1, . . . , s̃n),
then the random n-vector(∫ ∞

−∞
Y (t) s̃1(t) dt, . . . ,

∫ ∞

−∞
Y (t) s̃n(t) dt

)T

(26.18)

forms a sufficient statistic for guessing M based on
(
Y (t)

)
.

Proof of the corollary. By the corollary’s hypothesis, every mean signal sm can be
written as a linear combination of the signals {s̃j}nj=1. Thus, to each m ∈M there

correspond n coefficients (not necessarily unique) α(1)
m , . . . , α

(n)
m ∈ R such that

sm =
n∑
j=1

α(j)
m s̃j . (26.19)

8The result also holds if the signals are not bandlimited, but we prefer to assume that they
are.
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Consequently, by the linearity of integration (Lemma 25.10.3), we can compute the
integrals appearing in (26.15) from the random n-vector (26.18) using the relation∫ ∞

−∞
Y (t) sm(t) dt =

n∑
j=1

α(j)
m

∫ ∞

−∞
Y (t) s̃j(t) dt, m ∈M.

From the vector in (26.18) we can thus compute the vector in (26.15), and since
the latter forms a sufficient statistic (Theorem 26.4.1) it follows that the former
must also form a sufficient statistic (Proposition 22.4.2).9

We note that Corollary 26.4.2 does, indeed, generalize the theorem because, by
choosing n = M with s̃m = sm for all m ∈ M, we recover the theorem from
the corollary. More interesting is the case where (s̃1, . . . , s̃n) forms a basis for
span(s1, . . . , sM). In this case the corollary provides a sufficient statistic consisting
of a random d-vector, where d is the dimension of span(s1, . . . , sM). This reduces
the number of inner products needed to implement the receiver from M to d. As
we shall see, it is particularly convenient to choose (s̃1, . . . , s̃n) as an orthonormal
basis for span(s1, . . . , sM). In this case we shall prefer to refer to {s̃j} as {φ`}d`=1,
where, as before, d is the dimension of span(s1, . . . , sM).

26.5 Analyzing the Sufficient Statistic

26.5.1 The Conditional Law of the Sufficient Statistic

Having reduced the guessing problem from one where the observation is a SP to
one where it is a random vector, we can proceed to derive an optimal decision rule
based on this vector. To derive such a rule we need the conditional distribution
of this vector conditional on each of the hypotheses. Fortunately, this is easy
for the problem at hand, because the Gaussianity of the noise

(
N(t)

)
implies

that, conditional on each of the hypotheses, the vectors in (26.15) and (26.18)
are Gaussian (Theorem 25.12.1). Their conditional distributions are thus fully
specified by their mean vectors and covariance matrices.

The calculation of the mean vectors is straightforward. Indeed, by linearity and
by Proposition 25.10.1,

E

[∫ ∞

−∞
Y (t) sj(t) dt

∣∣∣∣M = m

]
= E

[∫ ∞

−∞

(
sm(t) +N(t)

)
sj(t) dt

]
= 〈sm, sj〉+ E

[∫ ∞

−∞
N(t) sj(t) dt

]
= 〈sm, sj〉, j,m ∈M.

Thus, for every m ∈M, the conditional mean of the vector in (26.15), conditional
on M = m, is the vector (

〈sm, s1〉, . . . , 〈sm, sM〉
)T
. (26.20)

9For the pedantic reader one should add that, by Proposition 25.10.1, the vector in (26.18)
is measurable with respect to the σ-algebra generated by

(
Y (t)

)
.
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The calculation of the conditional covariance matrices requires a simple application
of Proposition 25.15.2. It yields that the covariance matrix of the vector in (26.15),
conditional on M = m, is given by the M×M matrix

N0

2


〈s1, s1〉 〈s1, s2〉 · · · 〈s1, sM〉
〈s2, s1〉 〈s2, s2〉 · · · 〈s2, sM〉

· · · · · ·
. . . · · ·

〈sM, s1〉 〈sM, s2〉 · · · 〈sM, sM〉

 . (26.21)

Note that the conditional covariance matrix does not depend on the hypothesis m
on which we are conditioning, because this hypothesis only influences the mean
of
(
Y (t)

)
.

More generally, for the sufficient statistic vector in (26.18) we obtain that for every
m ∈ M the conditional distribution of this vector, conditional on M = m, is
Gaussian with the n-dimensional mean vector(

〈sm, s̃1〉, . . . , 〈sm, s̃n〉
)T (26.22)

and the n× n covariance matrix

N0

2


〈s̃1, s̃1〉 〈s̃1, s̃2〉 · · · 〈s̃1, s̃n〉
〈s̃2, s̃1〉 〈s̃2, s̃2〉 · · · 〈s̃2, s̃n〉

· · · · · ·
. . . · · ·

〈s̃n, s̃1〉 〈s̃n, s̃2〉 · · · 〈s̃n, s̃n〉

 . (26.23)

(The assumption that the signals {s̃j} are bandlimited to W Hz is not needed in
Corollary 26.4.2, but it is needed for the above conditional law to hold.)

26.5.2 It Is all in the Geometry!

It is interesting to note that the conditional mean vector in (26.20) and the condi-
tional covariance matrix in (26.21) are fully determined by N0/2 and by the inner
products

{〈sm′ , sm′′〉}m′,m′′∈M; (26.24)

the PSD of the noise
(
N(t)

)
outside the band f ∈ [−W,W ] is immaterial. Similarly,

except in determining the pairwise inner products, the exact waveforms of the mean
signals are immaterial. Since the conditional distribution of the sufficient statistic
vector (26.15) is Gaussian, and since the distribution of a Gaussian vector is fully
determined by its mean vector and its covariance matrices (Theorem 23.6.7), we
can conclude:
Note 26.5.1. The conditional distribution of the sufficient statistic vector (26.15)
given each of the hypotheses is determined by N0 and by the inner products in
(26.24). The PSD of the noise at frequencies outside the band [−W,W ] is imma-
terial.

Note, however, that the calculation of the sufficient statistic from the observa-
tion

(
Y (t)

)
requires more than just knowledge of the inner products in (26.24); the

calculation of the vector (26.15) requires knowledge of the waveforms s1, . . . , sM.
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Since an optimal decision rule for guessing M based on
(
Y (t)

)
can be based on the

sufficient statistic (Theorem 26.3.2), and since the conditional distribution of the
sufficient statistic given each of the hypotheses depends only on N0 and the inner
products (26.24), it follows that:

Proposition 26.5.2. For the setup of Section 26.2, the minimal probability of error
that can be achieved in guessing M based on

(
Y (t)

)
is determined by N0, by the

inner products (26.24), and by the prior {πm}m∈M.

26.5.3 Orthonormal Bases

The conditional distribution of the sufficient statistic given each of the hypotheses
is easier to manipulate if we choose the functions {s̃j} in (26.18) to form an or-
thonormal basis for the linear subspace spanned by the mean signals. In this case
we denote the basis functions by φ1, . . . ,φd so

span(φ1, . . . ,φd) = span(s1, . . . , sM), (26.25a)

〈φ`′ ,φ`′′〉 = I{`′ = `′′}, `′, `′′ ∈ {1, . . . , d}, (26.25b)

where d is the dimension of the linear subspace spanned by the mean signals (26.17).
Such functions φ1, . . . ,φd can be found, for example, using the Gram-Schmidt
procedure (Section 4.6.6).10 We denote the sufficient statistic vector (26.18) by
T = (T (1), . . . , T (d))T:

T (`) =
∫ ∞

−∞
Y (t)φ`(t) dt

= 〈Y,φ`〉, ` = 1, . . . , d. (26.26)

Figure 26.2 depicts a block diagram of a circuit that computes the inner products
of the received waveform with each of the basis signals.

By (26.22) and (26.23) we obtain that for everym ∈M the conditional distribution
of T given that M = m is Gaussian with mean

E
[
T
∣∣M = m

]
=
(
〈sm,φ1〉, . . . , 〈sm,φd〉

)T (26.27)

and covariance matrix (N0/2) Id, where Id denotes the d× d identity matrix. The
components of T are thus conditionally independent and of equal variance N0/2
(but not of equal mean). Consequently, we can express the conditional density
of T, conditional on M = m, at every point t = (t(1), . . . , t(d))T ∈ Rd using this
conditional independence and the explicit form of the univariate Gaussian density
(19.6) as

fT|M=m(t) =
d∏
`=1

1√
2πN0/2

exp

(
−
(
t(`) − 〈sm,φ`〉

)2
2N0/2

)

=
1

(πN0)d/2
exp

(
− 1

N0

d∑
`=1

(
t(`) − 〈sm,φ`〉

)2)
, t ∈ Rd. (26.28)

10Since the mean signals are bandlimited, the only zero-energy element of span(s1, . . . , sM)
is the all-zero signal (Note 6.4.2). Consequently, span(s1, . . . , sM) has an orthonormal basis
(Proposition 4.6.10), which can be found using the Gram-Schmidt procedure (Section 4.6.6).



572 Detection in White Gaussian Noise

(
Y (t)

)

~φ1

~φ2

~φd

...

〈Y,φ1〉

〈Y,φ2〉

〈Y,φd〉

Guess

D
ec

is
io

n
R

u
le

sample at t = 0

Figure 26.2: Computing the inner products T (`) = 〈Y,φ`〉 for ` = 1, . . . , d from
the received waveform.

Note that with proper translation (Table 26.1) the conditional distribution of T is
very similar to the one we addressed in Section 21.6; see (21.50). In fact, it is a
special case of the distribution studied in Section 21.6: Y there corresponds to T
here; J there corresponds to d here; σ2 there corresponds to N0/2 here; and the
mean vector sm associated with Message m there corresponds to the vector(

〈sm,φ1〉, . . . , 〈sm,φd〉
)T (26.29)

here. Consequently, we can use the results from Section 21.6 and, more specifically,
Proposition 21.6.1, to derive an optimal decision rule for guessing M based on T.
We adopt this approach when we next derive an optimal decision rule for our setup.

In Section 21.6 Here
number of components of
observed vector J d

variance of noise added to
each component σ2 N0/2

number of hypotheses M M

conditional mean of observa-
tion given M = m

(
s
(1)
m , . . . , s

(J)
m

)T (
〈sm,φ1〉, . . . , 〈sm,φd〉

)T
sum of squared components
of mean vector

J∑
j=1

(
s(j)m
)2 d∑

`=1

(
〈sm,φ`〉

)2 =
∫ ∞

−∞
s2m(t) dt

Table 26.1: The setup in Section 21.6 and here.

26.6 Optimal Guessing Rule

We are finally ready to derive an optimal guessing rule for our setup. Recall that, by
Corollary 26.4.2, if (φ1, . . . ,φd) is an orthonormal basis for the linear space spanned
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by the mean signals, then the random vector T defined in (26.26) forms a sufficient
statistic for guessing M based on

(
Y (t)

)
. Consequently, by Theorem 26.3.2, it is

optimal to use the observation
(
Y (t)

)
to compute the vector T and to then use the

MAP rule to guess M based on T (Theorem 21.3.3). We shall do just that. We
first present the resulting rule in terms of the orthonormal basis (φ1, . . . ,φd) and
then show that the rule does not depend on the specific choice of the orthonormal
basis.

In deriving the decision rule we shall repeatedly use the fact that if (φ1, . . . ,φd) is
an orthonormal basis for span(s1, . . . , sM), then, by Proposition 4.6.4,

sm =
d∑
`=1

〈sm,φ`〉φ`, m ∈M, (26.30)

and, by Proposition 4.6.9,

‖sm‖22 =
d∑
`=1

〈sm,φ`〉2, m ∈M. (26.31)

26.6.1 The Decision Rule in Terms of (φ1, . . . ,φd)

As we have noted, the conditional density fT|M=m(·) in (26.28) is of the form we
discussed in Section 21.6 (Table 26.1). By Proposition 21.6.1 we thus obtain:

Theorem 26.6.1. Let M , s1, . . . , sM, and
(
Y (t)

)
be as in our setup, and let the

d-tuple (φ1, . . . ,φd) be an orthonormal basis for span(s1, . . . , sM).

(i) The decision rule that guesses uniformly at random from among all the mes-
sages m̃ ∈M for which

lnπm̃ −
∑d
`=1

(
〈Y,φ`〉 − 〈sm̃,φ`〉

)2
N0

= max
m′∈M

{
lnπm′ −

∑d
`=1

(
〈Y,φ`〉 − 〈sm′ ,φ`〉

)2
N0

}
(26.32)

minimizes the probability of a guessing error.

(ii) If M has a uniform distribution, then this rule does not depend on the value
of N0. It chooses uniformly at random from among all the messages m̃ ∈M
for which

d∑
`=1

(
〈Y,φ`〉 − 〈sm̃,φ`〉

)2 = min
m′∈M

{
d∑
`=1

(
〈Y,φ`〉 − 〈sm′ ,φ`〉

)2}
. (26.33)

(iii) If M has a uniform distribution and, in addition, the mean signals are of
equal energy, i.e.,

‖s1‖2 = ‖s2‖2 = · · · = ‖sM‖2 , (26.34)
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then these decision rules are equivalent to the maximum-correlation rule that
guesses uniformly from among all the messages m̃ ∈M for which

d∑
`=1

〈sm̃,φ`〉〈Y,φ`〉 = max
m′∈M

d∑
`=1

〈sm′ ,φ`〉〈Y,φ`〉. (26.35)

Proof. The theorem follows directly from Proposition 21.6.1. For Part (iii) we
need to note that, by (26.31), Condition (26.34) is equivalent to the condition

d∑
`=1

〈s1,φ`〉2 =
d∑
`=1

〈s2,φ`〉2 = · · · =
d∑
`=1

〈sM,φ`〉2, (26.36)

which is the condition needed in Proposition 21.6.1.

Note that, because (φ1, . . . ,φd) is an orthonormal basis for span(s1, . . . , sM), the
signals sm′ and sm′′ differ, if, and only if, the vectors (〈sm′ ,φ1〉, . . . , 〈sm′ ,φd〉)T
and (〈sm′′ ,φ1〉, . . . , 〈sm′′ ,φd〉)T in Rd differ. Consequently, by Proposition 21.6.2:

Note 26.6.2. If the mean signals s1, . . . , sM are distinct, then the probability of a
tie, i.e., that more than one message m̃ ∈M satisfies (26.32), is zero.

26.6.2 The Decision Rule without Reference to a Basis

We next derive a representation of our decision rule without reference to a specific
orthonormal basis.

Theorem 26.6.3. Consider the problem of guessing M based on
(
Y (t)

)
in our

setup.

(i) The decision rule that guesses uniformly at random from among all the mes-
sages m̃ ∈M for which

lnπm̃ +
2

N0

(∫ ∞

−∞
Y (t) sm̃(t) dt− 1

2

∫ ∞

−∞
s2m̃(t) dt

)
= max
m′∈M

{
lnπm′ +

2
N0

(∫ ∞

−∞
Y (t) sm′(t) dt− 1

2

∫ ∞

−∞
s2m′(t) dt

)}
(26.37)

minimizes the probability of error.

(ii) If M has a uniform distribution, then this rule does not depend on the value
of N0. It chooses uniformly at random from among all the messages m̃ ∈M
for which∫ ∞

−∞
Y (t) sm̃(t) dt− 1

2

∫ ∞

−∞
s2m̃(t) dt

= max
m′∈M

{∫ ∞

−∞
Y (t) sm′(t) dt− 1

2

∫ ∞

−∞
s2m′(t) dt

}
. (26.38)
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(iii) If M has a uniform distribution and, in addition, the mean signals are of
equal energy, i.e.,

‖s1‖2 = ‖s2‖2 = · · · = ‖sM‖2 ,

then these decision rules are equivalent to the maximum-correlation rule that
guesses uniformly from among all the messages m̃ ∈M for which∫ ∞

−∞
Y (t) sm̃(t) dt = max

m′∈M

{∫ ∞

−∞
Y (t) sm′(t) dt

}
. (26.39)

Proof. We shall prove Part (i) using Theorem 26.6.1 (i). To this end we begin by
noting that

lnπm′ −
∑d
`=1

(
〈Y,φ`〉 − 〈sm′ ,φ`〉

)2
N0

can be expressed by opening the square as

lnπm′ − 1
N0

d∑
`=1

〈Y,φ`〉2 +
2

N0

d∑
`=1

〈Y,φ`〉〈sm′ ,φ`〉 −
1

N0

d∑
`=1

〈sm′ ,φ`〉2.

Since the term

− 1
N0

d∑
`=1

〈Y,φ`〉2

does not depend on the hypothesis, it is optimal to choose a message at random
from among all the message m̃ satisfying

lnπm̃ +
2

N0

d∑
`=1

〈Y,φ`〉〈sm̃,φ`〉 −
1

N0

d∑
`=1

〈sm̃,φ`〉2

= max
m′∈M

{
lnπm′ +

2
N0

d∑
`=1

〈Y,φ`〉〈sm′ ,φ`〉 −
1

N0

d∑
`=1

〈sm′ ,φ`〉2
}
.

Part (i) of the theorem now follows from this rule using (26.31) and by noting that

d∑
`=1

〈Y,φ`〉〈sm,φ`〉 =
〈
Y,

d∑
`=1

〈sm,φ`〉φ`
〉

= 〈Y, sm〉, m ∈M,

where the first equality follows by linearity (Lemma 25.10.3) and the second from
(26.30).

Part (ii) follows by noting that if M is uniform, then lnπm does not depend on the
hypothesis m.

Part (iii) follows from Part (ii) because if all the mean signals are of equal energy,
then the term ∫ ∞

−∞
s2m(t) dt

does not depend on the hypothesis.
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By Note 26.6.2 we have:
Note 26.6.4. If the mean signals are distinct, then the probability of a tie is zero.

26.7 Performance Analysis

The decision rule we derived in Section 26.6.1 uses the observed SP
(
Y (t)

)
to

compute the vector T of inner products with an orthonormal basis (φ1, . . . ,φd)
via (26.26), with the result that the vector T has the conditional law specified
in (26.28). Our decision rule then performs MAP decoding of M based on T.
Consequently, the performance of our decoding rule is identical to the performance
of the MAP rule for guessing M based on a vector T having the conditional law
(26.28). The performance of this latter decoding rule was studied in Section 21.6.
All that remains is to translate the results from that section in order to obtain
performance bounds on our decoder.

To translate the results from Section 21.6 we need to substitute N0/2 for σ2 there;
d for J there; and (26.29) for the mean vectors there. But there is one more
translation we need: the bounds in Section 21.6 are expressed in terms of the
Euclidean distance between the mean vectors, and here we prefer to express the
bounds in terms of the distance between the mean signals. Fortunately, as we next
show, the translation is straightforward. Because (φ1, . . . ,φd) is an orthonormal
basis for span(s1, . . . , sM), it follows from Proposition 4.6.9 that

d∑
`=1

〈v,φ`〉2 = ‖v‖22 , v ∈ span(s1, . . . , sM). (26.40)

Substituting sm′ − sm′′ for v in this identity yields

d∑
`=1

(
〈sm′ ,φ`〉 − 〈sm′′ ,φ`〉

)2 = ‖sm′ − sm′′‖22

=
∫ ∞

−∞

(
sm′(t)− sm′′(t)

)2 dt,

where we have also used the fact that for v = sm′ − sm′′ we have, by the linearity
of the inner product in its left argument, 〈v,φ`〉 = 〈sm′ ,φ`〉−〈sm′′ ,φ`〉. Thus, the
squared Euclidean distance between two mean vectors in Section 21.6 is equal to
the energy in the difference between the corresponding mean signals in our setup.

Denoting by pMAP(error|M = m) the conditional probability of error of our decoder
conditional on M = m, and denoting by p∗(error) its unconditioned probability of
error (which is the optimal probability of error)

p∗(error) =
∑
m∈M

πm pMAP(error|M = m), (26.41)

we obtain from (21.57)

pMAP(error|M = m) ≤
∑
m′ 6=m

Q
(
‖sm − sm′‖2√

2N0

+

√
N0/2

‖sm − sm′‖2
ln
πm
πm′

)
(26.42)
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and hence by, (26.41),

p∗(error) ≤
∑
m∈M

πm
∑
m′ 6=m

Q
(
‖sm − sm′‖2√

2N0

+

√
N0/2

‖sm − sm′‖2
ln
πm
πm′

)
. (26.43)

When M is uniform these bounds simplify to

pMAP(error|M = m) ≤
∑
m′ 6=m

Q

√‖sm − sm′‖22
2N0

 , M uniform (26.44)

and

p∗(error) ≤ 1
M

∑
m∈M

∑
m′ 6=m

Q

√‖sm − sm′‖22
2N0

 , M uniform. (26.45)

Similarly, we can use the results from Section 21.6 to lower-bound the probability
of a guessing error. Indeed, using (21.63) we obtain

pMAP(error|M = m) ≥ max
m′ 6=m

Q
(
‖sm − sm′‖2√

2N0

+

√
N0/2

‖sm − sm′‖2
ln
πm
πm′

)
, (26.46)

p∗(error) ≥
∑
m∈M

πm max
m′ 6=m

Q
(
‖sm − sm′‖2√

2N0

+

√
N0/2

‖sm − sm′‖2
ln
πm
πm′

)
. (26.47)

For a uniform prior these bounds simplify to

pMAP(error|M = m) ≥ max
m′ 6=m

Q

√‖sm − sm′‖22
2N0

 , M uniform, (26.48)

p∗(error) ≥ 1
M

∑
m∈M

max
m′ 6=m

Q

√‖sm − sm′‖22
2N0

 , M uniform. (26.49)

26.8 Proof of Theorem 26.4.1

26.8.1 A Lemma

We begin with a lemma regarding sufficient statistics in testing whether a random
vector Y was drawn N (µ,Λ) or N (−µ,Λ).

Lemma 26.8.1. Let H be a binary RV, and let the random vector Y be N (µ,Λ)
conditional on H = 0 and N (−µ,Λ) conditional on H = 1. If µ is a scalar multiple
of the last column of Λ, then the last component of Y forms a sufficient statistic
for guessing H based on Y.
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Proof. Let n denote the number of components of the vectors Y and µ, so Λ
is n × n. To show that Y (n) is a sufficient statistic we shall calculate the log
likelihood-ratio function and then show that it is computable from Y (n). This
approach, while straightforward, does not prove the lemma in its fullest generality
because it only covers the case where Y has a density, i.e., when the covariance
matrix Λ is nonsingular. Referring the reader to Section 26.14 on Page 606 for a
somewhat less intuitive proof that covers all cases, we proceed here to address the
case where Λ is nonsingular.

The condition that µ is a scalar multiple of the last column of Λ is equivalent to
the existence of some α ∈ R such that

µ = Λ


0
...
0
α

 . (26.50)

When Λ is nonsingular we can use the explicit form of the density of the multivariate
Gaussian distribution (23.56) to express the log likelihood-ratio as

ln
fY|H=0(y)
fY|H=1(y)

= ln

1√
(2π)n det Λ

e−
1
2 (y−µ)TΛ−1(y−µ)

1√
(2π)n det Λ

e−
1
2 (y+µ)TΛ−1(y+µ)

=
1
2
(y + µ)TΛ−1(y + µ)− 1

2
(y − µ)TΛ−1(y − µ)

= yTΛ−1µ+ µTΛ−1y

= 2yTΛ−1µ (26.51)

= 2yTΛ−1Λ(0, . . . , 0, α)T (26.52)

= 2αy(n), y ∈ Rn, (26.53)

where (26.51) holds because the scalar µTΛ−1y is equal to its transpose, and the
latter—by the transposition law (AB)T = BTAT—is given by yT(Λ−1)Tµ, which by
the symmetry of Λ (and hence also of its inverse), is equal to yTΛ−1µ; and where
(26.52) follows from (26.50).

It follows from (26.53) that the likelihood-ratio is computable from the last com-
ponent of Y, thus establishing that this component forms a sufficient statistic
(Definition 20.12.2).

26.8.2 The Binary Antipodal Case

We begin the proof of Theorem 26.4.1 by considering the special case of binary
hypothesis testing (M = 2) where the mean signals are antipodal to each other,
i.e., when their sum is the all-zero signal. Since we are now treating the binary
hypothesis testing setting, we denote the RV we wish to guess by H and assume
that it takes value in the set {0, 1}. We denote the mean signal corresponding to
H = 0 by s, so the mean signal corresponding to H = 1 is −s. We assume that s
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is an integrable signal that is bandlimited to W Hz. Conditional on H = 0, the
received signal

(
Y (t)

)
is given at each t ∈ R by s(t) +N(t), where

(
N(t)

)
is white

Gaussian noise of PSD N0/2 with respect to the bandwidth W. Conditional on
H = 1 the time-t received signal is −s(t) +N(t).

Recall from Definition 26.3.1 that to show that 〈Y, s〉 forms a sufficient statistic
for guessing H based on the observation

(
Y (t)

)
we need to show that for every

positive integer η and every choice of the epochs t1, . . . , tη ∈ R the RV 〈Y, s〉
forms a sufficient statistic for guessing H based on the observation consisting of
the random vector11 (

Y (t1), . . . , Y (tη), 〈Y, s〉
)T
. (26.54)

This we prove by showing that this vector satisfies the assumptions of Lemma 26.8.1.

Denoting the conditional mean of this vector, conditional on H = 0, by µ, we have

µ =
(
s(t1), . . . , s(tη), ‖s‖22

)T
, (26.55)

because

E
[
Y (tν)

∣∣H = 0
]

= E
[
s(tν) +N(tν)

∣∣H = 0
]

= s(tν) + E[N(tν)]
= s(tν), ν = 1, . . . , η,

and

E
[
〈Y, s〉

∣∣H = 0
]

= E
[
〈s + N, s〉

]
= ‖s‖22 + E[〈N, s〉]

= ‖s‖22

(Theorem 25.12.2). The conditional covariance matrix Λ of the vector in (26.54)
conditional on H = 0 is given by the (η + 1)× (η + 1) matrix

Λ =



KNN (0) KNN (t1 − t2) . . . KNN (t1 − tη) s(t1)N0/2
KNN (t2 − t1) KNN (0) . . . KNN (t2 − tη) s(t2)N0/2

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
KNN (tη − t1) KNN (tη − t2) . . . KNN (0) s(tη)N0/2
s(t1)N0/2 s(t2)N0/2 . . . s(tη)N0/2 ‖s‖22 N0/2


(26.56)

(Proposition 25.15.2). Conditional on H = 1, the mean of the vector in (26.54)
is −µ and the covariance matrix is also Λ. From Proposition 25.11.1 regarding
linear functionals of Gaussian stochastic processes, it follows that, conditional on
H = 0, the vector in (26.54) is Gaussian. Likewise conditional on H = 1. And by
(26.55) & (26.56) the mean vector µ is equal to the last column of the covariance
matrix (26.56) scaled by 2/N0.

11The measurability of 〈Y, s〉 with respect to the σ-algebra generated by
(
Y (t)

)
follows from

Proposition 25.10.1.
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Having established that the random vector (26.54) satisfies the hypotheses of
Lemma 26.8.1, we can infer that its last component, namely 〈Y, s〉, forms a suf-
ficient statistic for guessing H based on the vector in (26.54). Since η ∈ N and
t1, . . . , tη ∈ R are here arbitrary, this proves that 〈Y, s〉 is sufficient for guessing H
based on

(
Y (t)

)
, thus proving Theorem 26.4.1 for the two-hypotheses case with

antipodal mean signals.

26.8.3 The General Binary Case

We next prove Theorem 26.4.1 in the more general binary hypothesis testing setting
where the mean signals are not necessarily antipodal. We denote the mean signals
corresponding to H = 0 and H = 1 by s0 and s1, and we assume that both are
integrable signals that are bandlimited to W Hz. We need to show that the vector(

〈Y, s0〉 , 〈Y, s1〉
)T (26.57)

forms a sufficient statistic.

Before giving a formal proof, we provide some intuition. Based on the observa-
tion

(
Y (t)

)
, the receiver can compute the waveform

Ỹ (t) = Y (t)− s0(t) + s1(t)
2

, t ∈ R.

Since the transformation from
(
Y (t)

)
to
(
Ỹ (t)

)
is reversible, there is no loss in

optimality in basing one’s decision on
(
Ỹ (t)

)
. Conditional on H = 0 the SP

(
Ỹ (t)

)
is of the form

Ỹ (t) = s0(t) +N(t)︸ ︷︷ ︸
Y (t)

−s0(t) + s1(t)
2

=
s0(t)− s1(t)

2
+N(t), t ∈ R,

whereas conditional on H = 1 it is of the form

Ỹ (t) = s1(t) +N(t)︸ ︷︷ ︸
Y (t)

−s0(t) + s1(t)
2

= −s0(t)− s1(t)
2

+N(t), t ∈ R.

Consequently, the problem of guessing H based on
(
Ỹ (t)

)
is the antipodal problem

we addressed before with the received waveform being
(
Ỹ (t)

)
and with the mean

signals corresponding to H = 0 and H = 1 being (s0 − s1)/2 and −(s0 − s1)/2
respectively. From our treatment of the antipodal case, we know that for this
problem

〈
Ỹ, (s0 − s1)/2

〉
forms a sufficient statistic. This sufficient statistic can

be written more explicitly as〈
Ỹ,

s0 − s1

2

〉
=
〈
Y − s0 + s1

2
,
s0 − s1

2

〉
=

1
2
〈Y, s0〉 −

1
2
〈Y, s1〉 −

1
4

(
‖s0‖22 − ‖s1‖22

)
,
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thus demonstrating that this sufficient statistic is computable from the vector
in (26.57).12

For readers who prefer a more formal proof we offer the following. Define

s =
s0 − s1

2
. (26.58)

Since 〈Y − (s0 + s1)/2, s〉 is computable from the vector in (26.57), it follows from
Proposition 22.4.2 that to prove that the vector in (26.57) is sufficient it is enough to
establish that 〈Y − (s0 + s1)/2, s〉 is sufficient. We thus need to show that for every
η ∈ N and for every choice of the epochs t1, . . . , tη ∈ R, the RV 〈Y − (s0 + s1)/2, s〉
forms a sufficient statistic for the hypothesis testing problem of guessing H based
on Y (t1), . . . , Y (tη), 〈Y − (s0 + s1)/2, s〉, i.e., that for every prior on H,

H(−−
〈
Y − s0 + s1

2
, s
〉
(−−

(
Y (t1), . . . , Y (tη)

)
.

Equivalently, since subtracting deterministic quantities does not alter conditional
independence, it suffices to show that

H(−−
〈
Y − s0 + s1

2
, s
〉
(−−

(
Y (t1)−

s0(t1) + s1(t1)
2

, . . . , Y (tη)−
s0(tη) + s1(tη)

2

)
.

This can be proved by applying Lemma 26.8.1 to the vector(
Y (t1)−

s0(t1) + s1(t1)
2

, . . . , Y (tη)−
s0(tη) + s1(tη)

2
,

〈
Y − s0 + s1

2
, s
〉)T

which, conditional on H = 0, is Gaussian, with the covariance matrix in (26.56)
and with the mean vector being the RHS of (26.55) (with s defined in (26.58)) and
which, conditional on H = 1, is Gaussian with the same covariance matrix (26.56)
but with the conditional mean being antipodal to the RHS of (26.55).

26.8.4 The General Case

We now prove the general (not necessarily binary) case of Theorem 26.4.1. There
is surprisingly little left to do. The key is Proposition 22.3.2, which demonstrates
that if a function of the observation is sufficient for testing between any two of the
hypotheses, then it is sufficient for the multi-hypothesis testing problem.

To prove that the vector (26.15) of inner products forms a sufficient statistic we
need to show that for every η ∈ N and for any choice of the epochs t1, . . . , tη ∈ R
the inner products vector (26.15) forms a sufficient statistic for guessing M based
on the observation consisting of Y (t1), . . . , Y (tη) and of the inner products vector
(Definition 26.3.1). By Proposition 22.3.2, it is enough to show this when testing
between any two fixed distinct messages m′,m′′ ∈ M. But in this case the suffi-
ciency of the inner products vector (26.15) follows directly from Section 26.8.3 and

12This is only a heuristic argument because it only shows that it is optimal to guess H based
on the vector (26.57). It does not prove that this vector forms a sufficient statistic.
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Proposition 22.4.2 because, by the general binary hypothesis testing case treated in
Section 26.8.3, the two inner products 〈Y, sm′〉 & 〈Y, sm′′〉 suffice for this problem,
and these two inner products are obviously computable from the inner products
vector (26.15) (simply by ignoring its other components). This completes the proof
of Theorem 26.4.1.

26.9 The Front-End Filter

Receivers in practice rarely have the structure depicted in Figure 26.1 because—
although mathematically optimal—its hardware implementation is challenging.
The difficulty is related to the “dynamic range” problem in implementing the
matched filter: it is very difficult to design a perfectly-linear system to exact specifi-
cation. Linearity is usually only guaranteed for a certain range of input amplitudes.
Once the amplitude of the signal exceeds a certain level, the circuit often “clips”
the input waveform and no longer behaves linearly. Similarly, input signals that are
too small might be below the sensitivity of the circuit and might therefore produce
no output, thus violating linearity. This is certainly the case with circuits that
employ analog-to-digital conversion followed by digital processing, because analog-
to-digital converters can only represent the input using a fixed number of bits.
The problem with the structure depicted in Figure 26.1 is that the noise

(
N(t)

)
is

typically much larger than the mean signal, so it becomes very difficult to design a
circuit to exact specifications that will be linear enough to guarantee that its action
on the received waveform (consisting of the weak transmitted waveform and the
strong additive noise) be the sum of the required responses to the mean signal and
to the noise-signal. (That the noise is typically much larger than the mean signals
can be seen from the heuristic plot of its PSD; see Figure 25.3. White Gaussian
noise is often of PSD N0/2 over frequency bands that are much larger than the
band [−W,W ] so, by (25.30), the variance of the noise can be extremely large.)

The engineering solution to the dynamic range problem is to pass the received
waveform through a “front-end filter” and to then feed this filter’s output to the
matched filter; see Figure 26.3. Except for a few very stringent requirements,
the specifications of the front-end filter are relatively lax. The first specification
is that the filter be linear over a very large range of input levels. This is usu-
ally accomplished by using only passive elements to design the filter. The second
requirement is that the front-end filter’s frequency response be of unit-gain over
the mean signals’ frequency band [−W,W ] so that it will not distort the mean
signals.13 Additionally, we require that the filter be stable and that its frequency
response decay to zero sharply for frequencies outside the band [−W,W ]. This lat-
ter condition guarantees that the filter’s response to the noise be of small variance
so that the dynamic range of the signal at the filter’s output be moderate. If we
denote the front-end filter’s impulse response by hFE, then the key mathematical
requirements are linearity; stability, i.e.,∫ ∞

−∞

∣∣hFE(t)
∣∣ dt <∞; (26.59)

13Imprecisions here can often be corrected using signal processing.
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Figure 26.3: Feeding the signal to a front-end filter and then computing the inner
products with the mean signals.
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Figure 26.4: An example of the frequency response of a front-end filter.

and the unit-gain requirement

ĥFE(f) = 1, |f | ≤W. (26.60)

An example of the frequency response of a front-end filter is depicted in Figure 26.4.

In the rest of this section we shall prove that, as long as these assumptions are met,
there is no loss in optimality in introducing the front-end filter as in Figure 26.3.
(In the ideal mathematical world there is, of course, nothing to be gained from this
filter, because the structure we introduced in Figure 26.1 is optimal.)

The crux of the proof is in showing that—like
(
Y (t)

)
—the front-end filter’s output

is the sum of the transmitted signal and white Gaussian noise of PSD N0/2 with
respect to the bandwidth W. Once this is established, the result follows by recalling
that the conditional joint distribution of the matched filters’ outputs does not
depend on the PSD of the noise outside the band [−W,W ] (Note 26.5.1).

We thus proceed to analyze the front-end filter’s output, which we denote by
(
Ỹ (t)

)
:(

Ỹ (t)
)

=
(
Y (t)

)
? hFE. (26.61)
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We first note that (26.60) and the assumption that sm is an integrable signal that
is bandlimited to W Hz guarantee that

sm ? hFE = sm, m ∈M (26.62)

(Proposition 6.5.2 and Proposition 6.4.10 cf. (b)). By (26.62) and by the linearity
of the filter we can thus express the filter’s output (conditional on M = m) as(

Ỹ (t)
)

=
(
Y (t)

)
? hFE

= sm ? hFE +
(
N(t)

)
? hFE

= sm +
(
N(t)

)
? hFE. (26.63)

We next show that the SP
(
N(t)

)
? hFE on the RHS of (26.63) is white Gaussian

noise of PSD N0/2 with respect to the bandwidth W. This follows from Theo-
rem 25.13.2. Indeed, being the result of passing a measurable stationary Gaussian
SP through a stable filter, it is a measurable stationary Gaussian SP. And its PSD
is

f 7→ SNN (f)
∣∣ĥFE(f)

∣∣2, (26.64)

which is equal to N0/2 for all frequencies f ∈ [−W,W ], because for these frequen-
cies SNN (f) is equal to N0/2 and ĥFE(f) is equal to one. Note that at frequencies
outside the band [−W,W ] the PSD of

(
N(t)

)
?hFE may differ from that of

(
N(t)

)
.

We thus conclude that the front-end filter’s output, like its input, can be expressed
as the transmitted signal corrupted by white Gaussian noise of PSD N0/2 with
respect to the bandwidth W. Note 26.5.1 now guarantees that for every m ∈ M
we have that, conditional on M = m, the distribution of(∫ ∞

−∞
Ỹ (t) s1(t) dt, . . . ,

∫ ∞

−∞
Ỹ (t) sM(t) dt

)T

is identical to the conditional distribution of the random vector in (26.15).

The advantage of the front-end filter becomes apparent when we re-examine the
PSD of the noise at its output. If the front-end filter’s frequency response decays
very sharply to zero for frequencies outside the band [−W,W ], then, by (26.64),
this PSD will be nearly zero outside this band. Consequently, the variance of the
noise at the front-end filter’s output—which is the integral of this PSD—will be
greatly reduced. This will guarantee that the dynamic range at the filter’s output
be much smaller than at its input, thus simplifying the implementation of the
matched filters.

26.10 Detection in Passband

The detection problem in passband is very similar to the one in baseband. The
difference is that the mean signals {sm} are now assumed to be integrable signals
that are bandlimited to W Hz around the carrier frequency fc (Definition 7.2.1)
and that the noise is now assumed to be white Gaussian noise of PSD N0/2 with
respect to the bandwidth W around fc (Definition 25.15.3).
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Here too, the inner products in (26.16) form a sufficient statistic. So do those in
(26.18) whenever the signals {s̃j} satisfy

sm ∈ span(s̃1, . . . , s̃n), m ∈M

and are integrable signals that are bandlimited to W Hz around fc.

For every m ∈ M the conditional distribution of the vector of inner products
in (26.18), conditional on M = m, is Gaussian with mean vector (26.22) and
covariance matrix (26.23). The latter covariance matrix can also be written in
terms of the baseband representation of the mean signals using the relation

〈s̃j′ , s̃j′′〉 = 2Re
(
〈s̃j′,BB, s̃j′′,BB〉

)
, (26.65)

where s̃j′,BB and s̃j′′,BB are the baseband representations of s̃j′ and s̃j′′ (Theo-
rem 7.6.10).

The computation of the inner products (26.18) can be performed in passband
by feeding the signal Y directly to filters that are matched to the passband sig-
nals {s̃j}, or in baseband by expressing the inner product 〈Y, s̃j〉 in terms of the
baseband representation s̃j,BB of s̃j as follows:

〈Y, s̃j〉 =
〈
Y, t 7→ 2 Re

(
s̃j,BB(t) ei2πfct

)〉
= 2

∫ ∞

−∞

(
Y (t) cos(2πfct)

)
Re
(
s̃j,BB(t)

)
dt

− 2
∫ ∞

−∞

(
Y (t) sin(2πfct)

)
Im
(
s̃j,BB(t)

)
dt.

This expression suggests computing the inner product 〈Y, s̃j〉 using two baseband
matched filters: one that is matched to Re(s̃j,BB) and that is fed the product
of
(
Y (t)

)
and cos(2πfct), and one that is matched to Im(s̃j,BB) and that is fed the

product of
(
Y (t)

)
and sin(2πfct).14

As discussed in Section 26.9, in practice one typically first feeds the received sig-
nal

(
Y (t)

)
to a stable highly-linear bandpass filter of frequency response ĥPB-FE(·)

satisfying

ĥPB-FE(f) = 1,
∣∣|f | − fc∣∣ ≤W/2, (26.66)

with the frequency response decaying drastically at other frequencies to guarantee
that the filter’s output be of small dynamic range.

14Since the baseband representation of an integrable passband signal that is bandlimited to W
Hz around the carrier frequency fc is integrable (Proposition 7.6.2), it follows that our assumption
that s̃j is an integrable function that is bandlimited to W Hz around the carrier frequency fc
guarantees that both t 7→ cos(2πfct)Re

(
s̃j,BB(t)

)
and t 7→ sin(2πfct) Im

(
s̃j,BB(t)

)
are inte-

grable. Hence, with probability one, both the integrals
∫∞
−∞

(
Y (t) cos(2πfct)

)
Re
(
s̃j,BB(t)

)
dt and∫∞

−∞
(
Y (t) sin(2πfct)

)
Im
(
s̃j,BB(t)

)
dt exist.
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26.11 Some Examples

26.11.1 Binary Hypothesis Testing

Before treating the general binary hypothesis testing problem we begin with the
case of antipodal signaling with a uniform prior. In this case

s0 = −s1 = s, (26.67)

where s is some integrable signal that is bandlimited to W Hz. We denote its
energy by Es, i.e.,

Es = ‖s‖22 (26.68)

and assume that it is strictly positive. In this case the dimension of the linear
subspace spanned by the mean signals is one, and this subspace is spanned by the
unit-norm signal

φ =
s
‖s‖2

. (26.69)

Depending on the outcome of a fair coin toss, either s or −s is sent over the channel.
We observe the SP

(
Y (t)

)
given by the sum of the transmitted signal and white

Gaussian noise of PSD N0/2 with respect to the bandwidth W, and we wish to
guess which signal was sent. How should we form our guess?

By Theorem 26.4.1 a sufficient statistic for this guessing problem is T = 〈Y,φ〉.
Conditional on H = 0, we have T ∼ N

(√
Es,N0/2

)
, whereas, conditional on

H = 1, we have T ∼ N
(
−
√

Es,N0/2
)
. How to guess H based on T is the problem

we addressed in Section 20.10. There we showed that it is optimal to guess “H = 0”
if T ≥ 0 and to guess “H = 1” if T < 0. (The case T = 0 occurs with probability
zero, so we need not worry about it.) An optimal decision rule for guessing H
based on

(
Y (t)

)
is thus:

Guess “H = 0” if
∫ ∞

−∞
Y (t) s(t) dt ≥ 0. (26.70)

Let pMAP(error|s) denote the conditional probability of error of this decision rule
given that s was sent; let pMAP(error| − s) be similarly defined; and let p∗(error)
denote the optimal probability of error of this problem. By the optimality of our
rule,

p∗(error) =
1
2
(
pMAP(error|s) + pMAP(error| − s)

)
.

Using the expression for the error probability derived in Section 20.10 we obtain

p∗(error) = Q

√2 ‖s‖22
N0

 , (26.71)

which, in view of (26.68), can also be written as

p∗(error) = Q

(√
2Es

N0

)
. (26.72)
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Note that, as expected from Section 26.5.2 and in particular from Proposition 26.5.2,
the probability of error is determined by the “geometry” of the problem, which in
this case is summarized by the energy in s.

There is also a nice geometric interpretation to (26.72). The distance between the
mean signals s and −s is ‖s− (−s)‖2 = 2

√
Es. Half the distance is

√
Es. The

inner product between the noise and the unit-length vector φ pointing from −s
to s is N (0,N0/2). Half the distance thus corresponds to

√
Es/
√

N0/2 standard
deviations of this inner product. The probability of error is thus the probability
that a standard Gaussian is greater than half the distance between the signals as
measured by standard deviations of the inner product between the noise and the
unit-length vector pointing from −s towards s.

Consider now the more general binary hypothesis testing problem where both hy-
potheses are still equally likely, but where now the mean signals s0 and s1 are not
antipodal, i.e., they do not sum to zero. Our approach to this problem is to reduce
it to the antipodal case we already treated. We begin by forming the signal

(
Ỹ (t)

)
by subtracting (s0 + s1)/2 from the received signal, so

Ỹ (t) = Y (t)− 1
2
(
s0(t) + s1(t)

)
, t ∈ R. (26.73)

Since Y (t) can be recovered from Ỹ (t) by adding
(
s0(t) + s1(t)

)
/2, the smallest

probability of a guessing error that can be achieved based on
(
Ỹ (t)

)
is no larger

than that which can be achieved based on
(
Y (t)

)
. (The two are, in fact, the same

because
(
Ỹ (t)

)
can be computed from

(
Y (t)

)
.)

The advantage of using
(
Ỹ (t)

)
becomes apparent once we compute its conditional

law given H. Conditional on H = 0, we have Ỹ (t) = (s0(t) − s1(t))/2 + N(t),
whereas conditional on H = 1, we have Ỹ (t) = −(s0(t)−s1(t))/2+N(t). Thus, the
guessing problem given

(
Ỹ (t)

)
is exactly the problem we addressed in the antipodal

case with (s0−s1)/2 playing the role of s. We thus obtain that an optimal decision
rule is to guess “H = 0” if

∫
Ỹ (t)

(
s0(t)− s1(t)

)
/2 dt is nonnegative. Or stated in

terms of
(
Y (t)

)
using (26.73):

Guess “H = 0” if
∫ ∞

−∞

(
Y (t)− s0(t) + s1(t)

2

)
s0(t)− s1(t)

2
dt ≥ 0. (26.74)

The error probability associated with this decision rule is obtained from (26.71) by
substituting (s0 − s1)/2 for s:

p∗(error) = Q

√‖s0 − s1‖22
2N0

 . (26.75)

This expression too has a nice geometric interpretation. The inner product between
the noise and the unit-norm signal that is pointing from s1 to s0 is N (0,N0/2). The
“distance” between the signals is ‖s0 − s1‖2 . Half the distance is ‖s0 − s1‖2 /2,
which corresponds to

‖s0 − s1‖2 /2√
N0/2
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standard deviations of a N (0,N0/2) random variable. The probability of error
(26.75) is thus the probability that the inner product between the noise and the
unit-norm signal that is pointing from s1 to s0 exceeds half the distance between
the signals.

26.11.2 8-PSK

We next present an example of detection in passband. For concreteness we consider
8-PSK, which stands for “8-ary Phase Shift Keying.” Here the number of hypothe-
ses is eight, so M = {1, 2, . . . , 8} and M = 8. We assume that M is uniformly
distributed overM. Conditional on M = m, the received signal is given by

Y (t) = sm(t) +N(t), t ∈ R, (26.76)

where
sm(t) = 2 Re

(
cmsBB(t) ei2πfct

)
, t ∈ R; (26.77)

cm = α eim
2π
8 (26.78)

for some positive real α; the baseband signal sBB is an integrable complex signal
that is bandlimited to W/2 Hz and of unit energy

‖sBB‖2 = 1; (26.79)

the carrier frequency fc satisfies fc > W/2; and
(
N(t)

)
is white Gaussian noise

of PSD N0/2 with respect to the bandwidth W around the carrier frequency fc
(Definition 25.15.3). Irrespective of M , the transmitted energy Es is given by

Es = ‖sm‖22

=
∫ ∞

−∞

(
2 Re

(
cmsBB(t) ei2πfct

))2

dt

= 2α2, (26.80)

as can be verified using the relationship between energy in passband and baseband
(Theorem 7.6.10) and using (26.79).

The transmitted waveform sm can also be written in a form that is highly suggestive
of a choice of an orthonormal basis for span(s1, . . . , sM):

sm(t) =
√

2 Re(cm)
√

2 Re
(
sBB(t) ei2πfct

)︸ ︷︷ ︸
φ1(t)

+
√

2 Im(cm)
√

2 Re
(
i sBB(t) ei2πfct

)︸ ︷︷ ︸
φ2(t)

=
√

2 Re(cm)φ1(t) +
√

2 Im(cm)φ2(t),

where

φ1(t) ,
√

2 Re
(
sBB(t) ei2πfct

)
, t ∈ R,

φ2(t) ,
√

2 Re
(
i sBB(t) ei2πfct

)
, t ∈ R.
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m = 1

t(1)

t(2)

guess 1

Figure 26.5: Region of points (t(1), t(2)) resulting in guessing “M = 1.”

From Theorem 7.6.10 on inner products in passband and baseband, it follows that
φ1 and φ2 are orthogonal. Also, from that theorem and from (26.79), it follows
that they are of unit energy. Thus, the tuple (φ1,φ2) is an orthonormal basis
for span(s1, . . . , sM). Consequently, the vector T = (〈Y,φ1〉 , 〈Y,φ2〉)T forms a
sufficient statistic for guessing M based on

(
Y (t)

)
, and, conditional on M = m, the

components of T are independent with T (1) ∼ N
(√

2α cos(2πm/8),N0/2
)

and with
T (2) ∼ N

(√
2α sin(2πm/8),N0/2

)
. We have thus reduced the guessing problem to

that of guessing M based on a two-dimensional vector T.

The problem of guessing M based on T was studied in Section 21.4. To lift the
results from that section, we need to substitute

√
2α for A and to substitute N0/2

for σ2. For example, the region where we guess “M = 1” is given in Figure 26.5.

For the scenario we described, some engineers prefer to use complex random vari-
ables (Chapter 17). Rather than viewing T as a two-dimensional real random
vector, they prefer to view it as a (scalar) complex random variable whose real
part is 〈Y,φ1〉 and whose imaginary part is 〈Y,φ2〉. Conditional on M = m, this
CRV has the form √

2cm + Z, Z ∼ NC(0,N0) , (26.81)

where NC(0,N0) denotes the circularly-symmetric variance-N0 complex Gaussian
distribution (Note 24.3.13).

The expression for the probability of error of our detector can also be lifted from
Section 21.4. Substituting, as above,

√
2α for A and N0/2 for σ2, we obtain

from (21.25) that the conditional probability of error pMAP(error|M = m) of our
proposed decision rule is given for every m ∈M by

pMAP(error|M = m) =
1
π

∫ π−ψ

0

e
− 2α2 sin2 ψ

N0 sin2(θ+ψ) dθ, ψ =
π

8
.

The conditional probability of error can also be expressed in terms of the trans-
mitted energy Es using (26.80). Doing that and recalling that the conditional
probability of error does not depend on the transmitted message, we obtain that
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the average probability of error p∗(error) is given by

p∗(error) =
1
π

∫ π−ψ

0

e
− Es sin2 ψ

N0 sin2(θ+ψ) dθ, ψ =
π

8
. (26.82)

Note 26.11.1. The expression (26.82) continues to hold also for M-PSK where
cm = α ei2πm/M for M ≥ 2 not necessarily equal to 8, provided that we define
ψ = π/M in (26.82).

26.11.3 Orthogonal Keying

We next consider M-ary orthogonal keying. We assume that the RV M that we
wish to guess is uniformly distributed over the setM = {1, . . . ,M}, where M ≥ 2.
The mean signals are assumed to be orthogonal and of equal (strictly) positive
energy Es:

〈sm′ , sm′′〉 = Es I{m′ = m′′}, m′,m′′ ∈M. (26.83)

Since M is uniform, and since the mean signals are of equal energy, it follows
from Theorem 26.6.3 that to minimize the probability of guessing incorrectly, it is
optimal to correlate the received waveform

(
Y (t)

)
with each of the mean signals

and to pick the message whose mean signal gives the highest correlation:

Guess “m” if 〈Y, sm〉 = max
m′∈M

〈Y, sm′〉 (26.84)

with ties (which occur with probability zero) being resolved by picking a random
message among those that attain the highest correlation.

We next address the probability of error of this optimal decision rule. We first
define the vector (T (1), . . . , T (M))T by

T (`) =
∫ ∞

−∞
Y (t)

s`(t)√
Es

dt, ` ∈ {1, . . . ,M}

and recast the decision rule as guessing “M = m” if T (m) = maxm′∈M T (m′), with
ties being resolved at random among the components of T that are maximal.

Let pMAP(error|M = m) denote the conditional probability of error of this decoding
rule, conditional on M = m. Conditional on M = m, an error occurs in two cases:
when m does not attain the highest score or when m attains the highest score but
this score is also attained by some other message and the tie is not resolved in m’s
favor. Since the probability of a tie is zero (Note 26.6.4), we may ignore the second
case and only compute the probability that an incorrect message is assigned a score
that is (strictly) higher than the one associated with m. Thus,

pMAP(error|M = m)

= Pr
[
max

{
T (1), . . . , T (m−1), T (m+1), . . . , T (M)

}
> T (m)

∣∣M = m
]
. (26.85)
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From (26.28) and the orthogonality of the signals (26.83) we have that, condi-
tional on M = m, the random vector T is Gaussian with the mean of its m-th
component being

√
Es, the mean of its other components being zero, and with all

the components being of variance N0/2 and independent of each other. Thus, the
conditional probability of error given M = m is “the probability that at least one
of M − 1 IID N (0,N0/2) random variables exceeds the value of a N

(√
Es,N0/2

)
random variable that is independent of them.” Having recast the probability of
error conditional on M = m in a way that does not involve m (the clause in quotes
makes no reference to m), we conclude that the conditional probability of error
given that M = m does not depend on m:

pMAP(error|M = m) = pMAP(error|M = 1), m ∈M. (26.86)

This conditional probability of error can be computed starting from (26.85) as:

pMAP(error|M = 1)
= Pr

[
max

{
T (2), . . . , T (M)

}
> T (1)

∣∣M = 1
]

= 1− Pr
[
max

{
T (2), . . . , T (M)

}
≤ T (1)

∣∣M = 1
]

= 1−
∫ ∞

−∞
fT (1)|M=1(t) Pr

[
max

{
T (2), . . . , T (M)

}
≤ t

∣∣M = 1, T (1) = t
]
dt

= 1−
∫ ∞

−∞
fT (1)|M=1(t) Pr

[
max

{
T (2), . . . , T (M)

}
≤ t

∣∣M = 1
]
dt

= 1−
∫ ∞

−∞
fT (1)|M=1(t) Pr

[
T (2) ≤ t, . . . , T (M) ≤ t

∣∣M = 1
]
dt

= 1−
∫ ∞

−∞
fT (1)|M=1(t)

(
Pr
[
T (2) ≤ t

∣∣M = 1
])M−1

dt

= 1−
∫ ∞

−∞
fT (1)|M=1(t)

(
1−Q

( t√
N0/2

))M−1

dt

= 1−
∫ ∞

−∞

1√
πN0

e−
(t−

√
Es)2

N0

(
1−Q

( t√
N0/2

))M−1

dt

= 1− 1√
2π

∫ ∞

−∞
e−τ

2/2

(
1−Q

(
τ +

√
2Es

N0

))M−1

dτ, (26.87)

where the first equality follows from (26.85); the second because the conditional
probability of an event and its complement add to one; the third by conditioning
on T (1) = t and integrating it out, i.e., by noting that for any random variable X
of density fX(·) and for any random variable Y ,

Pr
[
Y ≤ X

]
=
∫ ∞

−∞
fX(x) Pr

[
Y ≤ x

∣∣X = x
]
dx, (26.88)

with X here being equal to T (1) and with Y here being max{T (2), . . . , T (M)}; the
fourth from the conditional independence of T (1) and (T (2), . . . , T (M)) givenM = 1,
which implies the conditional independence of T (1) and max{T (2), . . . , T (M)} given
M = 1; the fifth because the maximum of random variables does not exceed t if,
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and only if, none of them exceeds t(
max{T (2), . . . , T (M)} ≤ t

)
⇔
(
T (2) ≤ t, . . . , T (M) ≤ t

)
;

the sixth because, conditional on M = 1, the random variables T (2), . . . , T (M) are
IID so

Pr
[
T (2) ≤ t, . . . , T (M) ≤ t

∣∣M = 1
]

=
(
Pr
[
T (2) ≤ t

∣∣M = 1
])M−1

;

the seventh because, conditional on M = 1, we have T (2) ∼ N (0,N0/2) and using
(19.12b); the eighth because, conditional on M = 1, we have T (1) ∼ N

(√
Es,N0/2

)
so its conditional density can be written explicitly using (19.6); and the final equal-
ity using the change of variable

τ ,
t−
√

Es√
N0/2

. (26.89)

Using (26.86) and (26.87) we obtain that if p∗(error) denotes the unconditional
probability of error, then p∗(error) = pMAP(error|M = 1) and

p∗(error) = 1− 1√
2π

∫ ∞

−∞
e−τ

2/2

(
1−Q

(
τ +

√
2Es

N0

))M−1

dτ. (26.90)

An alternative expression for the probability of error can be derived using the
Binomial Expansion

(a+ b)n =
n∑
j=0

(
n

j

)
an−j bj ,

(
n ∈ N, a, b ∈ R

)
. (26.91)

Substituting

a = 1, b = −Q
(
τ +

√
2Es

N0

)
, n = M− 1,

in (26.91) yields(
1−Q

(
τ +

√
2Es

N0

))M−1

=
M−1∑
j=0

(−1)j
(

M− 1
j

)(
Q
(
τ +

√
2Es

N0

))j

= 1 +
M−1∑
j=1

(−1)j
(

M− 1
j

)(
Q
(
τ +

√
2Es

N0

))j
,

from which we obtain from (26.90) (using the linearity of integration and the fact
that the Gaussian density integrates to one)

p∗(error) =
M−1∑
j=1

(−1)j+1

(
M− 1
j

)∫ ∞

−∞

1√
2π

e−τ
2/2

(
Q
(
τ +

√
2Es

N0

))j
dτ.

(26.92)
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For the case where M = 2 the expression (26.90) for the probability of error can
be simplified to

p∗(error) = Q

(√
Es

N0

)
, M = 2, (26.93)

as we proceed to show in two different ways. The first way is to note that for
M = 2 the probability of error can be expressed, using (26.85) and (26.86), as

pMAP(error|M = 1) = Pr
[
T (2) > T (1)

∣∣M = 1
]

= Pr
[
T (2) − T (1) > 0

∣∣M = 1
]

= Q

(√
Es

N0

)
,

where the last equality follows because, conditional on M = 1, the random vari-
ables T (1) and T (2) are independent Gaussians of variance N0/2 with the first
having mean

√
Es and the second having zero mean, so their difference T (2)− T (1)

is N
(
−
√

Es,N0

)
. (The probability that a N

(
−
√

Es,N0

)
RV exceeds zero can be

computed using (19.12a).) The second way of showing (26.93) it to use (26.75) and
to note that the orthogonality of s1 and s2 implies ‖s1 − s2‖22 = ‖s1‖22 + ‖s2‖22 =
2Es.

26.11.4 The M-ary Simplex

We next describe a detection problem that is intimately related to the problem we
addressed in Section 26.11.3. To motivate the problem we first note:

Proposition 26.11.2. Consider the setup described in Section 26.2. If s is any
integrable signal that is bandlimited to W Hz, then the probability of error associated
with the mean signals {s1, . . . , sM} and the prior {πm} is the same as with the mean
signals {s1 − s, . . . , sM − s} and the same prior.

Proof. We have essentially given a proof of this result in Section 14.3 and also
in Section 26.11.1 in our analysis of nonantipodal signaling. The idea is that,
by subtracting the signal s from the received waveform, the receiver can make the
problem with mean signals {s1, . . . , sM} appear as though it were the problem with
mean signals {s1 − s, . . . , sM − s}. Conversely, by adding s, the receiver can make
the latter appear as though it were the former. Consequently, the best performance
achievable in the two settings must be identical.

The expected transmitted energy when employing the mean signals {s1, . . . , sM}
may be different than when employing the mean signals {s1 − s, . . . , sM − s}. In
subtracting the signal s one can change the average transmitted energy for better
or worse. As we argued in Section 14.3, to minimize the expected transmitted
energy, one should choose s to correspond to the “center of gravity” of the mean
signals:
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Proposition 26.11.3. Let the prior {πm} and mean signals {sm} be given. Let

s∗ =
∑
m∈M

πm sm . (26.94)

Then, for any energy-limited signal s∑
m∈M

πm ‖sm − s∗‖22 ≤
∑
m∈M

πm ‖sm − s‖22 , (26.95)

with equality if, and only if, s is indistinguishable from s∗.

Proof. Writing sm − s as (sm − s∗) + (s∗ − s) we have∑
m∈M

πm ‖sm − s‖22

=
∑
m∈M

πm ‖(sm − s∗) + (s∗ − s)‖22

=
∑
m∈M

πm ‖sm − s∗‖22 +
∑
m∈M

πm ‖s∗ − s‖22 + 2
∑
m∈M

πm 〈sm − s∗, s∗ − s〉

=
∑
m∈M

πm ‖sm − s∗‖22 + ‖s∗ − s‖22 + 2
〈 ∑
m∈M

πm(sm − s∗), s∗ − s
〉

=
∑
m∈M

πm ‖sm − s∗‖22 + ‖s∗ − s‖22 + 2 〈s∗ − s∗, s∗ − s〉

=
∑
m∈M

πm ‖sm − s∗‖22 + ‖s∗ − s‖22

≥
∑
m∈M

πm ‖sm − s∗‖22 ,

with the inequality being an equality if, and only if, ‖s∗ − s‖22 = 0.

We can now construct the simplex signals as follows. We start with M orthonormal
waveforms φ1, . . . ,φM

〈φm′ ,φm′′〉 = I{m′ = m′′}, m′,m′′ ∈M (26.96)

that are integrable and bandlimited to W Hz. We set φ̄ to be their “center of
gravity” with respect to the uniform prior

φ̄ =
1
M

∑
m∈M

φm. (26.97)

Using (26.96), (26.97), and the basic properties of the inner product (3.6)–(3.10)
it is easily verified that〈

φm′ − φ̄,φm′′ − φ̄
〉

= I
{
m′ = m′′

}
− 1

M
, m′,m′′ ∈M. (26.98)
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φ1

φ2

φ̄

φ
2 −
φ̄

φ
1 −
φ̄

Figure 26.6: Starting with two orthonormal signals and subtracting the “center of
gravity” from each we obtain two antipodal signals. Scaling these antipodal signals
results in the simplex constellation with two signals.

Figure 26.7: Constructing the simplex constellation with three points from three
orthonormal signals. Left figure depicts the orthonormal constellation and its cen-
ter of gravity; middle figure depicts the result of subtracting the center of gravity,
and the right figure depicts the result of scaling (from a different perspective).

We now define the M-ary simplex constellation with energy Es by

sm =
√

Es

√
M

M− 1
(
φm − φ̄

)
, m ∈M. (26.99)

The construction for the case where M = 2 is depicted in Figure 26.6. It yields
the binary antipodal signaling scheme. The construction for M = 3 is depicted in
Figure 26.7.

From (26.99) and (26.98) we obtain for distinct m′,m′′ ∈M

‖sm‖22 = Es and 〈sm′ , sm′′〉 = − Es

M− 1
. (26.100)

Also, from (26.99) we see that {sm} can be viewed as the result of subtracting the
center of gravity from orthogonal signals of energy Es M/(M − 1). Consequently,
the least error probability that can be achieved in detecting simplex signals of
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s1

s2

√
Esψ

s1
+

√ E s
ψ

s
2 + √

E
s ψ

Figure 26.8: Adding a properly scaled signal ψ that is orthogonal to all the
elements of a simplex constellation results in an orthogonal constellation.

energy Es is the same as the least error probability that can be achieved in detecting
orthogonal signals of energy

M

M− 1
Es (26.101)

(Proposition 26.11.2). From the expression for the error probability in orthogonal
signaling (26.90) we obtain for the simplex signals with a uniform prior

p∗(error) = 1− 1√
2π

∫ ∞

−∞
e−τ

2/2

(
1−Q

(
τ +

√
M

M− 1
2Es

N0

))M−1

dτ.

(26.102)

The decision rule for the simplex constellation can also be derived by exploiting the
relationship to orthogonal keying. For example, if ψ is a unit-energy integrable sig-
nal that is bandlimited to W Hz and that is orthogonal to the signals {s1, . . . , sM},
then, by (26.100), the waveforms{

sm +
1√

M− 1

√
Esψ

}
m∈M

(26.103)

are orthogonal, each of energy Es M/(M − 1). (See Figure 26.8 for a demonstra-
tion of the process of obtaining an orthogonal constellation with M = 2 signals
by adding a signal ψ to each of the signals in a binary simplex constellation.)
Consequently, in order to decode the simplex signals contaminated by white Gaus-
sian noise with respect to the bandwidth W, we can add 1√

M−1

√
Esψ to the re-

ceived waveform and then feed the result to an optimal detector for orthogonal
keying.

26.11.5 Bi-Orthogonal Keying

Starting with an orthogonal constellation, we can double the number of signals
without reducing the minimum distance. This construction, which results in the
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Figure 26.9: A bi-orthogonal constellation with six signals.

“bi-orthogonal signal set” is the topic of this section. To construct the bi-orthogonal
signal set with 2κ signals, we start with κ ≥ 1 orthonormal signals (φ1, . . . ,φκ)
and define the 2κ bi-orthogonal signal set {s1,u, s1,d, . . . , sκ,u, sκ,d} by

sν,u = +
√

Es φν and sν,d = −
√

Es φν , ν ∈ {1, . . . , κ}. (26.104)

We can think of “u” as standing for “up” and of “d” as standing for “down,” so to
each signal φν there correspond two signals in the bi-orthogonal constellation: the
“up signal” that corresponds to multiplying

√
Esφν by +1 and the “down signal”

that corresponds to multiplying
√

Esφν by −1. Only bi-orthogonal signal sets with
an even number of signals are defined. The constructed signals are all of energy Es:

‖sν,u‖2 = ‖sν,d‖2 =
√

Es, ν ∈ {1, . . . , κ}. (26.105)

A bi-orthogonal constellation with six points (κ = 3) is depicted in Figure 26.9.
Suppose that each of the signals φ1, . . . ,φκ is an integrable signal that is band-
limited to W Hz and that, consequently, so are all the signals in the constructed
bi-orthogonal signal set. A signal is picked uniformly at random from the signal set
and is sent over a channel. We observe the stochastic process

(
Y (t)

)
given by the

sum of the transmitted signal and white Gaussian noise of PSD N0/2 with respect
to the bandwidth W. How should we guess which signal was sent?

Since the signal was chosen equiprobably, and since all the signals in the signal set
are of the same energy, it is optimal to consider the inner products

〈Y, s1,u〉 , 〈Y, s1,d〉 , . . . , 〈Y, sκ,u〉 , 〈Y, sκ,d〉 (26.106)

and to pick the signal in the signal set corresponding to the largest of these inner
products. By (26.104) we have for every ν ∈ {1, . . . , κ} that sν,u = −sν,d so
〈Y, sν,u〉 = −〈Y, sν,d〉 and hence

max
{
〈Y, sν,u〉 , 〈Y, sν,d〉

}
=
∣∣〈Y, sν,u〉∣∣, ν ∈ {1, . . . , κ}. (26.107)
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Equivalently, by (26.104),

max
{
〈Y, sν,u〉 , 〈Y, sν,d〉

}
=
√

Es

∣∣〈Y,φν〉∣∣, ν ∈ {1, . . . , κ}.

To find the maximum of the 2κ terms in (26.106) we can first compute for each
ν ∈ {1, . . . , κ} the maximum between 〈Y, sν,u〉 and 〈Y, sν,d〉 and then compute the
maximum of the κ results:

max
{
〈Y, s1,u〉 , 〈Y, s1,d〉 , . . . , 〈Y, sκ,u〉 , 〈Y, sκ,d〉

}
= max

{
max

{
〈Y, s1,u〉 , 〈Y, s1,d〉

}
, . . . ,max

{
〈Y, sκ,u〉 , 〈Y, sκ,d〉

}}
.

Using this approach, we obtain from (26.107) the following optimal two-step proce-
dure: first find which ν∗ in {1, . . . , κ} attains the maximum of the absolute values
of the inner products

max
ν∈{1,...,κ}

{∣∣〈Y,φν〉∣∣}
and then, after you have found ν∗, guess “sν∗,u” if 〈Y,φν∗〉 > 0 and guess “sν∗,d”
if 〈Y,φν∗〉 ≤ 0.

We next compute the probability of error of this optimal guessing rule. It is not
difficult to see that the conditional probability of error does not depend on the
message we condition on. For concreteness, we shall analyze the probability of
error associated with the message corresponding to the signal s1,u, a probability
that we denote by pMAP(error|s1,u), with the corresponding conditional probability
of correct decoding pMAP(correct|s1,u) = 1 − pMAP(error|s1,u). To simplify the
typesetting, we shall denote the conditional probability of the event A given that
s1,u is sent by Pr(A|s1,u).

Since the probability of ties in the likelihood function is zero (Note 26.6.4)

pMAP(correct|s1,u)

= Pr
(
−〈Y,φ1〉 ≤ 〈Y,φ1〉 and max

2≤ν≤κ

{∣∣〈Y,φν〉∣∣} ≤ 〈Y,φ1〉
∣∣∣ s1,u

)
= Pr

(
〈Y,φ1〉 ≥ 0 and max

2≤ν≤κ

{∣∣〈Y,φν〉∣∣} ≤ 〈Y,φ1〉
∣∣∣ s1,u

)
=
∫ ∞

0

f〈Y,φ1〉|s1,u(t) Pr
[

max
2≤ν≤κ

{∣∣〈Y,φν〉∣∣} ≤ t ∣∣∣ s1,u, 〈Y,φ1〉 = t
]
dt

=
∫ ∞

0

f〈Y,φ1〉|s1,u(t) Pr
[

max
2≤ν≤κ

{∣∣〈Y,φν〉∣∣} ≤ t ∣∣∣ s1,u

]
dt

=
∫ ∞

0

f〈Y,φ1〉|s1,u(t)
(
Pr
[
|〈Y,φ2〉| ≤ t

∣∣ s1,u

])κ−1

dt

=
∫ ∞

0

1√
πN0

e−
(t−

√
Es)2

N0

(
1− 2Q

(
t√

N0/2

))κ−1

dt

=
1√
2π

∫ ∞

−
√

2Es
N0

e−τ
2/2

(
1− 2Q

(
τ +

√
2Es

N0

))κ−1

dτ, (26.108)

with the following justification. The first equality follows from the definition of
our optimal decoder and from the fact that ties occur with probability zero. The
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second equality follows by trivial algebra (−ξ ≤ ξ if, and only if, ξ ≥ 0). The third
equality follows by conditioning on 〈Y, s1,u〉 being equal to t and integrating t
out while noting that a correct decision can only be made if t ≥ 0, in which case
the condition 〈Y,φ1〉 ≥ 0 is satisfied automatically. The fourth equality follows
because, conditional on the signal s1,u being sent, the random variable 〈Y, s1,u〉 is
independent of the random variables {|〈Y,φν〉|}2≤ν≤κ. The fifth equality follows
because, conditional on s1,u being sent, the random variables {|〈Y,φν〉|}2≤ν≤κ are
IID. The sixth equality follows because, conditional on s1,u being sent, we have
〈Y,φ1〉 ∼ N

(√
Es,N0/2

)
and 〈Y,φ2〉 ∼ N (0,N0/2), so

Pr
[ ∣∣〈Y,φ2〉

∣∣ ≤ t ∣∣∣ s1,u

]
= Pr

[
|〈Y,φ2〉|√

N0/2
≤ t√

N0/2

∣∣∣∣ s1,u

]
= 1− Pr

[
|〈Y,φ2〉|√

N0/2
≥ t√

N0/2

∣∣∣∣ s1,u

]
= 1− Pr

[
〈Y,φ2〉√

N0/2
≥ t√

N0/2

∣∣∣∣ s1,u

]
− Pr

[
〈Y,φ2〉√

N0/2
≤ −t√

N0/2

∣∣∣∣ s1,u

]
= 1− 2Q

(
t√

N0/2

)
.

Finally, (26.108) follows from the substitution τ , (t−
√

Es)/
√

N0/2 as in (26.89).

Since the conditional probability of error does not depend on the message, it follows
that all conditional probabilities of error are equal to the average probability of
error p∗(error) and

p∗(error) = 1− 1√
2π

∫ ∞

−
√

2Es
N0

e−τ
2/2

(
1− 2Q

(
τ +

√
2Es

N0

))κ−1

dτ, (26.109)

or, using the Binomial Expansion (26.91) with the substitution of −Q
(
τ +

√
2Es
N0

)
for b and of 1 for a,

p∗(error) =
κ−1∑
j=1

(−1)j+12j
(
κ− 1
j

)
1√
2π

∫ ∞

−
√

2Es
N0

e−τ
2/2

(
Q
(
τ +

√
2Es

N0

))j
dτ.

(26.110)

The probability of error associated with an orthogonal constellation with κ signals
is better than that of the bi-orthogonal constellation with 2κ signals and equal
average energy. But the comparison is not quite fair because the bi-orthogonal
constellation is richer.

26.12 Detection in Colored Noise

Our focus throughout has been on the detection problem when the noise is “white”
in the sense that its PSD is flat over the frequency band to which the mean sig-
nals are limited. We now extend the discussion to “colored” noise, i.e., to noise
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whose PSD is not constant over the bandwidth of interest. We continue to as-
sume that the mean signals {sm}m∈M are integrable signals that are bandlimited
to W Hz and that the noise

(
N(t)

)
is independent of the message M and is a

measurable, stationary, Gaussian SP. Its PSD SNN , however, is now an arbitrary
nonnegative, symmetric, integrable function that is not necessarily constant over
the band [−W,W ]. Conditional on M = m, the received waveform

(
Y (t)

)
is given

at time t by sm(t) +N(t).

Our approach is based on “whitening the noise” and is only applicable when the
noise can be whitened with respect to the bandwidth W, i.e., when there exists a
whitening filter for the noise with respect to W:

Definition 26.12.1 (Whitening Filter for SNN with respect to W). A filter of im-
pulse response h : R→ R is said to be a whitening filter for SNN (or for

(
N(t)

)
)

with respect to the bandwidth W if it is stable and its frequency response ĥ
satisfies

SNN (f) |ĥ(f)|2 = 1, |f | ≤W. (26.111)

Only the magnitude of the frequency response of the whitening filter is specified in
(26.111) and only for frequencies in the band [−W,W ]. The response is unspecified
outside this band. Consequently:

Note 26.12.2. There may be many different whitening filters for SNN with respect
to the bandwidth W.

If SNN is zero at some frequencies in [−W,W ], then there is no whitening filter
for SNN with respect to W. Likewise, a whitening filter for SNN does not exist
if SNN is not continuous in [−W,W ] (because the frequency response of a stable
filter must be continuous (Theorem 6.2.11), and if SNN is discontinuous, then so is
f 7→ 1/

√
|SNN (f)|). Thus:

Note 26.12.3. There does not always exist a whitening filter for SNN with respect
to W.

We shall see, however, in Proposition 26.12.8 that a whitening filter exists whenever
throughout the interval [−W,W ] the PSD SNN is strictly positive and is twice
continuously differentiable.

The filter is called “whitening” because, by Theorem 25.13.2, we have:

Proposition 26.12.4. If
(
N(t), t ∈ R

)
is a measurable, stationary, Gaussian SP

of PSD SNN , and if h is the impulse response of a whitening filter for SNN with
respect to W, then

(
N(t)

)
?h is white Gaussian noise of PSD 1 with respect to the

bandwidth W.

Assuming that the noise can be whitened with respect to the bandwidth W, we
pick some whitening filter of impulse response h and denote by

(
Ỹ (t)

)
the result

of feeding the observed SP
(
Y (t)

)
to this filter:(

Ỹ (t)
)

=
(
Y (t)

)
? h. (26.112)
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Conditional on M = m, the output of the whitening filter is given by

Ỹ (t) =
(
sm +

(
N(t)

))
? h

= s̃m + Ñ(t), t ∈ R, (26.113)

where
s̃m = sm ? h, m ∈M, (26.114)

and (
Ñ(t)

)
=
(
N(t)

)
? h. (26.115)

By Proposition 6.5.2, s̃m is an integrable signal that is bandlimited to W Hz and

s̃m(t) =
∫ W

−W

ŝm(f) ĥ(f) ei2πft df, t ∈ R. (26.116)

And, by Proposition 26.12.4,
(
Ñ(t)

)
is white Gaussian noise of PSD 1 with respect

to the bandwidth W.

Loosely speaking, the main result of this section is that there is no loss in optimal-
ity in guessing M based on the whitening filter’s output

(
Ỹ (t)

)
. This is not very

surprising for the following reason. While passing
(
Y (t)

)
through the whitening

filter is not necessarily an invertible operation, it “almost” is, in the sense that we
can recover the original observation inside the band [−W,W ]. Since the transmit-
ted signals are bandlimited to W Hz, we do not expect that the observation outside
this band will influence our guess.

Once this result is proved, the detection problem is reduced to detecting known
signals (the signals {s̃m}) in white Gaussian noise (the SP

(
Ñ(t)

)
). Employing

Theorem 26.4.1, we obtain that if guessingM based on the whitening filter’s output
is optimal, then so is basing one’s guess on the inner products vector(〈

Ỹ, s̃1

〉
, . . . ,

〈
Ỹ, s̃M

〉)T

, (26.117)

thus reducing the continuous-time detection problem to one where the observation
is a random vector taking value in RM.

We next describe the sufficient statistic for our problem more carefully. Rather than
expressing the sufficient statistic as in (26.117), we prefer to express it directly in
terms of the observed signal

(
Y (t)

)
as the vector(〈

Y, ~h ? s̃1

〉
, . . . ,

〈
Y, ~h ? s̃M

〉)T

, (26.118)

where the equivalence of the two forms can be formally derived as follows:〈
Ỹ, s̃m

〉
=
∫ ∞

−∞

(∫ ∞

−∞
Y (σ)h(t− σ) dσ

)
s̃m(t) dt

=
∫ ∞

−∞

∫ ∞

−∞
Y (σ)h(t− σ) s̃m(t) dtdσ

=
∫ ∞

−∞
Y (σ)

(∫ ∞

−∞
h(t− σ) s̃m(t) dt

)
dσ
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=
∫ ∞

−∞
Y (σ)

(
~h ? s̃m

)
(σ) dσ

=
〈
Y, ~h ? s̃m

〉
.

Note that for each m ∈ M the convolution ~h ? s̃m is the result of passing the
signal s̃m, which is an integrable signal that is bandlimited to W Hz, through
the stable filter of impulse response ~h, so ~h ? s̃m is an integrable signal that is
bandlimited to W Hz (Proposition 6.5.2). This integrability guarantees that the
inner products in (26.118) are well-defined (Proposition 25.10.1).

We can now state the main result of this section:

Theorem 26.12.5 (Detecting Known Signals in Colored Noise). Let M take value
in the finite setM = {1, . . . ,M}, and let the signals s1, . . . , sM be integrable signals
that are bandlimited to W Hz. Let the conditional law of

(
Y (t)

)
given M = m be

that of sm(t) + N(t), where
(
N(t)

)
is a stationary, measurable, Gaussian SP of

PSD SNN that can be whitened with respect to the bandwidth W. Let h be the
impulse response of a whitening filter for

(
N(t)

)
. Then:

(i) The inner-products vector (26.118) forms a sufficient statistic for guessing M
based on the observation

(
Y (t)

)
.

(ii) Conditional on M = m, this vector is Gaussian with mean(
〈s̃m, s̃1〉 , . . . , 〈s̃m, s̃M〉

)T (26.119)

and M×M covariance matrix
〈s̃1, s̃1〉 〈s̃1, s̃2〉 · · · 〈s̃1, s̃M〉
〈s̃2, s̃1〉 〈s̃2, s̃2〉 · · · 〈s̃2, s̃M〉

...
...

. . .
...

〈s̃M, s̃1〉 〈s̃M, s̃2〉 · · · 〈s̃M, s̃M〉

 , (26.120)

where
s̃j = sj ? h, j ∈M, (26.121)

and where the inner product 〈s̃m′ , s̃m′′〉 can also be expressed as

〈s̃m′ , s̃m′′〉 =
∫ W

−W

ŝm′(f) ŝ∗m′′(f)
1

SNN (f)
df, m′,m′′ ∈M. (26.122)

(iii) If (φ1, . . . ,φd′) is an orthonormal d′-tuple of integrable signals that are band-
limited to W Hz, and if

s̃m ∈ span(φ1, . . . ,φd′), m ∈M, (26.123)

then the inner products vector(〈
Y, ~h ? φ1

〉
, . . . ,

〈
Y, ~h ? φd′

〉)T

, (26.124)
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forms a sufficient statistic for guessing M based on
(
Y (t)

)
and, conditional

on M = m, is a multivariate Gaussian of covariance matrix Id′ and of mean
vector (

〈s̃m,φ1〉 , . . . , 〈s̃m,φd′〉
)T
. (26.125)

Proof. The sufficiency of the vector (26.118) can be established by first proving
the result in the binary antipodal case, and by then generalizing the result as we
did in the proof of Theorem 26.4.1.

In the binary antipodal case we denote the RV to be guessed by H and assume
that it takes value in {0, 1}. We assume that, conditional on H = 0, the time-t
received waveform is s(t)+N(t) whereas, conditional on H = 1, it is −s(t)+N(t).
We show that for every η ∈ N and any choice of the epochs t1, . . . , tη ∈ R, the inner
product

〈
Y, ~h ? s

〉
forms a sufficient statistic for guessing H based on the vector(

Y (t1), . . . , Y (tη),
〈
Y, ~h ? s

〉)T

.

As in the proof of Theorem 26.4.1, this can be established using Lemma 26.8.1 as
follows. One first notes that, conditional on H, this vector is Gaussian (Proposi-
tion 25.11.1). One then notes that the conditional covariance matrix of this vector
conditional on H = 0 is the same as conditional on H = 1 and that this covariance
matrix can be computed using Theorem 25.12.2. Finally one shows that the vec-
tor’s conditional mean vector, conditional on H = 0, is antipodal to its conditional
mean vector, conditional on H = 1, and that both are scaled versions of the last
column of the conditional covariance matrix.

Once the sufficiency of the vector (26.118) has been established, the computation
of its conditional law is straightforward: by Proposition 25.11.1 it is conditionally
Gaussian, and its conditional mean (26.119) and conditional covariance (26.120)
are readily derived using Theorem 25.12.2. The derivation of (26.122) follows from
(26.116) using the Mini Parseval Theorem (Proposition 6.2.6 (i)) and (26.111).

An alternative way of deriving the conditional distribution is to note that the vector
(26.118) can also be expressed as the vector (26.117) and to then use the result
from Section 26.5.1 by substituting 1 for N0/2 and s̃m for sm for all m ∈M.

Part (iii) follows directly from Parts (i) and (ii).

Since the inner products 〈s̃m′ , s̃m′′〉 for m′,m′′ ∈M determine the conditional law
of the sufficient statistic (see (26.119) & (26.120)), and since, by (26.122), the inner
product 〈s̃m′ , s̃m′′〉 does not depend on the choice of the whitening filter we obtain:

Note 26.12.6. Neither the conditional distribution of the sufficient statistic vec-
tor in (26.118) nor the optimal proability of error depends on the choice of the
whitening filter.

Using Theorem 26.12.5 we can now derive an optimal rule for guessing M . Indeed,
in analogy to Theorem 26.6.3 we have:

Theorem 26.12.7. Consider the setting of Theorem 26.12.5 with M of prior {πm}.
The decision rule that guesses uniformly at random from among all the messages
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m̃ ∈M for which

lnπm̃ −
1
2

d∑
`=1

(〈
Y, ~h ? φ`

〉
−
〈
sm̃, ~h ? φ`

〉)2

= max
m′∈M

{
lnπm′ − 1

2

d∑
`=1

(〈
Y, ~h ? φ`

〉
−
〈
sm′ , ~h ? φ`

〉)2
}

(26.126)

minimizes the probability of error whenever h is a whitening filter and the tuple
(φ1, . . . ,φd) forms an orthonormal basis for span(s1 ? h, . . . , sM ? h).

Before concluding our discussion of detection in the presence of colored noise we
derive here a sufficient condition for the existence of a whitening filter.

Proposition 26.12.8 (Existence of a Whitening Filter). Let W > 0 be fixed. If
throughout the interval [−W,W ] the PSD SNN is strictly positive and twice con-
tinuously differentiable, then there exists a whitening filter for SNN with respect to
the bandwidth W.

Proof. The proof hinges on the following basic result from harmonic analysis
(Katznelson, 1976, Chapter VI, Section 1, Exercise 7): if a function f 7→ g(f)
is twice continuously differentiable and is zero outside some interval [−∆,∆], then
it is the FT of some integrable function.

To prove the proposition using this result we begin by picking some ∆ > W. We
now define a function g : R → R as follows. For f ≥ ∆, we define g(f) = 0.
For f in the interval [0,W], we define g(f) = 1/

√
SNN (f). And for f ∈ (W,∆),

we define g(f) so that g be twice continuously differentiable in [0,∞). We can
thus think of g in [W,∆] as an interpolation function whose values and first two
derivatives are specified at the endpoints of the interval. Finally, for f < 0, we
define g(f) as g(−f). Figure 26.10 depicts SNN , g, W, and ∆.

A whitening filter for SNN with respect to the bandwidth W is the integrable
function whose FT is g and whose existence is guaranteed by the quoted result.

26.13 Detecting Signals of Infinite Bandwidth

So far we have only dealt with the detection problem when the mean signals are
bandlimited. What if the mean signals are not bandlimited? The difficulty in this
case is that we cannot assume that the noise PSD is constant over the bandwidth
occupied by the mean signals, or that the noise can be whitened with respect to
this bandwidth.

We can address this issue in three different ways. In the first we can try to find the
optimal detector by studying this more complicated hypothesis testing problem. It
will no longer be the case that the inner products vector (26.15) forms a sufficient
statistic. It will turn out that the optimal detector greatly depends on the rela-
tionship between the rate of decay of the PSD of the noise as the frequency tends
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W ∆−W−∆

f

g(f)

1√
SNN (f)

SNN (f)

Figure 26.10: The frequency response of a whitening filter for the PSD SNN with
respect to the bandwidth W.

to ±∞ and the rate of decay of the FT of the mean signals. This approach will
often lead to bad designs, because the structure of the receiver will depend greatly
on how we model the noise, and inaccuracies in our modeling of the noise PSD at
ultra-high frequencies might lead us completely astray in our design.

A more level-headed approach that is valid if the noise PSD is “essentially flat
over the bandwidth of interest” is to ignore the fact that the mean signals are not
bandlimited and to base our decision on the inner products vector, even if this is
not fully justified mathematically. This approach leads to robust designs that are
insensitive to inaccuracies in our modeling of the noise process. If the PSD is not
essentially flat, we can whiten it with respect to a sufficiently large band [−W,W ]
that contains most of the energy of the mean signals.

The third approach is to use very complicated mathematical machinery involving
the Itô Calculus (Karatzas and Shreve, 1991) to model the noise in a way that will
result in the inner products forming a sufficient statistic. We have chosen not to
pursue this approach because it requires modeling the noise as a process of infinite
power, which is physically unappealing. This approach just shifts the burden of
proof from one place to another. Indeed, the Itô Calculus can now prove for us
that the inner products vector is sufficient, but we need a leap of faith in modeling
the noise as a process of infinite power.

In the future, in dealing with mean signals that are not bandlimited, we shall refer
to the “white noise paradigm” as the paradigm under which the receiver forms its
decision based on the inner products vector (26.15) and under which these inner
products have the conditional law derived in Section 26.5.1.
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26.14 A Proof of Lemma 26.8.1

We next present a proof of Lemma 26.8.1 that is also valid when the matrix Λ is
singular. We denote the Row-j Column-k component of this matrix by λ(j,k).

Proof. We first treat the case where the variance λ(n,n) of the last component Y (n)

of the random n-vector Y is zero. By the Covariance Inequality it follows that for
every j ∈ {1, . . . , n}∣∣λ(j,n)

∣∣ = ∣∣Cov
[
Y (j), Y (n)

]∣∣ ≤√Var
[
Y (j)

]√
Var
[
Y (n)

]
=
√
λ(j,j)

√
λ(n,n),

so in this case the n-th column of Λ is zero. Consequently, since the mean vector µ
is by assumption proportional to the last column of Λ, it follows that in this case
µ = 0. But for µ = 0 the conditional law of Y given H = 0 is the same as given
H = 1, so Y is useless for guessing H, and any measurable function of Y , and a
fortiori its last component, forms a sufficient statistic (albeit also useless).

We next turn to the more interesting case where

λ(n,n) > 0. (26.127)

In this case we can write the assumption that µ is a scaled version of the last
column of Λ as

µ(j) = µ(n) λ
(j,n)

λ(n,n)
, j ∈ {1, . . . , n}. (26.128)

We need to show that, irrespective of the prior on H, (26.128) implies that

H(−−Y (n)(−−Y (26.129)

forms a Markov chain or, equivalently, that

H(−−Y (n)(−−R (26.130)

forms a Markov chain, where R is the random (n− 1)-vector of components

R(j) = Y (j) − λ(j,n)

λ(n,n)
Y (n), j ∈ {1, . . . , n− 1}. (26.131)

(Conditional on Y (n), we have that Y (n) is deterministic, so R(j) and Y (j) only
differ by a deterministic constant.) Thus, we need to show that R is irrelevant for
guessing H based on Y (n). This we prove using Proposition 22.5.5 by showing that
Y (n) and R are conditionally independent given H

Y (n)(−−H(−−R (26.132)

and that H and R are independent.

We begin by proving (26.132). We first note that, conditional on H = 0, the vector(
R(1), . . . , R(n−1), Y (n)

)T
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is Gaussian, because it is the result of linearly transforming the vector Y, which,
conditional on H = 0, is Gaussian (Proposition 23.6.3). Also, conditional on
H = 0, we have that Y (n) is uncorrelated with the components of R because

Cov
[
Y (n), R(j)

∣∣∣ H = 0
]

= Cov

[
Y (n), Y (j) − λ(j,n)

λ(n,n)
Y (n)

∣∣∣∣ H = 0
]

= Cov
[
Y (n), Y (j)

∣∣∣ H = 0
]
− λ(j,n)

λ(n,n)
Cov

[
Y (n), Y (n)

∣∣∣ H = 0
]

= λ(j,n) − λ(j,n)

λ(n,n)
λ(n,n)

= 0, j ∈ {1, . . . , n− 1}.

By Corollary 23.6.9, we conclude that, conditional on H = 0, we have that Y (n) is
independent of R. Repeating this argument for the case where the conditioning is
on H = 1 proves (26.132).

We next verify that R and H are independent. We do so by showing that the
conditional distribution of R given H = 0 is identical to its conditional distribution
given H = 1. Since under both conditionings R is Gaussian, it suffices to show
that the conditional covariance of R given H = 0 is the same as given H = 1 and
similarly for the mean. To show that the covariances are the same is easy, because
the conditional covariance of R is determined by Λ, which is the same under the
two hypotheses. As to the mean we have

E
[
R(j)

∣∣∣H = 0
]

= E

[
Y (j) − λ(j,n)

λ(n,n)
Y (n)

∣∣∣∣H = 0
]

= E
[
Y (j)

∣∣∣H = 0
]
− λ(j,n)

λ(n,n)
E
[
Y (n)

∣∣∣H = 0
]

= µ(j) − λ(j,n)

λ(n,n)
µ(n)

= 0, j ∈ {1, . . . , n− 1},

where the last equality follows from (26.128). Similarly, under H = 1 we have

E
[
R(j)

∣∣∣H = 1
]

= E

[
Y (j) − λ(j,n)

λ(n,n)
Y (n)

∣∣∣∣H = 1
]

= E
[
Y (j)

∣∣∣H = 1
]
− λ(j,n)

λ(n,n)
E
[
Y (n)

∣∣∣H = 1
]

= −µ(j) − λ(j,n)

λ(n,n)
(−µ(n))

= 0, j ∈ {1, . . . , n− 1},

thus establishing that the mean of R does not depend on H either.

Having established that R and H are independent, it now follows from the con-
ditional independence of Y (n) and R given H (26.132) that R is irrelevant for
guessing H based on Y (n) (Proposition 22.5.5).
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26.15 Exercises

Exercise 26.1 (Reducing the Number of Matched Filters). We saw in Section 26.4 how to
obtain a d-dimensional sufficient statistics vector, where d is the dimension of the linear
subspace spanned by the mean signals (26.17). Show that, given any integrable signal s0

that is bandlimited to W Hz, we can find a d′-dimensional sufficient statistics vector,
where

d′ = Dim
(
span(s1 − s0, . . . , sM − s0)

)
.

Show that d′ is sometimes smaller than d.

Exercise 26.2 (Nearest-Neighbor Decoding Revisited). The form of the decoder in The-
orem 26.6.3 (ii) is different from the nearest-neighbor rule of Proposition 21.6.1 (ii).
Why does minimizing ‖Y − sm‖2 not make mathematical sense in the setting of The-
orem 26.6.3?

Exercise 26.3 (Proving Sufficiency). In Section 26.8.3 we sketched an argument for the
sufficiency of the vector in (26.57). Fill in the details.

Exercise 26.4 (Minimum Shift Keying). Let the signals s0, s1 be given at every t ∈ R by

s0(t) =

√
2Es

Ts
cos(2πf0t) I{0 ≤ t ≤ Ts}, s1(t) =

√
2Es

Ts
cos(2πf1t) I{0 ≤ t ≤ Ts}.

(i) Compute the energies ‖s0‖22 , ‖s1‖22 . You may assume that f1Ts � 1 and f2Ts � 1.

(ii) Under what conditions on f0, f1, and Ts are s0 and s1 orthogonal?

(iii) Assume that the parameters are chosen as in Part (ii). Let H take on the values 0
and 1 equiprobably, and assume that, conditional on H = ν, the time-t received
waveform is sν(t) + N(t) where

(
N(t)

)
is white Gaussian noise of double-sided

PSD N0/2 with respect to the bandwidth of interest, and ν ∈ {0, 1}. Find an
optimal rule for guessing H based on the received waveform.

(iv) Compute the optimal probability of error.

Exercise 26.5 (Signaling in White Gaussian Noise). Let the RV M take value in the set
M = {1, 2, 3, 4} uniformly. Conditional on M = m, the observed waveform

(
Y (t)

)
is

given at every time t ∈ R by sm(t) +N(t), where the signals s1, s2, s3, s4 are given by

s1(t) = A I{0 ≤ t ≤ T}, s2(t) = A I{0 ≤ t ≤ T/2} −A I{T/2 < t ≤ T},
s3(t) = 2A I{0 ≤ t ≤ T/2}, s4(t) = −A I{0 ≤ t ≤ T/2}+ A I{T/2 < t ≤ T},

and where
(
N(t)

)
is white Gaussian noise of PSD N0/2 over the bandwidth of interest.

(Ignore the fact that the signals are not bandlimited.)

(i) Derive the MAP rule for guessing M based on
(
Y (t)

)
.

(ii) Use the Union-of-Events Bound to upper bound pMAP(error|M = 3). Are all the
terms in the bound needed?

(iii) Compute pMAP(error|M = 3) exactly.

(iv) Show that by subtracting a waveform s∗ from each of the signals s1, s2, s3, s4, we
can reduce the average transmitted energy without degrading performance. What
waveform s∗ should be subtracted to minimize the transmitted energy?
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Exercise 26.6 (QPSK). Let the IID random bits D1 and D2 be mapped to the symbols
X1, X2 according to the rule

(0, 0) 7→ (1, 0), (0, 1) 7→ (−1, 0), (1, 0) 7→ (0, 1), (1, 1) 7→ (0,−1).

The received waveform
(
Y (t)

)
is given by

Y (t) = AX1 φ1(t) + AX2 φ2(t) +N(t), t ∈ R,

where A > 0, the signals φ1,φ2 are orthonormal integrable signals that are bandlimited
to W Hz, and the SP

(
N(t)

)
is independent of (D1, D2) and is white Gaussian noise of

PSD N0/2 with respect to the bandwidth W.

(i) Find an optimal rule for guessing (D1, D2) based on
(
Y (t)

)
.

(ii) Find an optimal rule for guessing D1 based on
(
Y (t)

)
.

(iii) Compare the rule that you have found in Part (ii) with the rule that guesses that D1

is the first component of the tuple produced by the decoder that you have found
in Part (i). Evaluate the probability of error for both rules.

(iv) Repeat when (D1, D2) are mapped to (X1, X2) according to the rule

(0, 0) 7→ (1, 0), (0, 1) 7→ (0, 1), (1, 0) 7→ (−1, 0), (1, 1) 7→ (0,−1).

Exercise 26.7 (Mismatched Decoding of Antipodal Signaling). Let the received wave-
form

(
Y (t)

)
be given at every t ∈ R by (1−2H) s(t)+N(t), where s is an integrable signal

that is bandlimited to W Hz,
(
N(t)

)
is white Gaussian noise of PSD N0/2 with respect

to the bandwidth W, and H takes on the values 0 and 1 equiprobably and independently
of
(
N(t)

)
. Let s′ be an integrable signal that is bandlimited to W Hz. A suboptimal

detector feeds the received waveform to a matched filter for s′ and guesses according to
the filter’s time-0 output: if it is positive, it guesses “H = 0,” and if it is negative, it
guesses “H = 1.” Express this detector’s probability of error in terms of s, s′, and N0.

Exercise 26.8 (Imperfect Automatic Gain Control). Let the received signal
(
Y (t)

)
be

given by

Y (t) = AX s(t) +N(t), t ∈ R,

where A > 0 is some deterministic positive constant, X is a RV that takes value in
the set {−3,−1,+1,+3} uniformly, s is an integrable signal that is bandlimited to W
Hz, and

(
N(t)

)
is white Gaussian noise of double-sided PSD N0/2 with respect to the

bandwidth W.

(i) Find an optimal rule for guessing X based on
(
Y (t)

)
.

(ii) Using the Q-function compute the optimal probability of error.

(iii) Suppose you use the rule you have found in Part (i), but the received signal is

Y (t) =
3

4
AX s(t) +N(t), t ∈ R.

(You were misinformed about the amplitude of the signal.) What is the probability
of error now?
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Exercise 26.9 (Positive Semidefinite Matrices).

(i) Let s1, . . . , sM be of finite energy. Show that the M × M matrix whose Row-j
Column-` entry is 〈sj , s`〉 is positive semidefinite.

(ii) Show that any M×M positive semidefinite matrix can be expressed in this form
with a proper choice of the signals s1, . . . , sM.

Exercise 26.10 (A Lower Bound on the Minimum Distance). Let s1, . . . , sM be equi-
energy signals of energy Es. Let

d̄2 ,
1

M(M− 1)

∑
m′

∑
m′′ 6=m′

‖sm′ − sm′′‖22

denote the average squared-distance between the signals.

(i) Justify the following bound on d̄:

d̄2 =
1

M(M− 1)

M∑
m′=1

M∑
m′′=1

‖sm′ − sm′′‖22

=
2M

M− 1
Es −

2M

M− 1

1

M2

M∑
m′=1

M∑
m′′=1

〈sm′ , sm′′〉

=
2M

M− 1
Es −

2M

M− 1

∥∥∥∥ 1

M

M∑
m=1

sm

∥∥∥∥2

2

≤ 2M

M− 1
Es.

(ii) Show that if, in addition, 〈sm′ , sm′′〉 = ρEs for all m′ 6= m′′ in {1, . . . ,M}, then

− 1

M− 1
≤ ρ ≤ 1.

(iii) Are equalities possible in the above bounds?

Exercise 26.11 (Generalizations of the Simplex). Let p∗(error; Es; ρ; M; N0) denote the
optimal probability of error for the setup of Section 26.2 for the case where the prior
on M is uniform and where

〈sm′ , sm′′〉 =

{
Es if m′ = m′′,

ρEs otherwise,
m′,m′′ ∈ {1, . . . ,M}.

Show that

p∗
(
error; Es; ρ; M; N0

)
= p∗

(
error; Es(1− ρ); 0; M; N0

)
, − 1

M− 1
≤ ρ ≤ 1.

Hint: You may need a different proof depending on the sign of ρ.

Exercise 26.12 (Decoding the Simplex without Gain Control). Let the simplex constel-
lation s1, . . . , sM be constructed from the orthonormal signals φ1, . . . ,φM as in Sec-
tion 26.11.4. In that section we proposed to decode by adding

1√
M− 1

√
Esψ
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to the received signal Y and then feeding the result to a decoder that was designed for
the orthogonal signals

s1 +
1√

M− 1

√
Esψ, . . . , sM +

1√
M− 1

√
Esψ.

Here ψ is any signal that is orthogonal to the signals {s1, . . . , sM}. Show that feeding the
signal Y+αψ to the above orthogonal-keying decoder also results in an optimal decoding
rule, irrespective of the value of α ∈ R.

Exercise 26.13 (Pretending the Noise Is White). Let H take on the values 0 and 1
equiprobably, and let the received waveform

(
Y (t)

)
be given at time t by

Y (t) = (1− 2H) s(t) +N(t),

where s : t 7→ I{0 ≤ t ≤ 1}, and where the SP
(
N(t)

)
is independent of H and is a

measureable, centered, stationary, Gaussian SP of autocovariance function

KNN (τ) =
1

4α
e−|τ |/α, τ ∈ R,

where 0 < α <∞ is some deterministic real parameter. Compute the probability of error
of a detector that guesses “H = 0” whenever∫ 1

0

Y (t) dt ≥ 0.

To what does this probability of error converge when α tends to zero?

Exercise 26.14 (Antipodal Signaling in Colored Noise). Let s be an integrable signal that
is bandlimited to W Hz, and let H take on the values 0 and 1 equiprobably. Let the time-t
value of the received signal

(
Y (t)

)
be given by (1 − 2H) s(t) + N(t), where

(
N(t)

)
is a

measurable, centered, stationary, Gaussian SP of autocovariance function KNN . Assume
that H and

(
N(t)

)
are independent, and that KNN can be whitened with respect to the

bandwidth W. Find the optimal probability of error in guessing H based on
(
Y (t)

)
.

Exercise 26.15 (Modeling Artifacts). Let H take on the values 0 and 1 equiprobably, and
let the received signal

(
Y (t)

)
be given by

Y (t) = (1− 2H) s(t) +N(t), t ∈ R,

where s : t 7→ I{0 ≤ t ≤ 1} and the SP
(
N(t)

)
is independent of H and is a measurable,

centered, stationary, Gaussian SP of autocovariance function

KNN (τ) = α e−τ
2/β , τ ∈ R,

for some α, β > 0.

Argue heuristically that—irrespective of the values of α and β—for any ε > 0 we can find
a rule for guessing H based on

(
Y (t)

)
whose probability of error is smaller than ε.

Hint: Study ŝ(f) and SNN (f) at high frequencies f .
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Exercise 26.16 (Measurability in Theorem 26.3.2).

(i) Let
(
N(t)

)
be white Gaussian noise of double-sided PSD N0/2 with respect to the

bandwidth W. Let R be a unit-mean exponential RV that is independent of
(
N(t)

)
.

Define the SP
Ñ(t) = N(t) I{t 6= R}, t ∈ R.

Show that
(
Ñ(t)

)
is white Gaussian noise of double-sided PSD N0/2 with respect

to the bandwidth W.

(ii) Let s be a nonzero integrable signal that is bandlimited to W Hz. To be concrete,

s(t) = sinc2(Wt), t ∈ R.

Suppose that the SP
(
N(t)

)
is as above and that for every ω ∈ Ω the sample-path

t 7→ N(ω, t) is continuous. Construct
(
Ñ(t)

)
as above. Suppose you wish to test

whether you are observing s or −s in the additive noise
(
Ñ(t)

)
. Show that you can

guess with zero probability of error by finding an epoch where the observed SP is
discontinuous and by comparing the value of the received signal at that epoch to
the value of s. (This does not violate Theorem 26.3.2 because this decision rule is
not measurable with respect to the Borel σ-algebra generated by the observed SP.)



Chapter 27

Noncoherent Detection and Nuisance
Parameters

27.1 Introduction and Motivation

In this chapter we discuss a problem that arises in noncoherent detection. To mo-
tivate the problem, consider a setup where a transmitter sends one of two different
passband waveforms

t 7→ 2 Re
(
s0,BB(t) ei2πfct

)
or t 7→ 2 Re

(
s1,BB(t) ei2πfct

)
,

where s0,BB and s1,BB are integrable baseband signals that are bandlimited to W/2
Hz, and where the carrier frequency fc satisfies fc > W/2. To motivate our problem
it is instructive to consider the case where

fc �W. (27.1)

(In wireless communications it is common for fc to be three orders of magnitude
larger than W.) Let X(t) denote the transmitted waveform at time t. Suppose
that the received waveform

(
Y (t)

)
is a delayed version of the transmitted waveform

corrupted by white Gaussian noise of PSD N0/2 with respect to the bandwidth W

around the carrier frequency fc (Definition 25.15.3):

Y (t) = X(t− tD) +N(t), t ∈ R,

where tD denotes the delay (typically proportional to the distance between the
transmitter and the receiver) and

(
N(t)

)
is the additive noise. Suppose further

that the receiver estimates the delay to be t′D and moves its clock back by defining

t′ , t− t′D. (27.2)

If Ỹ (t′) is what the receiver receives when its clock shows t′, then by (27.2)

Ỹ (t′) = Y (t′ + t′D)
= X(t′ + t′D − tD) +N(t′ + t′D)

= X(t′ + t′D − tD) + Ñ(t′), t′ ∈ R,

613
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where Ñ(t′) , N(t′ + t′D) and is thus, by the stationarity of
(
N(t)

)
, also white

Gaussian noise of PSD N0/2 with respect to the bandwidth W around fc. The
term X(t′ + t′D − tD) can be more explicitly written for every t′ ∈ R as

X(t′ + t′D − tD) = 2 Re
(
sν,BB(t′ + t′D − tD) ei2πfc(t

′+t′D−tD)
)
, (27.3)

where ν is either zero or one, depending on which waveform is sent.

We next argue that if ∣∣t′D − tD∣∣� 1
W
, (27.4)

then
sν,BB(t′ + t′D − tD) ≈ sν,BB(t′), t′ ∈ R. (27.5)

This can be seen by considering a Taylor Series expansion for sν,BB(·) around t′

sν,BB(t′ + t′D − tD) ≈ sν,BB(t′) +
dsν,BB(τ)

dτ

∣∣∣∣
τ=t′

(
t′D − tD

)
and by then using Bernstein’s Inequality (Theorem 6.7.1) to heuristically argue that
the derivative of the baseband signal is of order of magnitude W, so its product by
the timing error is, by (27.4), negligible.

From (27.3) and (27.5) we obtain that, as long as (27.4) holds,

X(t′ + t′D − tD) ≈ 2 Re
(
sν,BB(t′) ei2πfc(t

′+t′D−tD)
)

= 2Re
(
sν,BB(t′) ei(2πfct

′+θ)
)
, t′ ∈ R, (27.6a)

where
θ = 2πfc(t′D − tD) mod [−π, π). (27.6b)

(Recall that ξ mod [−π, π) is the element in the interval [−π, π) that differs from ξ
by an integer multiple of 2π.) Note that even if (27.4) holds, the term 2πfc(t′D−tD)
may be much larger than 1 when fc �W.

We conclude that if the error in estimating the delay is negligible compared to the
reciprocal of the signal bandwidth but significantly larger than the reciprocal of
the carrier frequency, then the received waveform can be modeled as

Ỹ (t′) = 2 Re
(
sν,BB(t′) ei(2πfct

′+θ)
)

+ Ñ(t′), t′ ∈ R, (27.7)

where the receiver needs to determine whether ν is equal to zero or one;
(
Ñ(t′)

)
is additive white Gaussian noise of PSD N0/2 with respect to the bandwidth W

around fc; and where the phase θ is unknown to the receiver. Since the phase is
unknown to the receiver, the detection is said to be noncoherent. In the statistics
literature an unknown parameter such as θ is called a nuisance parameter.

It would make engineering sense to ask for a decision rule for guessing ν based
on
(
Ỹ (t′)

)
that would work well irrespective of the value of θ, but this is not the

question we shall ask. This question is related to “composite hypothesis testing,”
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which is not treated in this book.1 Instead we shall adopt a probabilistic approach.
We shall assume that θ is a random variable—and therefore henceforth denote it
by Θ and its realization by θ—that is uniformly distributed over the interval [−π, π)
independently of the noise and the message, and we shall seek a decision rule that
has the smallest average probability of error. Thus, if we denote the probability
of error conditional on Θ = θ by p(error|θ), then we seek a decision rule based
on
(
Ỹ (t)

)
that minimizes

1
2π

∫ π

−π
p(error|θ) dθ. (27.8)

The conservative reader may prefer to minimize the probability of error on the
“worst case θ”

sup
θ∈[−π,π)

p(error|θ) (27.9)

but, miraculously, it will turn out that the decoder we shall derive to minimize (27.8)
has a conditional probability of error p(error|θ) that does not depend on the real-
ization θ so, as we shall see in Section 27.7, our decoder also minimizes (27.9).

27.2 The Setup

We next define our hypothesis testing problem. We denote time by t and the
received waveform by

(
Y (t)

)
(even though in the scenario we described in Sec-

tion 27.1 these correspond to t′ and
(
Ỹ (t′)

)
, i.e., to the time coordinate and to the

corresponding signal at the receiver). We denote the RV we wish to guess by H
and assume a uniform prior:

Pr[H = 0] = Pr[H = 1] =
1
2
. (27.10)

For each ν ∈ {0, 1} the observation
(
Y (t)

)
is, conditionally on H = ν, a SP of the

form
Y (t) = Sν(t) +N(t), t ∈ R, (27.11)

where
(
N(t)

)
is white Gaussian noise of positive PSD N0/2 with respect to the

bandwidth W around the carrier frequency fc (Definition 25.15.3), and where Sν(t)
can be described as

Sν(t) = 2 Re
(
sν,BB(t) ei(2πfct+Θ)

)
= 2Re

(
sν,BB(t) ei2πfct

)
cos Θ− 2 Im

(
sν,BB(t) ei2πfct

)
sinΘ

= 2Re
(
sν,BB(t) ei2πfct

)
cos Θ + 2Re

(
i sν,BB(t) ei2πfct

)
sinΘ

= sν,c(t) cos Θ + sν,s(t) sinΘ, t ∈ R, (27.12)

where Θ is a RV that is uniformly distributed over the interval [−π, π) indepen-
dently of

(
H,
(
N(t)

))
, and where we define for ν ∈ {0, 1}

sν,c(t) , 2 Re
(
sν,BB(t) ei2πfct

)
, t ∈ R, (27.13a)

sν,s(t) , 2 Re
(
i sν,BB(t) ei2πfct

)
, t ∈ R. (27.13b)

1See, for example, (Lehmann and Romano, 2005, Chapter 3).
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Notice that by (27.13) and by the relationship between inner products in baseband
and passband (Theorem 7.6.10),

〈sν,c, sν,s〉 = 0, ν = 0, 1. (27.14)

We assume that the baseband signals s0,BB, s1,BB are integrable complex signals
that are bandlimited to W/2 Hz and that they are orthogonal:

〈s0,BB, s1,BB〉 = 0. (27.15)

Consequently, by (27.13) and Theorem 7.6.10,

〈s0,c, s1,c〉 = 〈s0,s, s1,c〉 = 〈s0,c, s1,s〉 = 〈s0,s, s1,s〉 = 0. (27.16)

We finally assume that the baseband signals s0,BB and s1,BB are of equal positive
energy:

‖s0,BB‖22 = ‖s1,BB‖22 > 0. (27.17)

Defining2

Es = 2 ‖s0,BB‖22 (27.18)

we have by the relationship between energy in baseband and passband (Theo-
rem 7.6.10)

Es = ‖S0‖22 = ‖S1‖22 = ‖s0,s‖22 = ‖s0,c‖22 = ‖s1,s‖22 = ‖s1,c‖22 . (27.19)

By (27.14), (27.16), and (27.18)

1√
Es

(
s0,c, s0,s, s1,c, s1,s

)
is an orthonormal 4-tuple. (27.20)

Our problem is to guess H based on the observation
(
Y (t)

)
.

27.3 A Sufficient Statistic

To derive an optimal guessing rule, we begin by deriving a sufficient statistic vector.
This vector takes value in R4 and enables us to simplify the guessing problem from
one where the observation consists of a SP to one where it consists of a random
4-vector. We shall later find an even more concise sufficient statistic vector with
only two components. We denote the sufficient statistic vector by T and its four
components by T0,c, T0,s, T1,c, and T1,s:

T =
(
T0,c, T0,s, T1,c, T1,s

)T
.

We denote its realization by t with corresponding components

t =
(
t0,c, t0,s, t1,c, t1,s

)T
.

2The “s” in Es stands for “signal,” whereas the “s” in s0,s and s1,s stands for “sine.”
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The vector T is defined by

T ,

(〈
Y,

s0,c√
Es

〉
,
〈
Y,

s0,s√
Es

〉
,
〈
Y,

s1,c√
Es

〉
,
〈
Y,

s1,s√
Es

〉)T

(27.21)

=
1√
Es

(∫ ∞

−∞
Y (t) s0,c(t) dt, . . . ,

∫ ∞

−∞
Y (t) s1,s(t) dt

)T

. (27.22)

We now prove that it forms a sufficient statistic for guessing H based on the
observation

(
Y (t)

)
. It is interesting to note that this sufficiency also holds for Θ

of arbitrary distribution (not necessarily uniform) provided that the pair (H,Θ) is
independent of the additive noise. Moreover, it holds even if the baseband signals
s0,BB and s1,BB are not orthogonal.

Before proving the sufficiency of T we give a plausibility argument. To that end we
consider a new (hypothetical) scenario where Θ, rather than being uniform, now
takes value in a finite set {θ1, . . . , θκ} according to some arbitrary distribution.
Suppose further that rather than just being interested in H we also wish to guess
the value of Θ. Thus, rather than just guessing H we wish to guess the pair (H,Θ),
which takes value in the set{

(0, θ1), (1, θ1), (0, θ2), (1, θ2), . . . , (0, θκ), (1, θκ)
}
.

In this new scenario we have for every ν ∈ {0, 1} and every η ∈ {1, . . . , κ} that,
conditional on (H,Θ) = (ν, θη), the observation

(
Y (t)

)
consists of the signal

t 7→ sν,c(t) cos θη+sν,s(t) sin θη corrupted by additive Gaussian noise
(
N(t)

)
. Since

for every such ν and η the signal t 7→ sν,c(t) cos θη + sν,s(t) sin θη can be written
as a linear combination of the signals s0,c, s0,s, s1,c, and s1,s, it follows from The-
orem 26.4.1 that in this new scenario T forms a sufficient statistic for guessing
the pair (H,Θ) based on

(
Y (t)

)
. But what if we are only interested in guess-

ing H? Guessing H in this scenario reduces to guessing whether the pair (H,Θ)
is in the set {(0, θ1), (0, θ2), . . . , (0, θκ)} or in the set {(1, θ1), (1, θ2), . . . , (1, θκ)}.
Consequently, by Proposition 22.4.4, in the new scenario T is also sufficient for
guessing H. Since κ in this argument can be as large as we want, it is plausible
that T is also a sufficient statistic for guessing H in our original problem where Θ
is uniform over [−π, π).

The key to the above heuristic argument is that, irrespective of the realization of Θ
and of the value of ν, the signal Sν lies in the four dimensional subspace spanned
by the signals s0,c, s0,s, s1,c, and s1,s. The sufficiency thus follows from a more
general theorem that we state next.

Theorem 27.3.1 (White Gaussian Noise with Nuisance Parameters). Let V be a
d-dimensional subspace of the set of all integrable signals that are bandlimited to W

Hz, and let (φ1, . . . ,φd) be an orthonormal basis for V. Let the RV M take value
in a finite set M. Suppose that, conditional on M = m, the SP

(
Y (t)

)
is given by

Y (t) =
d∑
`=1

A(`)φ`(t) +N(t), (27.23)
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where A = (A(1), . . . , A(d))T is a random d-vector whose law typically depends
on m, where the SP

(
N(t)

)
is white Gaussian noise with respect to the band-

width W, and where
(
N(t)

)
is independent of the pair (M,A). Then the vector

T =
(
〈Y,φ1〉 , . . . , 〈Y,φd〉

)T (27.24)

forms a sufficient statistic for guessing M based on
(
Y (t)

)
.

The theorem also holds in passband, i.e., if V is a d-dimensional subspace of the set
of all integrable signals that are bandlimited to W Hz around the carrier frequency fc
and if

(
N(t)

)
is white with respect to the bandwidth W around fc.

Note 27.3.2. Theorem 27.3.1 continues to hold even if (φ1, . . . ,φd) are not or-
thonormal; it suffices that they form a basis for V.

Proof of Note 27.3.2. This follows from Proposition 22.4.2 and from the obser-
vation that if (u1, . . . ,ud) forms a basis for V and if (v1, . . . ,vd) forms another
basis for V, then the inner products {〈Y,v`〉}d`=1 are computable from the inner
products {〈Y,u`〉}d`=1 (Lemma 25.10.3).

Before presenting the proof of Theorem 27.3.1 we give two examples of its ap-
plication. The first is a simple case where, conditional on M , the vector A is
deterministic. This corresponds to the problem of detecting a known signal cor-
rupted by additive white Gaussian noise. This case was treated in Theorem 26.4.1
and slightly generalized in Corollary 26.4.2. We thus see that Theorem 27.3.1 is a
generalization of Theorem 26.4.1 & Corollary 26.4.2.3

The second example of the application of this theorem is for the noncoherent de-
tection problem at hand. Here d = 4 and

V = span(s0,c, s0,s, s1,c, s1,s), (27.25)

with φ1 , s0,c/
√

Es, φ2 , s0,s/
√

Es, φ3 , s1,c/
√

Es, and φ4 , s1,s/
√

Es. We note
that, conditional on H = 0, the received waveform

(
Y (t)

)
can be written in the

form (27.23) where A(3) & A(4) are deterministically zero and the pair
(
A(1), A(2)

)
is uniformly distributed over the unit circle:(

A(1)
)2 +

(
A(2)

)2 = 1.

Similarly, conditional on H = 1, the random variables A(1) and A(2) are determin-
istically zero and the pair

(
A(3), A(4)

)
is uniformly distributed over the unit circle.

Thus, once we prove Theorem 27.3.1, it will follow that the vector in (27.22) forms
a sufficient statistic.

Proof of Theorem 27.3.1. To derive the sufficiency of T we need to show that for
every η ∈ N and any choice of the epochs t1, . . . , tη ∈ R the random vector T forms

3The setup of Corollary 26.4.2 may appear slightly more general than our setting because
the signals s̃1, . . . , s̃n are not assumed to be orthonormal. But, using the linearity of the inner
product (Lemma 25.10.3), it is readily seen that from the inner products (27.24) one can compute
the inner products {〈Y, s̃j〉}nj=1 and vice versa.
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a sufficient statistic for guessing M based on
(
Y (t1), . . . , Y (tη),T

)
. That is, we

need to show that, irrespective of the prior distribution of M ,

M(−−T(−−
(
Y (t1), . . . , Y (tη)

)
. (27.26)

Define the random variables

Ỹ (tκ) , Y (tκ)−
d∑
`=1

φ`(tκ) 〈Y,φ`〉 (27.27)

= Y (tκ)−
d∑
`=1

φ`(tκ)T (`), κ = 1, . . . , η (27.28)

and stack them in a vector Ỹ , (Ỹ (t1), . . . , Ỹ (tη))T. Since, conditional on T, the
random variables Y (tκ) and Ỹ (tκ) only differ by a constant (which depends on T),
it follows that to prove (27.26) it suffices to prove

M(−−T(−−Ỹ. (27.29)

Instead of proving (27.29), we shall prove

(M,A)(−−T(−−Ỹ, (27.30)

which implies (27.29). (If the pair (X,Y ) is independent of Z, then X is indepen-
dent of Z. Likewise if we condition on T : if conditional on T the pair (X,Y ) is
independent of Z, then conditional on T we also have that X is independent of Z.)

By Proposition 22.5.5 it follows that to establish (27.30) it suffices to show that

Ỹ is independent of (M,A) (27.31)

and
T(−−(M,A)(−−Ỹ. (27.32)

We first prove (27.31) by showing that conditional on (M,A) = (m,a) the random
vector Ỹ is Gaussian with a mean vector and a covariance matrix that do not
depend on m and a. That conditional on (M,A) = (m,a) the random vector Ỹ is
Gaussian follows because under this conditioning T and Y (t1), . . . Y (tη) are jointly
Gaussian (Theorem 25.12.1) so the result of linearly transforming them to form Ỹ
must also be Gaussian (Proposition 23.6.3). For the mean we have from (27.27)

E
[
Ỹ (tκ)

∣∣ (M,A) = (m,a)
]

= E

[
Y (tκ)−

d∑
`=1

φ`(tκ) 〈Y,φ`〉
∣∣∣∣ (M,A) = (m,a)

]

= E
[
Y (tκ)

∣∣ (M,A) = (m,a)
]
−

d∑
`=1

φ`(tκ) E
[
〈Y,φ`〉

∣∣ (M,A) = (m,a)
]

=
d∑
`=1

a(`)φ`(tκ)−
d∑
`=1

φ`(tκ)
〈 d∑
`′=1

a(`′)φ`′ ,φ`

〉
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=
d∑
`=1

a(`)φ`(tκ)−
d∑
`=1

φ`(tκ) a(`)

= 0, κ ∈ {1, . . . , η},

where the first equality follows from the definition of Ỹ (tκ); the second from the
linearity of conditional expectation; the third because

(
N(t)

)
is of zero mean; and

the fourth from the orthonormality of (φ1, . . . ,φd). We thus conclude that for
every m ∈M and every a ∈ Rd,

E
[
Ỹ
∣∣ (M,A) = (m,a)

]
= 0. (27.33)

Likewise, the conditional covariance matrix of Ỹ given (M,A) = (m,a) does not
depend on the value of m and a: it is the covariance matrix of (N(t1), . . . , N(tη))T.
By establishing that, conditional on (M,A) = (m,a), the vector Ỹ has a multivari-
ate Gaussian distribution whose mean vector and covariance matrix do not depend
on (m,a) we have established (27.31).

We next prove (27.32). By Theorem 25.12.1, we have that, conditional on (M,A),
the random vectors T and Ỹ are jointly Gaussian. To establish that they are
conditionally independent given (M,A) it thus suffices to establish that they are
conditionally uncorrelated (Proposition 23.7.3). We now proceed to compute their
conditional covariance and show that it is zero. Since the conditional mean of Ỹ
is zero (27.33), it follows that we need to show that

E

[(
T (`) − E

[
T (`)

∣∣ (M,A) = (m,a)
])
Ỹ (tκ)

∣∣∣∣ (M,A) = (m,a)
]

= 0,

m ∈M, a ∈ Rd, ` ∈ {1, . . . , d}, κ ∈ {1, . . . , η}. (27.34)

Before embarking on this calculation, we make two preliminary algebraic ma-
nipulations. The first entails using (27.23), (27.24), and the orthonormality of
(φ1, . . . ,φd) to express T (`) as

T (`) = A(`) + 〈N,φ`〉 , ` = 1, . . . , d. (27.35)

This representation makes it clear that

T (`) − E
[
T (`)

∣∣ (M,A) = (m,a)
]

= 〈N,φ`〉 , ` = 1, . . . , d. (27.36)

The second manipulation involves rewriting Ỹ (tκ) using (27.23) and (27.27) as:

Ỹ (tκ) = Y (tκ)−
d∑

`′=1

φ`′(tκ)T (`′)

=
d∑

`′=1

A(`′)φ`′(tκ) +N(tκ)−
d∑

`′=1

φ`′(tκ)T (`′)

= N(tκ)−
d∑

`′=1

(
T (`′) −A(`′)

)
φ`′(tκ)

= N(tκ)−
d∑

`′=1

〈N,φ`′〉φ`′(tκ), κ ∈ {1, . . . , η}, (27.37)
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where the first equality follows from the definition of Ỹ (tκ) (27.27); the second
from (27.23); the third by rearranging terms; and the final equality from (27.35).

It follows from (27.36) and (27.37) that to establish (27.34) it suffices to show that
for every ` ∈ {1, . . . , d} and κ ∈ {1, . . . , η}

E

[
〈N,φ`〉

(
N(tκ)−

d∑
`′=1

〈N,φ`′〉φ`′(tκ)
)]

= 0. (27.38)

This follows from Proposition 25.15.2 and the orthonormality of (φ1, . . . ,φd):

E

[
〈N,φ`〉

(
N(tκ)−

d∑
`′=1

〈N,φ`′〉φ`′(tκ)
)]

= E
[
〈N,φ`〉N(tκ)

]
−

d∑
`′=1

φ`′(tκ)E
[
〈N,φ`〉 〈N,φ`′〉

]
=

N0

2
φ`(tκ)−

d∑
`′=1

φ`′(tκ)
N0

2
I{` = `′}

=
N0

2
φ`(tκ)−

N0

2
φ`(tκ)

= 0.

Combining (27.38) with (27.36) and (27.37) establishes (27.34), i.e., that for every
m ∈M, a ∈ Rd, ` ∈ {1, . . . , d}, and κ ∈ {1, . . . , η}

Cov
[
T (`), Ỹ (tκ)

∣∣∣ (M,A) = (m,a)
]

= 0. (27.39)

This combines with the conditional joint Gaussianity of vectors T and Ỹ given
(M,A) to establish (27.32). The combination of (27.32) and (27.31) implies
(27.30), which implies (27.29). Since (27.29) is equivalent to (27.26), this estab-
lishes the theorem for baseband signals.

For passband signals the proof is almost identical except that in deriving (27.38)
we use Note 25.15.4 instead of Proposition 25.15.2.

27.4 The Conditional Law of the Sufficient Statistic

Having established in the previous section that the vector T defined in (27.21)
forms a sufficient statistic for guessing H based on

(
Y (t)

)
, we next proceed to

calculate its conditional distribution given H. This will allow us to compute the
likelihood-ratio fT|H=0(t)/fT|H=1(t) and to thus obtain an optimal guessing rule.

Rather than computing the conditional distribution directly, we begin with the
simpler conditional distribution of T given (H,Θ). Conditional on (H,Θ), the
vector T is Gaussian (Theorem 25.12.1). Consequently, to compute its conditional
distribution we only need to compute its conditional mean vector and covariance
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matrix, which we proceed to do. Conditional on (H,Θ) = (ν, θ), the observed
process

(
Y (t)

)
can be expressed as

Y (t) = sν,c(t) cos θ + sν,s(t) sin θ +N(t), t ∈ R. (27.40)

Hence, since
(
N(t)

)
is of zero mean, we have from (27.22) and (27.20)

E
[
T
∣∣ (H,Θ) = (0, θ)

]
=
√

Es

(
cos θ, sin θ, 0, 0

)T

, (27.41a)

E
[
T
∣∣ (H,Θ) = (1, θ)

]
=
√

Es

(
0, 0, cos θ, sin θ

)T

, (27.41b)

as we next calculate. The calculation is a bit tedious because we need to compute
the conditional mean of each of four random variables conditional on each of two
hypotheses, thus requiring eight calculations, which are all very similar but not
identical. We shall carry out only one calculation:

E
[
T0,c

∣∣ (H,Θ) = (0, θ)
]

=
1√
Es

(
〈s0,c cos θ + s0,s sin θ, s0,c〉+ E[〈N, s0,c〉]

)
=

1√
Es

〈s0,c cos θ + s0,s sin θ, s0,c〉

=
1√
Es

(
‖s0,c‖22 cos θ + 〈s0,s, s0,c〉 sin θ

)
=
√

Es cos θ,

where the first equality follows from (27.40); the second because
(
N(t)

)
is of zero

mean (Proposition 25.10.1); the third from the linearity of the inner product and
by writing 〈s0,c, s0,c〉 as ‖s0,c‖22 ; and the final equality from (27.20).

We next compute the conditional covariance matrix of T given (H,Θ) = (ν, θ). By
the orthonormality (27.20) and the whiteness of the noise (Proposition 25.15.2) we
have that, irrespective of ν and θ, this conditional covariance matrix is given by
the 4× 4 matrix (N0/2)I4, where I4 is the 4× 4 identity matrix.

Using the explicit form of the Gaussian distribution (19.6) and defining

σ2 ,
N0

2
, (27.42)

we can thus write the conditional density as

fT|H=0,Θ=θ(t)

=
1

(2πσ2)2
exp
(
− 1

2σ2

((
t0,c −

√
Es cos θ

)2 +
(
t0,s −

√
Es sin θ

)2 + t21,c + t21,s

))
=

1
(2πσ2)2

exp
(
− Es

2σ2
− t0 + t1

2

)
× exp

( 1
σ2

√
Es t0,c cos θ +

1
σ2

√
Es t0,s sin θ

)
, t ∈ R4, (27.43)
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where the second equality follows by opening the squares, by using the identity
cos2 θ + sin2 θ = 1, and by defining

T0 ,
T 2

0,c + T 2
0,s

σ2
, t0 ,

t20,c + t20,s
σ2

, (27.44a)

T1 ,
T 2

1,c + T 2
1,s

σ2
, t1 ,

t21,c + t21,s
σ2

. (27.44b)

(We define T0 and T1 not only to simplify the typesetting but also for ulterior
motives that have to do with the further reduction of the sufficient statistic from
a random vector of four components to one with only two, namely, the vector
(T0, T1)T.)

To derive fT|H=0(t) (unconditioned on Θ) we can integrate out Θ. Thus, for every
t =

(
t0,c, t0,s, t1,c, t1,s

)T in R4

fT|H=0(t) =
∫ π

−π
fΘ|H=0(θ) fT|H=0,Θ=θ(t) dθ

=
∫ π

−π
fΘ(θ) fT|H=0,Θ=θ(t) dθ

=
1
2π

∫ π

−π
fT|H=0,Θ=θ(t) dθ

=
1

(2πσ2)2
e−Es/(2σ

2) e−t1/2 e−t0/2

× 1
2π

∫ π

−π
exp

(
1
σ2

√
Es t0,c cos θ +

1
σ2

√
Es t0,s sin θ

)
dθ

=
1

(2πσ2)2
e−Es/(2σ

2) e−(t0+t1)/2

× 1
2π

∫ π

−π
exp

(√
Es

σ2

√
t0 cos

(
θ − tan−1(t0,s/t0,c)

))
dθ

=
1

(2πσ2)2
e−Es/(2σ

2) e−(t0+t1)/2

× 1
2π

∫ π−tan−1(t0,s/t0,c)

−π−tan−1(t0,s/t0,c)

exp

(√
Es

σ2

√
t0 cosψ

)
dψ

=
1

(2πσ2)2
e−Es/(2σ

2) e−(t0+t1)/2
1
2π

∫ π

−π
exp

(√
Es

σ2

√
t0 cosψ

)
dψ

=
1

(2πσ2)2
e−Es/(2σ

2) e−(t1+t0)/2 I0

(√
Es

σ2

√
t0

)
, (27.45)

where the first equality follows by averaging out Θ; the second because Θ and H
are independent; the third because Θ is uniform; the fourth by the explicit form of
fT|H=0,Θ=θ(t) (27.43); the fifth by the trigonometric identity

α cos θ + β sin θ =
√
α2 + β2 cos

(
θ − tan−1(β/α)

)
; (27.46)
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the sixth by the change of variable ψ , θ − tan−1(t0,s/t0,c); the seventh from
the periodicity of the cosine function; and the final equality by recalling that the
zeroth-order modified Bessel function I0(·) is defined by

I0(ξ) ,
1
2π

∫ π

−π
eξ cosφ dφ (27.47)

=
1
π

∫ π

0

eξ cosφ dφ

=
1
π

∫ π/2

0

(
eξ cosφ + e−ξ cosφ

)
dφ, ξ ∈ R. (27.48)

By symmetry,

fT|H=1(t) =
1

(2πσ2)2
e−Es/(2σ

2) e−(t0+t1)/2 I0

(√
Es

σ2

√
t1

)
, t ∈ R4. (27.49)

27.5 An Optimal Detector

By (27.45) and (27.49), the likelihood-ratio is given by

fT|H=0(t)
fT|H=1(t)

=
I0

(√
Es
σ2

√
t0

)
I0

(√
Es
σ2

√
t1

) , t ∈ R4, (27.50)

which is computable from t0 and t1. This proves that the pair (T0, T1) defined in
(27.44) forms a sufficient statistic for guessing H based on T (Definition 20.12.2).
Having identified (T0, T1) as a sufficient statistic, we now proceed to derive an
optimal decision rule using two different methods. The first method, which is
summarized in (20.79), ignores the fact that (T0, T1) is sufficient and proceeds to
base the decision on the likelihood-ratio of T (27.50). The second method, which
is summarized in (20.80), bases the decision on the likelihood-ratio of the pair
(T0, T1).

Method 1: Since we assumed a uniform prior (27.10), an optimal decision rule
is to guess “H = 0” whenever fT|H=0(t)/fT|H=1(t) ≥ 1, which, by (27.50) is
equivalent to

Guess “H = 0” if I0

(√
Es

σ2

√
t0

)
≥ I0

(√
Es

σ2

√
t1

)
. (27.51)

This rule can be further simplified by noting that I0(ξ) is (strictly) increasing in ξ
for ξ ≥ 0. (This can be verified by computing the derivative from (27.48)

d I0(ξ)
dξ

=
1
π

∫ π/2

0

cosφ
(
eξ cosφ − e−ξ cosφ

)
dφ
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and by noting that for ξ > 0 the integrand is positive for all φ ∈ (0, π/2).) Conse-
quently, the function ξ 7→ I0

(√
ξ
)

is also (strictly) increasing and the guessing rule
(27.51) is thus equivalent to the rule

Guess “H = 0” if t0 ≥ t1. (27.52)

In terms of the observable
(
Y (t)

)
this can be paraphrased using (27.44) and (27.22)

as guessing “H = 0” whenever(∫ ∞

−∞
Y (t) Re

(
s0,BB(t) ei2πfct

)
dt
)2

+
(∫ ∞

−∞
Y (t) Re

(
i s0,BB(t) ei2πfct

)
dt
)2

≥
(∫ ∞

−∞
Y (t) Re

(
s1,BB(t) ei2πfct

)
dt
)2

+
(∫ ∞

−∞
Y (t) Re

(
i s1,BB(t) ei2πfct

)
dt
)2

.

Method 2: We next obtain the same result by considering the likelihood-ratio
function of the sufficient statistic (T0, T1)

fT0,T1|H=0(t0, t1)
fT0,T1|H=1(t0, t1)

.

We begin by arguing that, conditional on H = 0, the random variables T0, T1,
and Θ are independent with

fT0,T1,Θ|H=0(t0, t1, θ) =
1
2π

fχ2
2,λ1

(t0) fχ2
2,λ0

(t1), (27.53)

where fχ2
n,λ

(x) denotes the density at x of the noncentral χ2 distribution with n

degrees of freedom and noncentrality parameter λ (Section 19.8.2), and where

λ0 = 0 and λ1 =
Es

σ2
. (27.54)

To prove (27.53) we compute for every t0, t1 ∈ R and θ ∈ [−π, π)

fT0,T1,Θ|H=0(t0, t1, θ) = fΘ|H=0(θ) fT0,T1|H=0,Θ=θ(t0, t1)

=
1
2π

fT0,T1|H=0,Θ=θ(t0, t1)

=
1
2π

fT0|H=0,Θ=θ(t0) fT1|H=0,Θ=θ(t1)

=
1
2π

fχ2
2,λ1

(t0) fχ2
2,λ0

(t1),

where the first equality follows from the definition of the conditional density; the
second because Θ is independent of H and is uniformly distributed over the interval
[−π, π); the third because, conditional on (H,Θ) = (0, θ), the random variables
T0,c, T0,s, T1,c, T1,s are independent (Section 27.4), and because T0 is a function
of (T0,c, T0,s) whereas T1 is a function of (T1,c, T1,s) (see (27.44)); and the final
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equality follows because, conditional on (H,Θ) = (0, θ), the random variables
T0,c, T0,s, T1,c, T1,s are variance-σ2 Gaussians with means specified in (27.41a) (Sec-
tion 19.8.2).

Integrating out θ in (27.53) we obtain that, conditional on H, the random variables
T0 and T1 are independent with

fT0,T1|H=0(t0, t1) = fχ2
2,λ1

(t0) fχ2
2,λ0

(t1) (27.55a)

fT0,T1|H=1(t0, t1) = fχ2
2,λ0

(t0) fχ2
2,λ1

(t1), (27.55b)

where the expression for fT0,T1|H=1(t0, t1) is obtained using analogous steps.

Since H has a uniform prior, an optimal decision rule is thus to guess “H = 0”
whenever

fχ2
2,λ1

(t0) fχ2
2,λ0

(t1) ≥ fχ2
2,λ0

(t0) fχ2
2,λ1

(t1).

Since λ1 > λ0, this will hold, by Proposition 19.8.3, whenever t0 ≥ t1. And by the
same proposition the inequality

fχ2
2,λ1

(t0) fχ2
2,λ0

(t1) ≤ fχ2
2,λ0

(t0) fχ2
2,λ1

(t1)

will hold whenever t0 ≤ t1. It is thus optimal to guess “H = 0” whenever t0 ≥ t1
and to guess “H = 1” whenever t0 < t1. (It does not matter how we guess when
t0 = t1.) The decision rule (27.52) has thus been recovered.

27.6 The Probability of Error

In this section we compute the probability of error for the optimal guessing rule
(27.52). Since the probability of a tie (i.e., of T0 = T1) is zero both conditional on
H = 0 and conditional on H = 1, we shall analyze a slightly simpler guessing rule
that guesses “H = 0” if T0 > T1, and guesses “H = 1” if T1 > T0.

We begin with the conditional probability of error given that H = 0, i.e., with
Pr[T1 ≥ T0 |H = 0]. Conditional on H = 0, the question of whether our decoder
errs depends prima facie not only on the realization of the additive noise

(
N(t)

)
but also on the realization of Θ. But this is not the case because, conditionally on
H = 0, the pair (T0, T1) is independent of Θ (see (27.53)), so the realization of Θ
does not play a role in the sense that for every θ ∈ [−π, π)

Pr
[
T1 ≥ T0

∣∣H = 0,Θ = θ
]

= Pr
[
T1 ≥ T0

∣∣H = 0,Θ = 0
]
. (27.56)

Conditional on (H,Θ) = (0, θ) we have by (27.53) that T0 and T1 are independent
with T0 ∼ χ2

2,λ1
and with T1 ∼ χ2

2,λ0
, i.e., with T1 having a mean-2 exponential

distribution (Note 19.8.1)

fT1|H=0,Θ=θ(t1) =
1
2
e−

t1
2 , t1 ≥ 0.

Consequently, for every θ ∈ [−π, π) and ξ ≥ 0,

Pr
[
T1 ≥ ξ

∣∣H = 0,Θ = θ
]

=
∫ ∞

ξ

1
2
e−t/2 dt = e−ξ/2 . (27.57)
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Starting with (27.56) we now have for every θ ∈ [−π, π)

Pr
[
T1 ≥ T0

∣∣H = 0,Θ = θ
]

= Pr
[
T1 ≥ T0

∣∣H = 0,Θ = 0
]

=
∫ ∞

0

fT0|H=0,Θ=0(t0) Pr
[
T1 ≥ t0

∣∣H = 0,Θ = 0, T0 = t0
]
dt0

=
∫ ∞

0

fT0|H=0,Θ=0(t0) Pr
[
T1 ≥ t0

∣∣H = 0,Θ = 0
]
dt0

=
∫ ∞

0

fT0|H=0,Θ=0(t0) e−t0/2 dt0

= E
[
esT0

∣∣∣H = 0,Θ = 0
]∣∣∣
s=−1/2

= Mχ2
2,Es/σ2

(s)
∣∣∣
s=−1/2

=
1
2
e−

Es
4σ2 , (27.58)

where the first equality follows from (27.56); the second from (26.88); the third
because conditional on H = 0 (and Θ = 0) the random variables T0 and T1

are independent; the fourth from (27.57); the fifth by expressing
∫
fZ(z) g(z) dz as

E[g(Z)] (with g(·) the exponential function); the sixth by the definition of the MGF
(19.23) and because, conditional on H = 0 and Θ = 0, we have that T0 ∼ χ2

2,Es/σ2 ;
and the final equality from the explicit expression for the MGF of a χ2

2,Es/σ2 RV,
i.e., from (19.45) with the substitution n = 2 for the number of degrees of freedom,
λ = Es/σ

2 for the noncentrality parameter, and s = −1/2.

By symmetry we also have for every θ ∈ [−π, π)

Pr
[
T0 ≥ T1

∣∣H = 1,Θ = θ
]

=
1
2
e−

Es
4σ2 . (27.59)

Thus, if we denote by pMAP(error|Θ = θ) the conditional probability of error of
our decoder conditional on Θ = θ, then by the uniformity of the prior (27.10) and
by (27.58) & (27.59)

pMAP(error|Θ = θ)
= Pr[H = 0] pMAP(error|H = 0,Θ = θ) + Pr[H = 1] pMAP(error|H = 1,Θ = θ)

=
1
2

Pr
[
T1 ≥ T0

∣∣H = 0,Θ = θ
]
+

1
2

Pr
[
T0 ≥ T1

∣∣H = 1,Θ = θ
]

=
1
2
e−

Es
4σ2 , θ ∈ [−π, π). (27.60)

Integrating (27.60) over θ yields the optimal unconditional probability of error

p∗(error) =
1
2
e−

Es
4σ2 . (27.61)

Using (27.42), this can also be expressed as

p∗(error) =
1
2
e−

Es
2N0 . (27.62)
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27.7 Discussion

The detector we derived has the property that its error probability does not depend
on the realization of the nuisance parameter Θ; see (27.60). This property makes
the detector robust with respect to the distribution of Θ: since the conditional
probability of error does not depend on the realization of Θ, neither does the
average performance depend on the distribution of Θ. (Of course, if Θ is not
uniform, then our decoder need not be optimal.)

We next show that our guessing rule is also conservative in the sense that it mini-
mizes the worst-case performance:

sup
θ∈[−π,π)

p(error|Θ = θ).

That is, for any guessing rule of conditional error probability p′(error|Θ = θ)

sup
θ∈[−π,π)

p′(error|Θ = θ) ≥ sup
θ∈[−π,π)

pMAP(error|Θ = θ) =
1
2
e−

Es
4σ2 . (27.63)

Thus, while other decoders may outperform our decoder for some realizations of Θ,
for other realizations their probability of error will be at least as high. Indeed, if
p′(error|Θ = θ) is the conditional probability of error associated with any guessing
rule, then

sup
θ∈[−π,π)

p′(error|Θ = θ) ≥ 1
2π

∫ π

−π
p′(error|Θ = θ) dθ

≥ 1
2π

∫ π

−π
pMAP(error|Θ = θ) dθ

= sup
θ∈[−π,π)

pMAP(error|Θ = θ) dθ

= e−
Es
4σ2 ,

where the first inequality follows because the average (over θ) can never exceed the
supremum; the second inequality because the decoder we designed minimizes the
unconditional probability of error; and the last two equalities follow from (27.60),
i.e., from the fact that the conditional probability of error pMAP(error|Θ = θ) of
our decoder does not depend on θ and is equal to the RHS of (27.60).

It is interesting to assess the degradation in performance due to our ignorance
of Θ. To that end we now compare the performance of our detector with that
of the “coherent detector.” The coherent decoder is an optimal decoder for the
setting where the realization of Θ is known to the receiver, i.e., when the receiver
can form its guess based on both

(
Y (t)

)
and Θ. If the receiver knows Θ = θ, then it

can compute S0 and S1, and the problem reduces to the problem of deciding which
of two equi-energy orthogonal waveforms S0 and S1 is being observed in white
Gaussian noise (the binary version of the problem we discussed in Section 26.11.3).
An optimal decision rule would be

guess “H = 0” if
∫ ∞

−∞
Y (t)S0(t) dt >

∫ ∞

−∞
Y (t)S1(t) dt
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with resulting probability of error (see (26.93))

p∗coherent(error|Θ = θ) = Q
(
‖S0 − S1‖2 /2

σ

)
= Q

(√
Es

2σ2

)

≈ 1√
πEs/σ2

exp
(
− Es

4σ2

)
,

Es

σ2
� 1, (27.64)

where the approximation follows from (19.18). Integrating over θ we obtain

p∗coherent(error) ≈ 1√
πEs/σ2

exp
(
− Es

4σ2

)
,

Es

σ2
� 1. (27.65)

Comparing (27.65) with (27.61) we see that if Es/σ
2 is large, then we pay only

a small penalty for not knowing the phase.4 Of course, if the phase were known
precisely we mights have used antipodal signaling with the resulting probability of
error being lower; see (26.72).5

27.8 Extension to M ≥ 2 Signals

We next briefly address the M-ary version of the problem of noncoherent detec-
tion of orthogonal signals. We now denote the RV to be guessed by M and re-
place (27.10) with the assumption that M is uniformly distributed over the set
M = {1, . . . ,M}, where M ≥ 2. We wish to guess the value of M based on the
observation

(
Y (t)

)
(27.11), where ν now takes value in M and where the orthog-

onality conditions (27.15) & (27.18) are now written as

〈sν′,BB, sν′′,BB〉 =
1
2

Es I{ν′ = ν′′}, ν′, ν′′ ∈M. (27.66)

We first argue that the vector (
T1, . . . , TM

)T (27.67)

forms a sufficient statistic, where, in analogy to (27.44), we define

Tν =
T 2
ν,c + T 2

ν,s

σ2
, ν ∈M,

and where

Tν,c =
〈
Y,

sν,c√
Es

〉
and Tν,s =

〈
Y,

sν,s√
Es

〉
, ν ∈M.

To this end, we first note that it is enough that we show pairwise sufficiency
(Proposition 22.3.2). Pairwise sufficiency can be proved using Proposition 22.4.2

4Although p∗(error)/p∗coherent(error) tends to infinity, it does so only subexponentially.
5Comparing (26.93) and (26.72) we see that, to achieve the same probability of error, binary

orthogonal keying requires twice as much energy as antipodal signaling.
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because for every m′ 6= m′′ in M our analysis of the binary problem shows that
the tuple (Tm′ , Tm′′) forms a sufficient statistic for testing between m′ and m′′, and
this tuple is computable from the vector in (27.67).

Our analysis of the binary case shows that, after observing
(
Y (t)

)
, the a posteriori

probability of the event M = m is larger than the a posteriori distribution of the
event M = m′ whenever Tm > Tm′ . Consequently, Message m has the highest a
posteriori probability if Tm = maxm′∈M Tm′ . Thus, the decision rule

Guess “M = m” if Tm = max
m′∈M

Tm′ (27.68)

is optimal. The probability of a tie is zero, so it does not matter how ties are
resolved.

We next turn to the analysis of the probability of error. We shall assume that
a tie results in an error, so, conditional on M = m, an error occurs whenever
max{T1, . . . , Tm−1, Tm+1, . . . , TM} ≥ Tm. We first show that, as in the binary
case, the probability of error associated with this guessing rule depends neither on
the realization of Θ nor on the message, i.e., that for every m ∈M and θ ∈ [−π, π)

pMAP(error|M = m,Θ = θ) = pMAP(error|M = 1,Θ = 0). (27.69)

To see this note that, conditional on (M,Θ) = (m, θ), the components of the vec-
tor (27.67) are independent, with the m-th component being χ2

2,Es/σ2 and with the
other components being χ2

2,0. Consequently, irrespective of θ and m, the condi-
tional probability of error is the probability that a χ2

2,Es/σ2 RV is exceeded by, or
is equal to, at least one of M− 1 IID χ2

2,0 random variables that are independent
of it. In the analysis of the probability of error we shall thus assume that M = 1
and that θ = 0.

The probability that the maximum among the random variables T2, . . . , TM exceeds
or is equal to ξ is given for every ξ ≥ 0 by

Pr
[
max{T2, . . . , TM} ≥ ξ

∣∣M = 1,Θ = 0
]

= 1− Pr
[
max{T2, . . . , TM} < ξ

∣∣M = 1,Θ = 0
]

= 1− Pr
[
T2 < ξ, . . . , TM < ξ

∣∣M = 1,Θ = 0
]

= 1−
(
Pr
[
T2 < ξ

∣∣M = 1,Θ = 0
])M−1

= 1−
(
1− e−ξ/2

)M−1

= 1−
M−1∑
j=0

(−1)j
(

M− 1
j

)
e−jξ/2, (27.70)

where the first equality follows because the probabilities of an event and of its
complement sum to one; the second because the maximum is smaller than ξ if,
and only if, all the random variables are smaller than ξ; the third because, con-
ditionally on M = 1 and Θ = 0, the random variables T2, . . . , TM are IID; the
fourth because conditional on M = 1 and Θ = 0, the RV T2 is a mean-2 exponen-
tial (Note 19.8.1); and the final equality follows from the binomial formula (26.91)
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with the substitution a = 1, b = − e−ξ/2, and n = M− 1. The probability of error
is thus:

Pr
[
max{T2, . . . , TM} ≥ T1

∣∣M = 1,Θ = θ
]

= Pr
[
max{T2, . . . , TM} ≥ T1

∣∣M = 1,Θ = 0
]

=
∫ ∞

0

fT1|M=1,Θ=0(t1) Pr
[
max{T2, . . . , TM} ≥ t1

∣∣M = 1,Θ = 0, T1 = t1
]
dt1

=
∫ ∞

0

fT1|M=1,Θ=0(t1) Pr
[
max{T2, . . . , TM} ≥ t1

∣∣M = 1,Θ = 0
]
dt1

=
∫ ∞

0

fT1|M=1,Θ=0(t1)
(

1−
M−1∑
j=0

(−1)j
(

M− 1
j

)
e−jt1/2

)
dt1

= 1−
M−1∑
j=0

(−1)j
(

M− 1
j

)∫ ∞

0

fT1|M=1,Θ=0(t1) e−jt1/2 dt1

= 1−
M−1∑
j=0

(−1)j
(

M− 1
j

)
E
[
esT1

∣∣∣M = 1,Θ = 0
]∣∣∣∣
s=−j/2

= 1−
M−1∑
j=0

(−1)j
(

M− 1
j

)
Mχ2

2,Es/σ2
(s)
∣∣∣
s=−j/2

= 1−
M−1∑
j=0

(−1)j
(

M− 1
j

)
1

j + 1
e−

j
j+1

Es
2σ2 ,

where the justifications are very similar to the justifications of (27.58) except that
we use (27.70) instead of (27.57). Denoting the probability of error by p∗(error)
and noting that for j = 0 the summand is 1, we have

p∗(error) =
M−1∑
j=1

(−1)j+1

(
M− 1
j

)
1

j + 1
e−

j
j+1

Es
2σ2 , (27.71)

or, upon recalling that σ2 was defined in (27.42) as N0/2,

p∗(error) =
M−1∑
j=1

(−1)j+1

(
M− 1
j

)
1

j + 1
e−

j
j+1

Es
N0 . (27.72)

27.9 Exercises

Exercise 27.1 (The Conditional Law of the Sufficient Statistic). Conditional on M = m,
are the components of the random vector T in Theorem 27.3.1 independent? What about
conditional on (M,A) = (m,a) for m ∈M and a ∈ Rd?

Exercise 27.2 (A Silly Design Criterion). Let p̃(error|Θ = θ) denote the conditional
probability of error given Θ = θ of some decision rule for the setup of Section 27.2. Show



632 Noncoherent Detection and Nuisance Parameters

that

inf
−π≤θ<π

p̃(error|Θ = θ) ≥ Q

(√
Es

N0

)
.

Can you think of a detector that achieves this bound with equality? Would you recom-
mend using it?

Exercise 27.3 (A Coherent Detector for an Incoherent Channel). Alice designs a coherent
detector for the setup of Section 27.2 by pretending that Θ is deterministically equal to
zero and by then using the results on the detection of known signals in white Gaussian
noise. Show that if her detector is used over our channel where Θ ∼ U

(
[−π, π)

)
, then the

resulting average probability of error (averaged over Θ) is 1/2.

Exercise 27.4 (Noncoherent Antipodal Signaling). Show that if in the setup of Sec-
tion 27.2 the baseband signals s0,BB and s1,BB—rather than orthogonal—are antipodal
in the sense that s0,BB = −s1,BB, then the optimal probability of error is 1/2.

Exercise 27.5 (A Fading Scenario). Consider the setup of Section 27.2 but with (27.11)
replaced by Y (t) = ASν(t) + N(t), where A is a Rayleigh RV that is independent of(
H,Θ,

(
N(t)

))
. Find an optimal detector and the associated probability of error when A

is observed by the receiver. Repeat when A is unobserved.

Exercise 27.6 (Uniform Phase Noise Is the Worst Phase Noise). Consider the setup of
Section 27.2 but with Θ not necessarily uniformly distributed over [−π, π). Show that
the optimal probability of error is upper-bounded by the optimal probability of error
corresponding to the case where Θ ∼ U

(
[−π, π)

)
.

Exercise 27.7 (Unknown Frequency-Selective Channel). Let H take on the values 0 and 1
equiprobably, and let s be an integrable signal that is bandlimited to W Hz. When H = 0
the transmitted signal is s, and when H = 1 it is −s. Let U take on the values {up, down}
equiprobably and independently of H. When U = up the transmitted signal is passed
through a stable filter of impulse response hu; when U = down it is passed through a stable
filter of impulse response hd. At the receiver, white Gaussian noise

(
N(t)

)
of PSD N0/2

over the bandwidth W is added to the received signal. The noise is independent of (H,U).
Based on the received waveform

(
Y (t)

)
, the receiver wishes to guess H. The receiver has

no knowledge of the realization of the switch U .

(i) Find a two-dimensional sufficient statistic vector (T1, T2)
T for this problem.

(ii) Find a decision rule that minimizes the probability of error. Express your rule
using the function φ(x, y;σ2

x, σ
2
y, ρ), which is the value at the point (x, y) of the

joint density of the zero-mean jointly Gaussian random variables X, Y of variances
σ2
x and σ2

y and covariance E[XY ] = σxσyρ.

Exercise 27.8 (Noncoherent Detection with Two Antennas). Consider the setup of Sec-
tion 27.2 but with the signal now received at two antennas. Denote the received signals
by
(
Y1(t)

)
and

(
Y2(t)

)
Y1(t) = 2Re

(
sν,BB(t) ei(2πfct+Θ1)

)
+N1(t), t ∈ R,

Y2(t) = 2Re
(
sν,BB(t) ei(2πfct+Θ2)

)
+N2(t), t ∈ R,

where the additive white noises
(
N1(t)

)
and

(
N2(t)

)
at the two antennas are independent.
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(i) Suppose that the random phase at the two antennas Θ1 and Θ2 are unknown but
identical. Find an optimal detector and the optimal probability of error.

(ii) Assume now that Θ1 and Θ2 are independent. Find an optimal guessing rule for H.

Exercise 27.9 (Unknown Polarity). Consider the setup of Section 27.2 but with Θ now
taking on the values −π and 0 equiprobably.

(i) Find an optimal decision rule for guessing H.

(ii) Bob suggests accounting for the random phase as follows. Pretend that the trans-
mitted signal is drawn uniformly from the set {±s0,c,±s1,c} and that it is observed
in white Gaussian noise. Feed the received signal to an optimal receiver for guessing
which of these four signals is being observed in white Gaussian noise, and if the
receiver produces the guess “s0,c” or “−s0,c”, declare “H = 0”; otherwise declare
“H = 1”. Is Bob’s receiver optimal?

Exercise 27.10 (Additional Channel Randomness). Consider the setup of Section 27.2
but when the observed SP

(
Y (t), t ∈ R

)
, rather than being given by (27.11), is now given

by
Y (t) = Sν(t) +AN(t), t ∈ R,

where A is a positive RV that is independent of
(
H,Θ,

(
N(t)

))
. Find an optimal decision

rule when A is observed. Repeat when A is not observed.

Exercise 27.11 (Mismatched Noncoherent Detection). Suppose that the signal fed to
the detector of Section 27.5 is

2Re
(
uBB(t) ei(2πfct+Θ)

)
+N(t), t ∈ R,

where uBB is an integrable signal that is bandlimited to W/2 Hz and that is orthogonal
to s0,BB, and where the other quantities are as defined in Section 27.2. Compute the
probability that the detector produces the guess “H = 0.” Express your answer in terms
of the inner product 〈uBB, s1,BB〉, the energy in uBB, and N0.



Chapter 28

Detecting PAM and QAM Signals in White
Gaussian Noise

28.1 Introduction and Setup

In Chapter 26 we addressed the problem of detecting one of M bandwidth-W sig-
nals corrupted by additive Gaussian noise that is white with respect to the band-
width W. Except for assuming that the mean signals are integrable signals that
are bandlimited to W Hz, we made no assumptions about their structure. In this
chapter we study the implication of the results of Chapter 26 for Pulse Amplitude
Modulation, where the mean signals correspond to different possible outputs of a
PAM modulator. The conclusions we shall draw are extremely important to the
design of receivers for systems employing PAM.

The most important result of this chapter is that, loosely speaking, for PAM signals
contaminated by additive white Gaussian noise, the inner products between the
received waveform and the time shifts of the pulse shape by integer multiples of the
baud period Ts form a sufficient statistic. Thus, if we feed the received waveform to
a matched filter that is matched to the pulse shape defining the PAM signals, then
the matched filter’s outputs sampled at integer multiples of the baud period Ts

form a sufficient statistic (Theorem 5.8.2). Using this result we can reduce the
guessing problem from one with an observation consisting of a continuous-time
stochastic process to one with an observation consisting of a discrete-time SP.
In fact, since we shall only consider the problem of detecting a finite number of
data bits, the reduction will be to a finite number of random variables. This will
justify the canonical structure of a PAM receiver where the received continuous-
time waveform is fed to a matched filter whose sampled output is then used by the
decision circuitry to produce its guess. We shall derive the results first for PAM
and then briefly describe their extension to QAM in Section 28.5.

The setup we study is one where k data bits D1, . . . , Dk are mapped by an encoder
ϕ : {0, 1}k → Rn to the real symbols X1, . . . , Xn, which are then used to produce
the transmitted waveform

X(t) = A

n∑
`=1

X` g(t− `Ts), t ∈ R, (28.1)

634
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where A > 0 is a scaling constant; Ts > 0 is the baud period; and g(·) is the pulse
shape, which is assumed to be a real integrable signal that is bandlimited to W

Hz. The received waveform
(
Y (t)

)
is given by

Y (t) = X(t) +N(t)

= A

n∑
`=1

X` g(t− `Ts) +N(t), t ∈ R, (28.2)

where
(
N(t)

)
is white Gaussian noise of PSD N0/2 with respect to the band-

width W and is independent of the data bits D1, . . . , Dk and hence also of
(
X(t)

)
.

Based on the received waveform
(
Y (t)

)
we wish to guess the data bits D1, . . . , Dk.

To simplify the typesetting we shall stack the k data bits D1, . . . , Dk in a vector

D = (D1, . . . , Dk)T, (28.3)

stack the n symbols X1, . . . , Xn in a vector

X = (X1, . . . , Xn)T, (28.4)

and write
X = ϕ(D). (28.5)

We denote the transmitted waveform corresponding to the realization D = d by

x(t;d) = A

n∑
`=1

x` g(t− `Ts), t ∈ R, (28.6)

where (x1, . . . , xn)T = ϕ(d) is the real n-vector to which d is mapped by ϕ(·).
Thus, conditional on D = d,

Y (t) = x(t;d) +N(t), t ∈ R. (28.7)

28.2 Sufficient Statistic and Its Conditional Law

We can view the vector D = (D1, . . . , Dk)T as a message and view the 2k different
values it can take as the set of messages. To promote this view we define

D , {0, 1}k (28.8)

to be the set of all 2k binary k-tuples and view D as the set of possible messages.
While in Chapter 21 on multi-hypothesis testing we always denoted the set of
messages byM and assumed that its elements are the integers 1, . . . ,M, we never
attached a meaning to the “labels” we associated with the messages. So there is no
harm in now labeling the messages by the binary k-tuples. Associated with every
message d ∈ D is its prior πd

πd = Pr[D = d]
= Pr[D1 = d1, . . . , Dk = dk], d ∈ D. (28.9)
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If we assume that the data bits are IID random bits (Definition 14.5.1), then
πd = 2−k for every k-tuple d ∈ D, but this assumption is inessential to our
derivation of the sufficient statistic. (Recall that sufficiency is defined for a family
of conditional distributions; the prior plays no role.)

Conditional on D = d, the transmitted waveform is given by x(·;d); see (28.6).
Thus, the problem of guessing D is equivalent to guessing which of the 2k signals{

t 7→ x(t;d)
}

d∈D
(28.10)

is being observed in white Gaussian noise of PSD N0/2 with respect to the band-
width W. From (28.6) it follows that for every message d ∈ D the transmitted
waveform t 7→ x(t;d) is a (deterministic) linear combination of the n functions
{t 7→ g(t − `Ts)}n`=1. Moreover, if the pulse shape g(·) is an integrable function
that is bandlimited to W Hz, then so is each waveform t 7→ x(t;d) . Consequently,
from Corollary 26.4.2 and from (26.23) we obtain:

Proposition 28.2.1 (Sufficient Statistic for PAM in White Noise). Let the con-
ditional law of

(
Y (t)

)
given D = d be given by (28.5), (28.6), and (28.7), where

the pulse shape g is a real integrable signal that is bandlimited to W Hz, and
where

(
N(t)

)
is white Gaussian noise of PSD N0/2 with respect to the band-

width W. Then the n inner products

T (`) =
∫ ∞

−∞
Y (t) g(t− `Ts) dt, ` ∈ {1, . . . , n} (28.11)

form a sufficient statistic for guessing D based on
(
Y (t)

)
.

Moreover, conditional on D = d, the vector T = (T (1), . . . , T (n))T is a Gaussian
n-vector whose `-th component T (`) is of conditional mean

E
[
T (`)

∣∣∣D = d
]

= A

n∑
`′=1

x`′ Rgg

(
(`− `′)Ts

)
, ` ∈ {1, . . . , n} (28.12)

and whose conditional covariance matrix is

N0

2


Rgg(0) Rgg(Ts) · · · Rgg

(
(n− 1)Ts

)
Rgg(Ts) Rgg(0) · · · Rgg

(
(n− 2)Ts

)
· · · · · · · · · · · ·
· · · · · · · · · · · ·

Rgg

(
(n− 1)Ts

)
Rgg

(
(n− 2)Ts

)
· · · Rgg(0)

 , (28.13)

i.e.,

Cov
[
T (`′), T (`′′)

∣∣∣D = d
]

=
N0

2
Rgg

(
(`′ − `′′)Ts

)
, `′, `′′ ∈ {1, . . . , n}. (28.14)

Here Rgg is the self-similarity function of the real pulse shape g (Definition 11.2.1),
and (x1, . . . , xn)T = ϕ(d) is the real n-tuple to which d is encoded.

Proof. This follows directly from Corollary 26.4.2 and from (26.23) upon substi-
tuting the mapping t 7→ g(t− `Ts) for s̃j and upon computing the inner product〈

t 7→ g(t− `Ts), t 7→ g(t− `′Ts)
〉

= Rgg

(
(`− `′)Ts

)
, `, `′ ∈ Z.
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28.3 Consequences of Sufficiency and Other Optimality Criteria

The sufficiency of the random vector T = (T (1), . . . , T (n))T and Theorem 26.3.2
guarantee that if our design objective is to minimize the probability of a message
error, then there is no loss in optimality in basing our guess on T. We shall next
consider other design criteria and show that, for these too, there is no loss in
optimality in basing our guess on T.

We first elaborate on what a message error is. If we denote our guess by

d̃ =
(
d̃1, . . . , d̃k

)T
,

then a message error occurs if our guess differs from the message d in at least one
component, i.e., if d̃` 6= d` for some ` ∈ {1, . . . , n}. The probability of a message
error is thus

Pr
[
D̃ 6= D

]
. (28.15)

Designing the receiver to minimize the probability of a message error is reasonable,
for example, when the k data bits constitute a computer file, and we wish to
minimize the probability that the file is corrupted. In such applications the user is
often only interested in knowing whether the file was successfully received (no error
occurred) or if the file was corrupted (at least one error occurred). Minimizing the
probability of a message error corresponds to minimizing the probability that the
file is corrupted.

In other applications, engineers are more interested in the average probability
of a bit error or bit error rate (BER). That is, they may wish to minimize

1
k

k∑
j=1

Pr
[
D̃j 6= Dj

]
. (28.16)

To better appreciate the difference between the average probability of a bit error
(28.16) and the probability of a message error (28.15), define the RV

Ej = I
{
D̃j 6= Dj

}
, j ∈ {1, . . . , k},

which indicates whether the j-th bit was incorrectly decoded. Minimizing the
probability of a message error minimizes

Pr
[ k∑
j=1

Ej > 0
]
,

whereas minimizing the average probability of a bit error minimizes

1
k

E

[ k∑
j=1

Ej

]
. (28.17)

Thus, minimizing the probability of a message error is equivalent to minimizing the
probability that one or more of the data bits is corrupted, whereas minimizing the
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average probability of a bit error is equivalent to minimizing the expected number
of data bits that are decoded erroneously.

We next argue that there is no loss in optimality in basing our guess on T also
when designing to minimize the average probability of a bit error (28.16). We first
note that to minimize (28.16) we should choose for each j ∈ {1, . . . , k} our guess D̃j

to minimize
Pr
[
D̃j 6= Dj

]
.

That is, we should consider the binary hypothesis testing problem of guessing
whether Dj is equal to zero or one, and we should guess D̃j to minimize the
probability of error associated with this problem. To conclude our argument we
next show that for the purpose of minimizing Pr

[
D̃j 6= Dj

]
, there is no loss in

optimality in basing our decision on T. To show this, it suffices, by the binary
version of Theorem 26.3.2, to establish that T also forms a sufficient statistic for
guessing Dj based on

(
Y (t)

)
. That is, we need to show that for every η ∈ N and

any choice of the epochs t1, . . . , tη ∈ R, the vector T forms a sufficient statistic
for guessing Dj based on

(
Y (t1), . . . , Y (tη),T

)
. This follows from the sufficiency

of T for guessing D based on
(
Y (t1), . . . , Y (tη),T

)
and from Proposition 22.4.4,

which shows that the sufficiency of T for guessing D also implies its sufficiency for
guessing whether D is in the set of k-tuples whose j-th component is zero or in its
complement set of k-tuples whose j-th component is one.

More generally we have:

Proposition 28.3.1. Consider the setup of Proposition 28.2.1. Let ψ : d 7→ ψ(d)
be any function of the data bits, and let D have an arbitrary prior. Then no
guessing rule for guessing ψ(D) based on

(
Y (t)

)
can outperform an optimal rule

for guessing ψ(D) based on T (1), . . . , T (n).

Proof. Any function from {0, 1}k can take on at most 2k different values. Let q
denote the number of different values that ψ(·) takes, i.e.,

q = #
{
ψ(d) : d ∈ {0, 1}k

}
,

where #A denotes the number of elements in the set A. Denote these different
values by γ1, . . . , γq. The q subsets of D{

d ∈ {0, 1}k : ψ(d) = γκ
}
, κ ∈ {1, . . . , q}

are disjoint sets whose union is {0, 1}k. That is, they form a partition of {0, 1}k.
Guessing ψ(D) is equivalent to guessing which subset in this partition contains D.
For this we know that (T (1), . . . , T (n)) forms a sufficient statistic because it forms
a sufficient statistic for guessing D and hence, by Note 22.4.5, it also forms a
sufficient statistic for guessing which subset in the partition contains D. The
result now follows from Theorem 26.3.2.

The examples we have seen so far correspond to the case where ψ : d 7→ d (with the
probability of guessing ψ(D) incorrectly corresponding to a message error) and the
case ψ : d 7→ dj (with the probability of guessing ψ(D) incorrectly corresponding
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D1, D2, . . . , DK,

enc(·)

X1, X2, . . . , XN,

enc(D1, . . . , DK)

DK+1, . . . , D2K,

enc(·)

XN+1, . . . , X2N,

enc(DK+1, . . . , D2K)

, Dk−K+1, . . . , Dk

enc(·)

, Xn−N+1, . . . , Xn

enc(Dk−K+1, . . . , Dk)

Figure 28.1: Block-mode encoding.

to the probability that the j-th bit Dj is incorrectly decoded). Another useful
example is when ψ : d 7→

(
dν , . . . , dν′

)
for some given ν, ν′ ∈ N satisfying ν′ ≥ ν.

This situation corresponds to the case where (Dν , . . . , Dν′) constitutes a packet
and we are interested in the probability that the packet is erroneously decoded.

Yet another example arises in block-mode transmission—which is described in Sec-
tion 10.4 and which is depicted in Figure 28.1—where the data bits D1, . . . , Dk are
mapped to the symbols X1, . . . , Xn using a (K,N) binary-to-reals block encoder

enc : {0, 1}K → RN.

Here we assume that k is divisible by K and that n = N k/K.

If we wish to guess the K-tuple
(
D(ν−1)K+1, . . . , D(ν−1)K+K

)
with the smallest

probability of error, then there is no loss in optimality in basing our guess on
T (1), . . . , T (n). This follows by applying Proposition 28.3.1 with the function
ψ(d) =

(
d(ν−1)K+1, . . . , d(ν−1)K+K

)
.

28.4 Consequences of Orthonormality

The conditional distribution of the inner products in (28.11) becomes simpler when
the time shifts of the pulse shape by integer multiples of Ts are orthonormal. In
this case we denote the pulse shape by φ(·) and state the orthonormality condition
as ∫ ∞

−∞
φ(t− `Ts)φ(t− `′Ts) dt = I{` = `′}, `, `′ ∈ Z, (28.18)

or, equivalently, as

Rφφ(`Ts) =

{
1 if ` = 0,
0 if ` 6= 0,

` ∈ Z. (28.19)

28.4.1 The Conditional Law of the Sufficient Statistic

From Proposition 28.2.1 we obtain a key result on PAM communication in white
Gaussian noise:
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Corollary 28.4.1. Consider PAM where data bits D1, . . . , Dk are mapped by an
encoder to the real symbols X1, . . . , Xn, which are then mapped to the waveform

X(t) = A

n∑
`=1

X` φ(t− `Ts), t ∈ R, (28.20)

where the pulse shape φ(·) is an integrable signal that is bandlimited to W Hz and
whose time shifts by integer multiples of the baud period Ts are orthonormal. Let
the observed waveform

(
Y (t)

)
be given by

Y (t) = X(t) +N(t), t ∈ R,

where
(
N(t), t ∈ R

)
is independent of the data bits and is white Gaussian noise of

PSD N0/2 with respect to the bandwidth W.

(i) The n inner products

T (`) =
∫ ∞

−∞
Y (t)φ(t− `Ts) dt, ` ∈ {1, . . . , n} (28.21)

form a sufficient statistic for guessing (D1, . . . , Dk) based on
(
Y (t)

)
.

(ii) Conditional on D = d with corresponding encoder outputs (X1, . . . , Xn) =
(x1, . . . , xn), the inner products (28.21) are independent with

T (`) ∼ N
(

Ax`,
N0

2

)
, ` ∈ {1, . . . , n}. (28.22)

(iii) The conditional distribution of these inner products can also be expressed as

T (`) = Ax` + Z`, ` ∈ {1, . . . , n}, (28.23a)

where

Z1, . . . , Zn ∼ IID N
(

0,
N0

2

)
. (28.23b)

From Proposition 28.3.1 we obtain that T (1), . . . , T (n) also form a sufficient statistic
for guessing the value of any function of the data bits D1, . . . , Dk.

28.4.2 A Further Reduction in the Sufficient Statistic

We next show a further reduction (from n to N random variables) of the suffi-
cient statistic in block-mode transmission (with the pulse shape φ(·) still satisfying
(28.19)). For this reduction to hold we need to assume that the data bits are
independent or that the k/K tuples(

D1, . . . , DK

)
,
(
DK+1, . . . , D2K

)
, . . . ,

(
Dk−K+1, . . . , Dk

)
(28.24)

are independent.
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Proposition 28.4.2. In addition to the assumptions of Corollary 28.4.1, assume
that X1, . . . , Xn are generated from D1, . . . , Dk in block-mode using a (K,N) binary-
to-reals block encoder. Further assume that the K-tuples in (28.24) are independent.
Then for every ν ∈ {1, . . . , k/K}, the N-tuple(

T ((ν−1)N+1), . . . , T (νN)
)

(28.25)

forms a sufficient statistic for guessing the K-tuple(
D(ν−1)K+1, . . . , DνK

)
(28.26)

or any function thereof.

Proof. Fix some ν ∈ {1, . . . , k/K}. For every choice of η ∈ N and of the epochs
t1, . . . , tη ∈ R, the n-tuple of matched filter outputs (T (1), . . . , T (n)) forms a suf-
ficient statistic for guessing D1, . . . , Dk based on

(
Y (t1), . . . , Y (tη),T

)
(Proposi-

tion 28.2.1). Consequently, by Note 22.4.5, this n-tuple is also sufficient for guessing
the K-tuple (28.26). We shall next show that the N-tuple (28.25) is sufficient for
guessing the K-tuple (28.26) based on the n-tuple (T (1), . . . , T (n)). It will then fol-
low from Proposition 22.4.3 that the N-tuple (28.25) is also sufficient for guessing
the K-tuple (28.26) based on

(
Y (t1), . . . , Y (tη),T

)
, thus establishing the proposi-

tion.

That the N-tuple (28.25) is sufficient for guessing the K-tuple (28.26) based on the
n-tuple (T (1), . . . , T (n)) is equivalent to the irrelevancy of

R ,

((
T (1), . . . , T (N)

)
, . . . ,

(
T ((ν−2)N+1), . . . , T ((ν−1)N)

)
,

(
T (νN+1), . . . , T ((ν+1)N)

)
, . . . ,

(
T (n−N+1), . . . , T (n)

))T

for guessing the K-tuple (28.26) based on the N-tuple (28.25). To prove this irrele-
vancy, it suffices to prove two claims: that R is independent of the K-tuple (28.26)
and that, conditionally on this K-tuple, R is independent of the N-tuple (28.25)
(Proposition 22.5.5). These claims follow from three observations: that, by the
orthonormaility assumption (28.19), R is determined by the data bits

D1, . . . , D(ν−1)K, DνK+1, . . . , Dk (28.27)

and by the random variables

Z1, . . . , Z(ν−1)N, ZνN+1, . . . , Zn; (28.28)

that the N-tuple (28.25) is determined by the K-tuple (28.26) and by the random
variables

Z(ν−1)N+1, . . . , ZνN; (28.29)

and that the tuples in (28.26), (28.27), (28.28), and (28.29) are independent.

Having established that the N-tuple (28.25) forms a sufficient statistic for guessing
the K-tuple (28.26), it now follows, using arguments very similar to those employed
in proving Proposition 28.3.1, that the N-tuple (28.25) is also sufficient for guessing
the value of any function ψ(·) of the K-tuple (28.26).
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28.4.3 The Discrete-Time Single-Block Model

Proposition 28.4.2 is the starting point of much of the literature on block codes,
upon which we shall touch in Chapter 29. In Coding Theory N is usually called the
blocklength, and K/N is called the rate in bits per dimension. Coding theorists
envision that the function enc(·) is used to map k bits to n real numbers using the
block-encoding rule of Figure 10.1 (with k being divisible by K) and that the result-
ing real symbols are then transmitted over a white Gaussian noise channel using
PAM with a pulse shape satisfying the orthogonality condition (28.19). Assuming
that the data tuples are independent, and by then resorting to Proposition 28.4.2,
coding theorists focus on the problem of decoding the K-tuple (28.26) from the N

matched filter outputs (28.25).

In this problem the index ν of the block is immaterial, and coding theorists re-
label the data bits of the K tuple (28.26) as D1, . . . , DK; they re-label the symbols
to which they are mapped as X1, . . . , XN; and they re-label the corresponding
observations as Y1, . . . , YN. The resulting model is the discrete-time single-
block model where (

X1, . . . , XN

)
= enc

(
D1, . . . , DK

)
, (28.30a)

Yη = AXη + Zη, η ∈ {1, . . . ,N}, (28.30b)

Zη ∼ N
(

0,
N0

2

)
, η ∈ {1, . . . ,N}, (28.30c)

where Z1, . . . , ZN are IID and independent of D1, . . . , DK. We recall that this
model is appropriate when the pulse shape φ satisfies the orthonormality condi-
tion (28.18); the data bits are “block IID” in the sense that the k/K tuples in
(28.24) are independent; and the additive noise is white Gaussian noise of double-
sided spectral density N0/2 with respect to the bandwidth occupied by the pulse
shape φ. It is customary to additionally assume that D1, . . . , DK are IID random
bits (Definition 14.5.1). This is a good assumption if, prior to transmission, the
data bits are compressed using an efficient data compression algorithm.

28.5 Extension to QAM Communications

28.5.1 Introduction and Setup

We next extend our discussion to the detection of QAM signals. We assume that
an encoding function

ϕ : {0, 1}k → Cn

is used to map the k data bits D = (D1, . . . , Dk)T to the n complex symbols
C = (C1, . . . , Cn)T and that the resulting complex symbols are then mapped to
the passband signal

(
XPB(t)

)
, which is given by

XPB(t) = 2 Re
(
XBB(t) ei2πfct

)
, t ∈ R,
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where

XBB(t) = A

n∑
`=1

C` g(t− `Ts), t ∈ R;

the pulse shape g(·) is a complex integrable signal that is bandlimited to W/2 Hz;
A > 0 is a real constant; and fc > W/2. Conditionally on D = d, we denote the
transmitted signal by

x(t;d) = 2ARe
( n∑
`=1

c` g(t− `Ts) ei2πfct
)

(28.31)

=
√

2A

n∑
`=1

Re(c`)

gI,`(t)︷ ︸︸ ︷
2 Re

(
1√
2
g(t− `Ts)︸ ︷︷ ︸
gI,`,BB(t)

ei2πfct
)

+
√

2A

n∑
`=1

Im(c`)

gQ,`(t)︷ ︸︸ ︷
2 Re

(
i

1√
2
g(t− `Ts)︸ ︷︷ ︸

gQ,`,BB(t)

ei2πfct
)
, t ∈ R, (28.32)

where c = ϕ(d) is the result of encoding the data bits d; where (28.32) follows from
(16.7); and where {gI,`}, {gQ,`}, {gI,`,BB}, {gQ,`,BB} are as indicated in (28.32)
and as defined in (16.8) and (16.9).

We consider the case where, conditional on D = d, the received waveform
(
Y (t)

)
is given by

Y (t) = x(t;d) +N(t), t ∈ R, (28.33)

where
(
N(t)

)
is white Gaussian noise of PSD N0/2 with respect to the band-

width W around the carrier frequency fc (Definition 25.15.3).

28.5.2 Real Sufficient Statistics

The representation (28.32) makes it clear that for every d ∈ {0, 1}k the signal
t 7→ x(t;d) can be expressed as a linear combination of the 2n real-valued signals

{gI,`}n`=1, {gQ,`}n`=1. (28.34)

Since these signals are integrable signals that are bandlimited to W Hz around the
carrier frequency fc, it follows that the 2n inner products

T
(`)
I =

∫ ∞

−∞
Y (t) gI,`(t) dt, ` ∈ {1, . . . , n}, (28.35a)

T
(`)
Q =

∫ ∞

−∞
Y (t) gQ,`(t) dt, ` ∈ {1, . . . , n} (28.35b)

form a real sufficient statistic for guessing D based on
(
Y (t)

)
(Section 26.10).
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To describe the distribution of the sufficient statistic conditional on each of the
hypotheses, we next express the inner products between the functions in (28.34) in
terms of the self-similarity function Rgg of the complex pulse shape g

Rgg(τ) =
∫ ∞

−∞
g(t+ τ) g∗(t) dt, τ ∈ R (28.36)

(Definition 11.2.1). Key to these calculations is the relationship between the inner
product between real passband signals and the inner product between their complex
baseband representations (Theorem 7.6.10). Thus,

〈gI,`′ ,gI,`〉 = 2Re
(
〈gI,`′,BB,gI,`,BB〉

)
= Re

(〈
t 7→ g(t− `′Ts), t 7→ g(t− `Ts)

〉)
= Re

(∫ ∞

−∞
g(t− `′Ts) g∗(t− `Ts) dt

)
= Re

(
Rgg

(
(`− `′)Ts

))
, `, `′ ∈ Z, (28.37a)

where the first equality follows by relating the inner product in passband to the
inner product in baseband; the second from the expressions for the corresponding
baseband representations (16.9a); the third from the definition of the inner product
for complex-valued signals (3.4); and the final equality from the definition of the
self-similarity function (28.36). Similarly,

〈gQ,`′ ,gQ,`〉 = 2Re
(
〈gQ,`′,BB,gQ,`,BB〉

)
= Re

(〈
t 7→ ig(t− `′Ts), t 7→ ig(t− `Ts)

〉)
= Re

(∫ ∞

−∞
ig(t− `′Ts) (−i) g∗(t− `Ts) dt

)
= Re

(∫ ∞

−∞
g(t− `′Ts) g∗(t− `Ts) dt

)
= Re

(
Rgg

(
(`− `′)Ts

))
, `, `′ ∈ Z, (28.37b)

and

〈gQ,`′ ,gI,`〉 = 2Re
(
〈gQ,`′,BB,gI,`,BB〉

)
= Re

(〈
t 7→ ig(t− `′Ts), t 7→ g(t− `Ts)

〉)
= Re

(
i

∫ ∞

−∞
g(t− `′Ts) g∗(t− `Ts) dt

)
= − Im

(∫ ∞

−∞
g(t− `′Ts) g∗(t− `Ts) dt

)
= − Im

(
Rgg

(
(`− `′)Ts

))
, `, `′ ∈ Z, (28.37c)

where the first equality leading to (28.37c) follows from the relationship between
the inner product between real passband signals and the inner product between
their baseband representations (Theorem 7.6.10); the second from the expressions
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for the corresponding baseband representations (16.9); the third from the definition
of the inner product between complex signals (3.4); the fourth from the identity
Re(iz) = − Im(z); and where the last equality follows from the definition of the
self-similarity function of complex signals (28.36).

We are now ready to compute the conditional law of the sufficient statistic given
each of the hypotheses. Conditional on D = d with corresponding c = ϕ(d),
the 2n random variables

{
T

(`)
I , T

(`)
Q

}n
`=1

are jointly Gaussian (Section 26.10). Their
conditional law is thus fully specified by the conditional mean vector and by the
conditional covariance matrix. We begin with the computation of the former:

E
[
T

(`)
I

∣∣∣D = d
]

=
〈
t 7→ x(d; t),gI,`

〉
=
〈√

2A

n∑
`′=1

Re(c`′)gI,`′ +
√

2A

n∑
`′=1

Im(c`′)gQ,`′ ,gI,`

〉
=
√

2A

n∑
`′=1

(
Re(c`′) 〈gI,`′ ,gI,`〉+ Im(c`′) 〈gQ,`′ ,gI,`〉

)
=
√

2A

n∑
`′=1

(
Re(c`′) Re

(
Rgg

(
(`− `′)Ts

))
− Im(c`′) Im

(
Rgg

(
(`− `′)Ts

)))
=
√

2A

n∑
`′=1

Re
(
c`′ Rgg

(
(`− `′)Ts

))
=
√

2ARe
( n∑
`′=1

c`′ Rgg

(
(`− `′)Ts

))
, (28.38a)

where the first equality follows from the definition of T (`)
I (28.35a), from (28.33),

and from our assumption that the noise
(
N(t)

)
is of zero mean; the second from

(28.32); the third from the linearity of the inner product; the fourth by express-
ing the inner products using the self-similarity function, i.e., using (28.37a) and
(28.37c); the fifth by the complex-numbers identity Re(wz) = Re(w) Re(z) −
Im(w) Im(z); and the final equality because the sum of the real parts is the real
part of the sum. Similarly,

E
[
T

(`)
Q

∣∣∣D = d
]

=
〈
t 7→ x(d; t),gQ,`

〉
=
〈√

2A

n∑
`′=1

Re(c`′)gI,`′ +
√

2A

n∑
`′=1

Im(c`′)gQ,`′ ,gQ,`

〉
=
√

2A

n∑
`′=1

(
Re(c`′) 〈gI,`′ ,gQ,`〉+ Im(c`′) 〈gQ,`′ ,gQ,`〉

)
=
√

2A

n∑
`′=1

(
Re(c`′)

(
− Im

(
Rgg

(
(`′ − `)Ts

)))
+ Im(c`′) Re

(
Rgg

(
(`− `′)Ts

)))

=
√

2A

n∑
`′=1

(
Re(c`′) Im

(
Rgg

(
(`− `′)Ts

))
+ Im(c`′) Re

(
Rgg

(
(`− `′)Ts

)))
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=
√

2A

n∑
`′=1

Im
(
c`′ Rgg

(
(`− `′)Ts

))
=
√

2A Im
( n∑
`′=1

c`′ Rgg

(
(`− `′)Ts

))
, (28.38b)

where the first equality follows from the definition of T (`)
Q (28.35b), from (28.33),

and from our assumption that the noise
(
N(t)

)
is of zero mean; the second from

(28.32); the third from the linearity of the inner product; the fourth by express-
ing the inner products using the self-similarity function, i.e., using (28.37c) and
(28.37b); the fifth by the conjugate symmetry of the self-similarity function (Propo-
sition 11.2.2); the sixth by the complex-numbers identity Im(wz) = Re(w) Im(z)+
Im(w) Re(z); and the final equality by noting that the sum of the imaginary parts
is equal to the imaginary part of the sum.

The conditional covariances are easily computed using Note 25.15.4. Using the
inner products expressions (28.37), we obtain:

Cov
[
T

(`′)
I , T

(`′′)
I

∣∣∣D = d
]

=
N0

2
〈
gI,`′ ,gI,`′′

〉
=

N0

2
Re
(
Rgg

(
(`′ − `′′)Ts

))
, (28.39a)

Cov
[
T

(`′)
Q , T

(`′′)
Q

∣∣∣D = d
]

=
N0

2
〈
gQ,`′ ,gQ,`′′

〉
=

N0

2
Re
(
Rgg

(
(`′ − `′′)Ts

))
, (28.39b)

and

Cov
[
T

(`′)
I , T

(`′′)
Q

∣∣∣D = d
]

=
N0

2
〈
gI,`′ ,gQ,`′′

〉
= −N0

2
Im
(
Rgg

(
(`′ − `′′)Ts

))
. (28.39c)

We summarize our results on QAM detection in white Gaussian noise as follows.

Proposition 28.5.1 (QAM Detection in White Noise: Real Sufficient Statistics).
Let a QAM signal (28.32) of an integrable pulse shape g(·) that is bandlimited
to W/2 Hz be observed in white Gaussian noise of PSD N0/2 with respect to the
bandwidth W around the carrier frequency fc. Then:

(i) The 2n inner products

T
(`)
I =

∫ ∞

−∞
Y (t) gI,`(t) dt, ` ∈ {1, . . . , n}, (28.40a)

T
(`)
Q =

∫ ∞

−∞
Y (t) gQ,`(t) dt, ` ∈ {1, . . . , n} (28.40b)



28.5 Extension to QAM Communications 647

form a sufficient statistic for guessing D based on
(
Y (t)

)
, where

gI,`(t) = 2 Re
( 1√

2
g(t− `Ts) ei2πfc

)
, t ∈ R,

gQ,`(t) = 2 Re
( 1√

2
i g(t− `Ts) ei2πfc

)
, t ∈ R.

(ii) Conditional on D = d with corresponding transmitted symbols c = ϕ(d),
these 2n real random variables are jointly Gaussian with conditional means as
specified by (28.38) and with conditional covariances as specified by (28.39).

28.5.3 Complex Sufficient Statistics

The notation is simpler if we introduce the n complex random variables

T (`) , T
(`)
I + iT

(`)
Q

=
∫ ∞

−∞
Y (t) gI,`(t) dt+ i

∫ ∞

−∞
Y (t) gQ,`(t) dt, ` ∈ {1, . . . , n}. (28.41)

These n complex random variables form a sufficient statistic in the sense that their
real and imaginary parts form a sufficient statistic. Using (28.38) we obtain

E
[
T (`)

∣∣∣D = d
]

= E
[
T

(`)
I

∣∣∣D = d
]

+ i E
[
T

(`)
Q

∣∣∣D = d
]

=
√

2ARe
( n∑
`′=1

c`′ Rgg

(
(`− `′)Ts

))
+ i
√

2A Im
( n∑
`′=1

c`′ Rgg

(
(`− `′)Ts

))
=
√

2A

n∑
`′=1

c`′ Rgg

(
(`− `′)Ts

)
, ` ∈ {1, . . . , n}. (28.42)

The advantage of the complex notation is that—as we shall see in Proposition 28.5.2
ahead—conditional on D = d, the random vector T−E[T |D = d] is proper (Defi-
nition 17.4.1). And since conditionally on D = d it is also Gaussian, it follows from
Proposition 24.3.11 that, conditional on D = d, the random vector T−E[T |D = d]
is a circularly-symmetric complex Gaussian (Definition 24.3.2). Its conditional law
is thus determined by its conditional covariance matrix (Corollary 24.3.8). This
covariance matrix is an n×n (complex) matrix, whereas the covariance matrix for
the 2n real variables in Proposition 28.5.1 is a (2n)× (2n) (real) matrix.

We summarize our results for QAM detection with complex sufficient statistics in
the following.

Proposition 28.5.2 (QAM in White Noise: Complex Sufficient Statistics). Con-
sider the setup of Proposition 28.5.1.

(i) The complex random vector T = (T (1), . . . , T (n))T defined by

T (`) =
∫ ∞

−∞
Y (t) gI,`(t) dt+ i

∫ ∞

−∞
Y (t) gQ,`(t) dt, ` ∈ {1, . . . , n},
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forms a sufficient statistic for guessing D based on
(
Y (t)

)
.

(ii) The `-th component of T can be expressed as

T (`) =
√

2A

n∑
`′=1

C`′ Rgg

(
(`− `′)Ts

)
+ Z(`), ` ∈ {1, . . . , n},

where Rgg is the self-similarity function of the pulse shape g(·) (28.36), and
where the random vector Z = (Z(1), . . . , Z(n))T is independent of D and is a
circularly-symmetric complex Gaussian of covariance

Cov
[
Z(`′), Z(`′′)

]
= E

[
Z(`′)

(
Z(`′′)

)∗]
= N0 Rgg

(
(`′ − `′′)Ts

)
, `′, `′′ ∈ {1, . . . , n}. (28.43)

(iii) If the time shifts of the pulse shape by integer multiples of Ts are orthonormal,
then

T (`) =
√

2AC` + Z(`), ` ∈ {1, . . . , n, }, (28.44)

where the complex random variables {Z(`)} are independent of {Dj} and are
IID circularly-symmetric complex Gaussians of variance N0.

Proof. Part (i) follows directly from Proposition 28.5.1 because, by definition, the
sufficiency of T is equivalent to the sufficiency of its real and imaginary parts.

To prove Part (ii) define

Z(`) , T (`) −
√

2A

n∑
`′=1

C`′ Rgg

(
(`− `′)Ts

)
, `′ ∈ {1, . . . , n}, (28.45)

and note that by (28.42) the conditional distribution of Z given D = d is of zero
mean. Moreover, from Proposition 28.5.1 and from the definition of a complex
Gaussian random vector as one whose real and imaginary parts are jointly Gaussian
(Definition 24.3.6), it follows that, conditional on D = d, the vector Z is Gaussian.
To prove that it is proper we compute

E
[
Z(`′)Z(`′′)

∣∣∣D = d
]

= E
[
Re
(
Z(`′)

)
Re
(
Z(`′′)

)
− Im

(
Z(`′)

)
Im
(
Z(`′′)

) ∣∣∣D = d
]

+ i E
[
Re
(
Z(`′)

)
Im
(
Z(`′′)

)
+ Im

(
Z(`′)

)
Re
(
Z(`′′)

) ∣∣∣D = d
]

= Cov
[
T

(`′)
I , T

(`′′)
I

∣∣∣D = d
]
− Cov

[
T

(`′)
Q , T

(`′′)
Q

∣∣∣D = d
]

+ i
(
Cov
[
T

(`′)
I , T

(`′′)
Q

∣∣∣D = d
]

+ Cov
[
T

(`′)
Q , T

(`′′)
I

∣∣∣D = d
])

= 0, `′, `′′ ∈ {1, . . . , n},

where the second equality follows from (28.45) and the last equality from (28.39).
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The calculation of the conditional covariance matrix is very similar except that Z(`′′)

is now conjugated:

Cov
[
Z(`′), Z(`′′)

∣∣∣ D = d
]

= E
[
Re
(
Z(`′)

)
Re
(
Z(`′′)

)
+ Im

(
Z(`′)

)
Im
(
Z(`′′)

) ∣∣∣D = d
]

+ i E
[
−Re

(
Z(`′)

)
Im
(
Z(`′′)

)
+ Im

(
Z(`′)

)
Re
(
Z(`′′)

) ∣∣∣D = d
]

= Cov
[
T

(`′)
I , T

(`′′)
I

∣∣∣ D = d
]

+ Cov
[
T

(`′)
Q , T

(`′′)
Q

∣∣∣ D = d
]

+ i
(
−Cov

[
T

(`′)
I , T

(`′′)
Q

∣∣∣ D = d
]

+ Cov
[
T

(`′)
Q , T

(`′′)
I

∣∣∣ D = d
])

=
N0

2
Re
(
Rgg

(
(`′ − `′′)Ts

))
+

N0

2
Re
(
Rgg

(
(`′ − `′′)Ts

))
+ i

(
N0

2
Im
(
Rgg

(
(`′ − `′′)Ts

))
− N0

2
Im
(
Rgg

(
(`′′ − `′)Ts

)))
= N0 Rgg

(
(`′ − `′′)Ts

)
, `′, `′′ ∈ {1, . . . , n}, (28.46)

where the first equality follows from the definition of the covariance between com-
plex random variables (17.17); the second by (28.45); the third by (28.39); and the
last equality by the conjugate-symmetry of the self-similarity function (Proposi-
tion 11.2.2 (iii)).

Conditional on D = d, the complex n-vector Z is thus a proper Gaussian, and its
conditional law is thus fully specified by its conditional covariance matrix (Corol-
lary 24.3.8). By (28.46), this conditional covariance matrix does not depend on d,
and we thus conclude that the conditional law of Z conditional on D = d does not
depend on d, i.e., that Z is independent of D.

Part (iii) follows from Part (ii).

28.6 Additional Reading

Proposition 28.2.1 and Proposition 28.5.2 are the starting points of much of the
literature on equalization and on the use of the Viterbi Algorithm for channels
with inter-symbol interference (ISI). See, for example, (Proakis, 2000, Chapter 10),
(Viterbi and Omura, 1979, Chapter 4, Section 4.9), and (Barry, Lee, and Messer-
schmitt, 2004, Chapter 8).

28.7 Exercises

Exercise 28.1 (A Dispersive Channel). Let the transmitted signal
(
X(t)

)
be as in (28.1),

and let the received signal
(
Y (t)

)
be given by

Y (t) =
(
X ? h

)
(t) +N(t), t ∈ R,

where
(
N(t)

)
is white Gaussian noise of PSD N0/2 with respect to the bandwidth W,

and where h is the impulse response of some stable real filter.
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(i) Show that the n inner products∫ ∞

−∞
Y (t)

(
g ? h

)
(t− `Ts) dt, ` ∈ {1, . . . , n}

form a sufficient statistic for guessing D1, . . . Dk based on
(
Y (t)

)
.

(ii) Compute their conditional law.

Exercise 28.2 (PAM in Colored Noise). Let the transmitted signal
(
X(t)

)
be as in (28.1),

and let the received signal
(
Y (t)

)
be given by

Y (t) = X(t) +N(t), t ∈ R,

where
(
N(t)

)
is a centered, stationary, measurable, Gaussian SP of PSD SNN that can be

whitened with respect to the bandwidth W. Let h be the impulse response of a whitening
filter for

(
N(t)

)
with respect to W.

(i) Show that the n inner products∫ ∞

−∞
Y (t)

(
g ? h ? ~h

)
(t− `Ts) dt, ` ∈ {1, . . . , n}

form a sufficient statistic for guessing D1, . . . Dk based on
(
Y (t)

)
.

(ii) Compute their conditional law.

Exercise 28.3 (A Channel with an Echo). Data bits D1, . . . , Dk are mapped to real sym-
bols X1, . . . , Xk using the antipodal mapping, so X` = 1− 2D`, for every ` ∈ {1, . . . , k}.
The transmitted signal

(
X(t)

)
is given by X(t) = A

∑
`X` φ(t− `Ts), where φ is an inte-

grable signal that is bandlimited to W Hz and that satisfies the orthonormality condition
(28.18). The received signal

(
Y (t)

)
is

Y (t) = X(t) + αX(t− Ts) +N(t), t ∈ R,

where
(
N(t)

)
is white Gaussian noise of PSD N0/2 with respect to the bandwidth W,

and α is a real constant. Let Y` be the time-`Ts output of a filter that is matched to φ
and that is fed

(
Y (t)

)
.

(i) Do Y1, . . . , Yk+1 form a sufficient statistic for guessing (D1, . . . , Dk)?

(ii) Consider a suboptimal rule that guesses “Dj = 0” if Yj ≥ 0, and otherwise guesses
“Dj = 1.” Express the probability that this rule guesses Dj incorrectly in terms
of j, α, A, and N0. To what does this probability of error converge when N0 tends
to zero?

Exercise 28.4 (Another Channel with an Echo). Consider the setup of Exercise 28.3 but
where the echo is delayed by a noninteger multiple of the baud period. Thus,

Y (t) = X(t) + αX(t− τ) +N(t), t ∈ R,

where 0 < τ < Ts. Show that the 2k inner products∫ ∞

−∞
Y (t)φ(t− `Ts) dt,

∫ ∞

−∞
Y (t)φ(t− `Ts − τ) dt, ` ∈ {1, . . . , k}

form a sufficient statistic for guessing (D1, . . . , Dk) based on
(
Y (t)

)
.
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Exercise 28.5 (A Multiple-Access Scenario). Two transmitters communicate with a single
receiver. The receiver observes the signal

Y (t) = A1X1 φ1(t) + A2X2 φ2(t) +N(t), t ∈ R,

where A1,A2 > 0; φ1 and φ2 are orthonormal integrable signals that are bandlimited
to W Hz; the pair (X1, X2) takes value in the set {(+1,+1), (+1,−1), (−1,+1), (−1,−1)}
equiprobably; and where

(
N(t)

)
is white Gaussian noise of PSD N0/2 with respect to

the bandwidth W.

(i) Can you recover (X1, X2) from A1X1φ1 + A2X2φ2?

(ii) Find an optimal receiver for guessing (X1, X2) based on
(
Y (t)

)
.

(iii) Compute the optimal probability of error for guessing (X1, X2) based on
(
Y (t)

)
.

(iv) Suppose that a genie informs the receiver of the value of X2. How should the
receiver then guess X1 based on

(
Y (t)

)
and the information provided by the genie?

(v) A receiver guesses “X1 = +1” if 〈Y,φ1〉 > 0 and guesses “X1 = −1” otherwise. Is
this receiver optimal for guessing X1?

Exercise 28.6 (Two Receiver Antennas). Consider the setup of (28.1). We observe two
signals

(
Y1(t)

)
,
(
Y2(t)

)
that are given at every epoch t ∈ R by

Y1(t) =
(
X ? h1

)
(t) +N1(t), Y2(t) =

(
X ? h2

)
(t) +N2(t),

where h1 and h2 are the impulse responses of two real stable filters, and where the
stochastic processes

(
N1(t)

)
and

(
N2(t)

)
are independent white Gaussian noise processes

of PSD N0/2 with respect to the bandwidth W.

(i) Extend Definition 26.3.1 to the case where the observation consists of two stochastic
processes.

(ii) Show that the 2n inner products∫ ∞

−∞
Y1(t)

(
g ? h1

)
(t− `Ts) dt,

∫ ∞

−∞
Y2(t)

(
g ? h2

)
(t− `Ts) dt, ` ∈ {1, . . . , n}

form a sufficient statistic for guessing D1, . . . Dk based on
(
Y1(t)

)
and

(
Y2(t)

)
.

Exercise 28.7 (Bits of Unequal Importance). Consider the setup of Section 28.3 but
where some data bits are more important than others. We therefore wish to minimize the
weighted average

k∑
j=1

αj Pr
[
D̂j 6= Dj

]
,

for some positive α1, . . . , αk that sum to one.

(i) Is it still optimal to base our guess of D1, . . . , Dk on the inner products in (28.11)?

(ii) Does this criterion lead to a different receiver design than the bit error rate?

Exercise 28.8 (Sandwiching the Probability of a Message Error). In the notation of
Section 28.3, show that

1

k

k∑
j=1

Pr[D̃j 6= Dj ] ≤ max
1≤j≤k

{
Pr[D̃j 6= Dj ]

}
≤ Pr

[
D̃ 6= D

]
≤

k∑
j=1

Pr[D̃j 6= Dj ].
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Exercise 28.9 (Sandwiching the Bit Error Rate). In the notation of Section 28.3, show
that

1

k
Pr
[
D̃ 6= D

]
≤ 1

k

k∑
j=1

Pr[D̃j 6= Dj ] ≤ Pr
[
D̃ 6= D

]
.

Exercise 28.10 (Transmission via an Unknown Dispersive Channel). A random switch
that is outside our control and whose realization is not observed determines whether the
observed output

(
Y (t)

)
is given by

X ? h1 + N or X ? h2 + N,

where
(
X(t)

)
is the transmitted signal of (28.1);

(
N(t)

)
is white Gaussian noise of

PSD N0/2 with respect to the bandwidth W; and h1 & h2 are the impulse responses of
two stable real filters. Show that the 2n inner products∫ ∞

−∞
Y (t)

(
g ? h1

)
(t− `Ts) dt,

∫ ∞

−∞
Y (t)

(
g ? h2

)
(t− `Ts) dt, ` ∈ {1, . . . , n}

form a sufficient statistic for guessing D1, . . . Dk based on
(
Y (t)

)
.



Chapter 29

Linear Binary Block Codes with Antipodal
Signaling

29.1 Introduction and Setup

We have thus far said very little about the design of good encoders. We men-
tioned block encoders but, apart from defining and studying some of their basic
properties (such as rate and energy per symbol), we have said very little about
how to design such encoders. The design of block encoders falls under the heading
of “Coding Theory” and is the subject of numerous books such as (MacWilliams
and Sloane, 1977), (van Lint, 1998), (Blahut, 2002), (Roth, 2006) and (Richard-
son and Urbanke, 2008). Here we provide only a glimpse of this theory for one
class of such encoders: the class of binary linear block encoders with antipodal
pulse amplitude modulation. Such encoders map the data bits D1, . . . , DK to the
real symbols X1, . . . , XN by first applying a one-to-one linear mapping of binary
K-tuples to binary N-tuples and by then applying the antipodal mapping

0 7→ +1
1 7→ −1

to each component of the binary N-tuple to produce the {±1}-valued symbols
X1, . . . , XN.

Our emphasis in this chapter is not on the design of such encoders, but on how
their properties influence the performance of communication systems that employ
them in combination with Pulse Amplitude Modulation. We thus assume that the
transmitted waveform is given by

A
∑
`

X` φ(t− `Ts), t ∈ R, (29.1)

where A > 0 is a scaling factor, Ts > 0 is the baud period, φ(·) is a real integrable
signal that is bandlimited to W Hz, and where the time shifts of φ(·) by integer
multiples of Ts are orthonormal∫ ∞

−∞
φ(t− `Ts)φ(t− `′Ts) dt = I{` = `′}, `, `′ ∈ Z. (29.2)

653
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The summation in (29.1) can be finite, as in the block-mode that we discussed
in Section 10.4, or infinite, as in the bi-infinite block-mode that we discussed in
Section 14.5.2. We shall further assume that the PAM signal is transmitted over
an additive noise channel where the transmitted signal is corrupted by Gaussian
noise that is white with respect to the bandwidth W. We also assume that the
data are IID random bits (Definition 14.5.1).

In Section 29.2 we briefly discuss the binary field F2 and discuss some of the basic
properties of the set of all binary κ-tuples when it is viewed as a vector space over
this field. This allows us in Section 29.3 to define linear binary encoders and codes.
Section 29.4 introduces binary encoders with antipodal signaling, and Section 29.5
discusses the power and power spectral density when they are employed in conjunc-
tion with PAM. Section 29.6 begins the study of decoding with a discussion of two
performance criteria: the probability of a block error (also called message error)
and the probability of a bit error. It also recalls the discrete-time single-block
channel model. Section 29.7 contains the design and performance analysis of the
guessing rule that minimizes the probability of a block error, and Section 29.8 con-
tains a similar analysis for the guessing rule that minimizes the probability of a bit
error. Section 29.9 explains why performance analysis and simulation is often done
under the assumption that the transmitted data is the all-zero data. Section 29.10
discusses how the encoder and the PAM parameters influence the overall system
performance. The chapter concludes with a discussion of the (suboptimal) Hard
Decision decoding rule in Section 29.11 and of bounds on the minimum distance
of a code in Section 29.12.

29.2 The Binary Field F2 and the Vector Space Fκ2

29.2.1 The Binary Field F2

The binary field F2 consists of two elements that we denote by 0 and 1. An
operation that we denote by ⊕ is defined between any two elements of F2 through
the relation

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0. (29.3)

This operation is sometimes called “mod 2 addition” or “exclusive-or” or “GF(2)
addition.” (Here GF(2) stands for the Galois Field of two elements after the French
mathematician Évariste Galois (1811–1832) who did ground-breaking work on finite
fields and groups.) Another operation—“GF(2) multiplication”—is denoted by a
dot and is defined via the relation

0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1. (29.4)

Combined with these operations, the set F2 forms a field, which is sometimes
called the Galois Field of size two. We leave it to the reader to verify that the ⊕
operation satisfies

a⊕ b = b⊕ a, a, b ∈ F2,

(a⊕ b)⊕ c = a⊕ (b⊕ c), a, b, c ∈ F2,

a⊕ 0 = 0⊕ a = a, a ∈ F2,
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a⊕ a = 0, a ∈ F2;
and that the operations ⊕ and · satisfy the distributive law

(a⊕ b) · c = (a · c)⊕ (b · c), a, b, c ∈ F2.

29.2.2 The Vector Field Fκ2

We denote the set of all binary κ-tuples by Fκ2 and define the componentwise-⊕
operation between κ-tuples u =

(
u1, . . . , uκ

)
∈ Fκ2 and v =

(
v1, . . . , vκ

)
∈ Fκ2 as

u⊕ v ,
(
u1 ⊕ v1, . . . , uκ ⊕ vκ

)
, u,v ∈ Fκ2 . (29.5)

We define the product between a scalar α ∈ F2 and a κ-tuple u =
(
u1, . . . , uκ

)
∈ Fκ2

by
α · u ,

(
α · u1, . . . , α · uκ

)
. (29.6)

With these operations the set Fκ2 forms a vector space over the field F2. The all-zero
κ-tuple is denoted by 0.

29.2.3 Linear Mappings

A mapping T : Fκ2 → Fη2 is said to be linear if

T(α · u⊕ β · v) = α · T(u)⊕ β · T(v),
(
α, β ∈ F2, u,v ∈ Fκ2

)
. (29.7)

The kernel of a linear mapping T : Fκ2 → Fη2 is denoted by Ker(T) and is the set
of all κ-tuples in Fκ2 that are mapped by T(·) to the all-zero η-tuple 0:

Ker(T) =
{
u ∈ Fκ2 : T(u) = 0

}
. (29.8)

The kernel of every linear mapping contains the all-zero tuple 0.

The image of T : Fκ2 → Fη2 is denoted by Image(T) and consists of those elements
of Fη2 to which some element of Fκ2 is mapped by T(·):

Image(T) =
{
T(u) : u ∈ Fκ2

}
. (29.9)

The key results from Linear Algebra that we need are summarized in the following
proposition.

Proposition 29.2.1. Let T : Fκ2 → Fη2 be linear.

(i) The kernel of T(·) is a linear subspace of Fκ2 .

(ii) The mapping T(·) is one-to-one if, and only if, Ker(T) = {0}.

(iii) The image of T(·) is a linear subspace of Fη2.

(iv) The sum of the dimension of the kernel and the dimension of the image space
is equal to the dimension of the domain:

Dim
(
Ker(T)

)
+ Dim

(
Image(T)

)
= κ. (29.10)

(v) If U is a linear subspace of Fη2 of dimension κ, then there exists a one-to-one
linear mapping from Fκ2 to Fη2 whose image is U .
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29.2.4 Hamming Distance and Hamming Weight

The Hamming distance dH(u,v) between two binary κ-tuples u and v is defined
as the number of components in which they differ. For example, the Hamming
distance between the tuples (1, 0, 1, 0) and (0, 0, 1, 1) is two. It is easy to prove
that for u,v,w ∈ Fκ2 :

dH(u,v) ≥ 0 with equality if, and only if, u = v; (29.11a)

dH(u,v) = dH(v,u); (29.11b)

dH(u,w) ≤ dH(u,v) + dH(v,w). (29.11c)

The Hamming weight wH(u) of a binary κ-tuple u is defined as the number of
its nonzero components. Thus,

wH(u) = dH(u,0), u ∈ Fκ2 , (29.12)

and
dH(u,v) = wH(u⊕ v), u,v ∈ Fκ2 . (29.13)

29.2.5 The Componentwise Antipodal Mapping

The antipodal mapping Υ : F2 → {−1,+1} maps the zero element of F2 to the
real number +1 and the unit element of F2 to −1:

Υ(0) = +1, Υ(1) = −1. (29.14)

This rule is not as arbitrary as it may seem. Although one might be somewhat
surprised that we do not map 1 ∈ F2 to +1, we have our reasons. We prefer the
mapping (29.14) because it maps mod-2 sums to real products. Thus,

Υ(a⊕ b) = Υ(a)Υ(b), a, b ∈ F2, (29.15)

where the operation on the RHS between Υ(a) and Υ(b) is the regular real-numbers
multiplication. This extends by induction to any finite number of elements of F2:

Υ
(
c1 ⊕ c2 ⊕ · · · ⊕ cν

)
=

ν∏
`=1

Υ(c`), c1, . . . , cν ∈ F2. (29.16)

The componentwise antipodal mapping Υη : Fη2 → {−1,+1}η maps elements
of Fη2 to elements of {−1,+1}η by applying the mapping (29.14) to each component:

Υη :
(
c1, . . . , cη

)
7→
(
Υ(c1), . . . ,Υ(cη)

)
. (29.17)

For example, Υ3 maps the triplet (0, 0, 1) to (+1,+1,−1).
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29.2.6 Hamming Distance and Euclidean Distance

We next relate the Hamming distance dH(u,v) between any two binary η-tuples
u = (u1, . . . , uη) and v = (v1, . . . , vη) to the squared Euclidean distance between
the results of applying the componentwise antipodal mapping Υη to them. We
argue that

d2
E

(
Υη(u),Υη(v)

)
= 4dH(u,v), u,v ∈ Fη2 , (29.18)

where dE(·, ·) denotes the Euclidean distance, so

d2
E

(
Υη(u),Υη(v)

)
=

η∑
ν=1

(
Υ(uν)−Υ(vν)

)2
. (29.19)

To prove this relationship it suffices to consider the case where η = 1, because the
Hamming distance is the sum of the Hamming distances between the respective
components, and likewise for the squared Euclidean distance. To prove this result
for η = 1 we note that if the Hamming distance is zero, then u and v are identical
and hence so are Υ(u) and Υ(v), so the Euclidean distance between them must be
zero. And if the Hamming distance is one, then u 6= v, and hence Υ(u) and Υ(v)
are of opposite sign but of equal unit magnitude, so the squared Euclidean distance
between them is four.

29.3 Binary Linear Encoders and Codes

Definition 29.3.1 (Linear (K,N) F2 Encoder and Code). Let N and K be positive
integers.

(i) A linear (K,N) F2 encoder is a one-to-one linear mapping from FK
2 to FN

2 .

(ii) A linear (K,N) F2 code is a linear subspace of FN
2 of dimension K.1

In both definitions N is called the blocklength and K is called the dimension.

For example, the (K,K + 1) systematic single parity check encoder is the
mapping (

d1, . . . , dK

)
7→
(
d1, . . . , dK, d1 ⊕ d2 ⊕ · · · ⊕ dK

)
. (29.20)

It appends to the data tuple a single bit that is chosen so that the resulting (K+1)-
tuple be of even Hamming weight. The (K,K+1) single parity check code is the
subset of FK+1

2 consisting of those binary (K + 1)-tuples whose Hamming weight is
even.

Recall that the image of a mapping g : A → B is the subset of B comprising those
elements y ∈ B to which there corresponds some x ∈ A such that g(x) = y.

1The terminology here is not standard. In the Coding Theory literature a linear (K,N) F2

code is often called a “binary linear [N,K] code.”
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Proposition 29.3.2 (F2 Encoders and Codes).

(i) If T : FK
2 → FN

2 is a linear (K,N) F2 encoder, then its image is a linear
(K,N) F2 code.

(ii) Every linear (K,N) F2 code is the image of some (nonunique) linear (K,N)
F2 encoder.

Proof. We begin with Part (i). Let T : FK
2 → FN

2 be a linear (K,N) F2 encoder.
That its image is a linear subspace of FN

2 follows from Proposition 29.2.1 (iii).
That its dimension must be K follows from Proposition 29.2.1 (iv) (see (29.10))
because the fact that T(·) is one-to-one implies, by Proposition 29.2.1 (ii), that
Ker(T) = {0} so Dim

(
Ker(T)

)
= 0.

To prove Part (ii) we note that FK
2 is of dimension K and that, by definition, every

linear (K,N) F2 code is also of dimension K. The result now follows by noting
that there exists a one-to-one linear mapping between any two subspaces of equal
dimensions over the same field (Proposition 29.2.1 (v)).

Any linear transformation from a finite-dimensional space to a finite-dimensional
space can be represented as matrix multiplication. A linear (K,N) F2 encoder is
no exception. What is perhaps unusual is that coding theorists use row vectors
to denote the data K-tuples and the N-tuples to which they are mapped. They
consequently use matrix multiplication from the left. This tradition is so ingrained
that we shall begrudgingly adopt it.

Definition 29.3.3 (Matrix Representation of an Encoder). We say that the linear
(K,N) F2 encoder T : FK

2 → FN
2 is represented by the matrix G if G is a K×N

matrix whose elements are in F2 and

T(d) = dG, d ∈ FK
2 . (29.21)

Note that in the matrix multiplication in (29.21) we use F2 arithmetic, so the η-th
component of dG is given by d(1) ·g(1,η)⊕· · ·⊕d(K) ·g(K,η), where g(κ,η) is the Row-κ
Column-η component of the matrix G, and where d(κ) is the κ-th component of d.

For example, the (K,K + 1) F2 systematic single parity check encoder (29.20) is
represented by the K× (K + 1) matrix

1 0 0 · · · 0 1
0 1 0 · · · 0 1
0 0 1 · · · 0 1
...

...
...

. . . 0 1
0 0 0 · · · 1 1

 . (29.22)

The matrix G in (29.21) is uniquely specified by the linear transformation T(·):
its η-th row is the result of applying T(·) to the K-tuple (0, . . . , 0, 1, 0, . . . , 0) (the
K-tuple whose components are all zero except for the η-th, which is one).

Moreover, every K × N binary matrix G defines a linear transformation T(·) via
(29.21), but this linear transformation need not be one-to-one. It is one-to-one if,
and only if, the subspace of FN

2 spanned by the rows of G is of dimension K.
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Definition 29.3.4 (Generator Matrix). A matrix G is a generator matrix for a
given linear (K,N) F2 code if G is a binary K ×N matrix such that the image of
the mapping d 7→ dG is the given code.

Note that there may be numerous generator matrices for a given code. For example,
the matrix (29.22) is a generator matrix for the single parity check code. But there
are others. Indeed, replacing any row of the above matrix by the sum of that row
and another different row results in another generator matrix for this code.

Coding theorists like to distinguish between a code property and an encoder
property. Code properties are properties that are common to all encoders of the
same image. Encoder properties are specific to an encoder. Examples of code
properties are the blocklength and dimension. We shall soon encounter more. An
example of an encoder property is the property of being systematic:

Definition 29.3.5 (Systematic Encoder). A linear (K,N) F2 encoder T : FK
2 → FN

2

is said to be systematic (or strictly systematic) if, for every K-tuple
(
d1, . . . , dK

)
in FK

2 , the first K components of T
(
(d1, . . . , dK)

)
are equal to d1, . . . , dK.

For example, the encoder (29.20) is systematic. An encoder whose image is the
single-parity check code and which is not systematic is the encoder(

d1, . . . , dK

)
7→
(
d1, d1 ⊕ d2, d2 ⊕ d3, . . . , dK−1 ⊕ dK, dK

)
. (29.23)

The reader is encouraged to verify that if a linear (K,N) F2 encoder T : FK
2 → FN

2

is represented by the matrix G, then T(·) is systematic if, and only if, the K × K

matrix that results from deleting the last N−K columns of G is the K×K identity
matrix.

Definition 29.3.6 (Parity-Check Matrix). A parity-check matrix for a given
linear (K,N) F2 code is a K × N matrix H such that a (row) N-tuple c is in the
code if, and only if, cHT is the all-zero (row) vector.

For example, a parity-check matrix for the (K,K + 1) single-parity check code is
the 1× (K + 1) matrix

H = (1, 1, . . . , 1).

(Codes typically have numerous different parity-check matrices, but the single-
parity check code is an exception.)

29.4 Binary Encoders with Antipodal Signaling

Definition 29.4.1.

(i) We say that a (K,N) binary-to-reals block encoder enc : {0, 1}K → RN is a
linear binary (K,N) block encoder with antipodal signaling if

enc(d) = ΥN

(
T(d)

)
, d ∈ FK

2 , (29.24)
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where T : FK
2 → FN

2 is a linear (K,N) F2 encoder, and where ΥN(·) is the
componentwise antipodal mapping (29.17). Thus, if (X1, . . . , XN) denotes
the N-tuple produced by enc(·) when fed the data K-tuple (D1, . . . , DK), then

Xη =

{
+1 if the η-th components of T

(
(D1, . . . , DK)

)
is zero,

−1 otherwise.
(29.25)

(ii) A linear binary (K,N) block code with antipodal signaling is the image
of some linear binary (K,N) block encoder with antipodal signaling.

In analogy to Proposition 29.3.2, the image of every linear binary (K,N) block
encoder with antipodal signaling is a linear binary (K,N) block code with antipodal
signaling.

If enc(·) can be represented by the application of T(·) to the data K-tuple followed
by the application of the componentwise antipodal mapping ΥN, then we shall
write

enc = ΥN ◦ T. (29.26)

Since ΥN is invertible, there is a one-to-one correspondence between T and enc.

An important code property is the distribution of the result of applying an encoder
to IID random bits.

Proposition 29.4.2. Let T : FK
2 → FN

2 be a linear (K,N) F2 encoder.

(i) Applying T to a K-tuple of IID random bits results in a random N-tuple that
is uniformly distributed over Image(T).

(ii) Applying ΥN ◦ T to IID random bits produces an N-tuple that is uniformly
distributed over the image of Image(T) under the componentwise antipodal
mapping ΥN.

Proof. Part (i) follows from the fact that the mapping T(·) is one-to-one. Part (ii)
follows from Part (i) and from the fact that ΥN(·) is one-to-one.

For example, it follows from Proposition 29.4.2 (ii) and from (29.16) that if we
feed IID random bits to any encoder (be it systematic or not) whose image is the
(K,K + 1) single parity check code and then employ the componentwise antipodal
mapping ΥN(·), then the resulting random (K + 1)-tuple (X1, . . . , XK+1) will be
uniformly distributed over the set{(

ξ1, . . . , ξK+1

)
∈ {−1,+1}K+1 :

K+1∏
η=1

ξη = +1
}
.

Corollary 29.4.3. Any property that is determined by the joint distribution of the
result of applying the encoder to IID random bits is a code property.

Examples of such properties are the power and operational power spectral density,
which are discussed next.



29.5 Power and Operational Power Spectral Density 661

29.5 Power and Operational Power Spectral Density

To discuss the transmitted power and the operational power spectral density we
shall consider bi-infinite block encoding (Section 14.5.2). We shall then use the
results of Section 14.5.2 and Section 15.4.3 to compute the power and operational
PSD of the transmitted signal in this mode.

The impatient reader who is only interested in the transmitted power for pulse
shapes satisfying the orthogonality condition (29.2) can apply the results of Sec-
tion 14.5.3 directly to obtain that, subject to the decay condition (14.46), the
transmitted power P is given by

P =
A2

Ts
. (29.27)

We next extend the discussion to general pulse shapes and to the operational PSD.
To remind the reader that we no longer assume the orthogonality condition (29.2),
we shall now denote the pulse shape by g(·) and assume that it is bandlimited
to W Hz and that it satisfies the decay condition (14.17). Before proceeding with
the analysis of the power and PSD, we wish to characterize linear binary (K,N)
block encoders with antipodal signaling that map IID random bits to zero-mean
N-tuples. Note that by Corollary 29.4.3 this is, in fact, a code property. Thus, if
enc = ΥN ◦T, then the question of whether enc(·) maps IID random bits to zero-
mean N-tuples depends only on the image of T. Aiding us in this characterization
is the following lemma on linear functionals. A linear functional on Fκ2 is a linear
mapping from Fκ2 to F2. The zero functional maps every κ-tuple in Fκ2 to zero.

Lemma 29.5.1. Let L : FK
2 → F2 be a linear functional that is not the zero func-

tional. Then the RV X defined by

X =

{
+1 if L

(
(D1, . . . , DK)

)
= 0,

−1 if L
(
(D1, . . . , DK)

)
= 1

(29.28)

is of zero mean whenever D1, . . . , DK are IID random bits.

Proof. We begin by expressing the expectation of X as

E[X] =
∑
d∈FK

2

Pr[D = d] Υ
(
L(d)

)
= 2−K

∑
d∈FK

2

Υ
(
L(d)

)
= 2−K

∑
d∈FK

2 : L(d)=0

(+1) + 2−K
∑

d∈FK
2 : L(d)=1

(−1)

= 2−K
(
# L−1(0)−# L−1(1)

)
,

where
L−1(0) =

{
d ∈ FK

2 : L(d) = 0
}
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is the set of all K-tuples in FK
2 that are mapped by L(·) to 0, where L−1(1) is anal-

ogously defined, and where #A denotes the number of elements in the set A. It
follows that to prove that E[X] = 0 it suffices to show that if L(·) is not determin-
istically zero, then the sets L−1(0) and L−1(1) have the same number of elements.
We prove this by exhibiting a one-to-one mapping from L−1(0) onto L−1(1). (If
there is a one-to-one mapping from a finite set A onto a finite set B, then A and B
must have the same number of elements.) To exhibit this mapping, note that the
assumption that L(·) is not the zero transformation implies that the set L−1(1) is
not empty. Let d∗ be an element of this set, so

L(d∗) = 1. (29.29)

The required mapping maps each d0 ∈ L−1(0) to d0 ⊕ d∗:

L−1(0) 3 d0 7→ d0 ⊕ d∗. (29.30)

We next verify that it is a one-to-one mapping from L−1(0) onto L−1(1). That it is
one-to-one follows because if d0⊕d∗ = d′0⊕d∗ then by adding d∗ to both sides we
obtain d0⊕d∗⊕d∗ = d′0⊕d∗⊕d∗, i.e., that d0 = d′0 (because d∗⊕d∗ = 0). That
this mapping maps each element of L−1(0) to an element of L−1(1) follows because,
as we next show, if d0 ∈ L−1(0), then L(d0⊕d∗) = 1. Indeed, if d0 ∈ L−1(0), then

L(d0) = 0, (29.31)

and consequently,

L(d0 ⊕ d∗) = L(d0)⊕ L(d∗)
= 0⊕ 1
= 1,

where the first equality follows from the linearity of L(·), and where the second
equality follows from (29.29) and (29.31). That the mapping is onto follows by
noting that if d1 is any element of L−1(1), then d1 ⊕ d∗ is in L−1(0) and it is
mapped by this mapping to d1.

Using this lemma we can show:

Proposition 29.5.2. Let (X1, . . . , XN) be the result of applying a linear binary
(K,N) block encoder with antipodal signaling to a binary K-tuple comprising IID
random bits.

(i) For every η ∈ {1, . . . ,N}, the RV Xη is either deterministically equal to +1,
or else of zero mean.

(ii) For every η, η′ ∈ {1, . . . ,N}, the random variables Xη and Xη′ are either
deterministically equal to each other or else E[XηXη′ ] = 0.

Proof. Let the linear binary (K,N) block encoder with antipodal signaling enc(·)
be given by enc = ΥN ◦ T, where T : FK

2 → FN
2 is one-to-one and linear. Let



29.5 Power and Operational Power Spectral Density 663

(X1, . . . , XN) be the result of applying enc to the K-tuple D = (D1, . . . , DK),
where D1, . . . , DK are IID random bits.

To prove Part (i), fix some η ∈ {1, . . . ,N}, and let L(·) be the linear functional that
maps d to the η-th component of T(d), so Xη = Υ

(
L(D)

)
, where D denotes the

row vector comprising the K IID random bits. If L(·) maps all data K-tuples to zero,
then Xη is deterministically equal to +1. Otherwise, E[Xη] = 0 by Lemma 29.5.1.

To prove Part (ii), let the matrix G represent the mapping T(·), soXη = Υ
(
DG(·,η)),

where G(·,η) denotes the η-th column of G. Expressing Xη′ in a similar way, we
obtain from (29.15)

XηXη′ = Υ
(
DG(·,η)

)
Υ
(
DG(·,η′)

)
= Υ

(
DG(·,η) ⊕DG(·,η′)

)
= Υ

(
D
(
G(·,η) ⊕ G(·,η′))). (29.32)

Consequently, if we define the linear functional L : d 7→ d
(
G(·,η) ⊕ G(·,η′)), then

XηXη′ = Υ
(
L(D)

)
. This linear functional is the zero functional if the η-th column

of G is identical to its η′-th column, i.e., if Xη is deterministically equal to Xη′ .
Otherwise, it is not the zero functional, and E[XηXη′ ]

(
= E

[
Υ
(
L(D)

)])
must be

zero (Lemma 29.5.1).

Proposition 29.5.3 (Producing Zero-Mean Uncorrelated Symbols). A linear bi-
nary (K,N) block encoder with antipodal signaling enc = ΥN ◦ T produces zero-
mean uncorrelated symbols when fed IID random bits if, and only if, the columns
of the matrix G representing T(·) are distinct and neither of these columns is the
all-zero column.

Proof. The η-th symbol Xη produced by enc = ΥN ◦ T when fed the K-tuple of
IID random bits D = (D1, . . . , DK) is given by

Xη = Υ
(
DG(·,η))

= Υ
(
D1 · G(1,η) ⊕ · · · ⊕DK · G(K,η)

)
where G(·,η) is the η-th column of the K × N generator matrix of T(·). Since the
linear functional

d 7→ d1 · G(1,η) ⊕ · · · ⊕ dK · G(K,η)

is the zero functional if, and only if,

G(1,η) = · · · = G(K,η) = 0, (29.33)

it follows that Xη is deterministically zero if, and only if, the η-th column of G is
zero. From this and Lemma 29.5.1 it follows that all the symbols produced by enc
are of zero mean if, and only if, none of the columns of G is zero.

A similar argument shows that the product XηXη′ , which by (29.32) is given by

Υ
(
D
(
G(·,η) ⊕ G(·,η′))),
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is deterministically zero if, and only if, the functional

d 7→ d1 · (G(1,η) ⊕ G(1,η′))⊕ · · · ⊕ dK · (G(K,η) ⊕ G(K,η′))

is zero, i.e., if, and only if, the η-th and η′-th columns of G are equal. Otherwise,
by Lemma 29.5.1, we have E[XηXη′ ] = 0.

Note 29.5.4. By Corollary 29.4.3 the property of producing zero-mean uncorre-
lated symbols is a code property.

Proposition 29.5.5 (Power and PSD). Let the linear binary (K,N) block encoder
with antipodal signaling enc = ΥN ◦ T produce zero-mean uncorrelated symbols
when fed IID random bits, and let the pulse shape g satisfy the decay condition
(14.17). Then the transmitted power P in bi-infinite block-encoding mode is given
by

P =
A2

Ts
‖g‖22 (29.34)

and the operational PSD is

SXX(f) =
A2

Ts

∣∣ĝ(f)
∣∣2, f ∈ R. (29.35)

Proof. The expression (29.34) for the power follows either from (14.33) or (14.38).
The expression for the operational PSD follows either from (15.20) or from (15.23).

Engineers rarely check whether an encoder produces uncorrelated symbols when
fed IID random bits. The reason may be that they usually deal with pulse shapes φ
satisfying the orthogonality condition (29.2) and the decay condition (14.46). For
such pulse shapes the power is given by (29.27) without any additional assumptions.
Also, by Theorem 15.4.1, the bandwidth of the PAM signal is typically equal to the
bandwidth of the pulse shape. In fact, by that theorem, for linear binary (K,N)
block encoders with antipodal signaling

bandwidth of PAM signal = bandwidth of pulse shape, (29.36)

whenever A 6= 0; the pulse shape g is a Borel measurable function satisfying the
decay condition (14.17) for some α, β > 0; and the encoder produces zero-mean
symbols when fed IID random bits. Thus, if one is not interested in the exact form
of the operational PSD but only in its support, then one need not check whether
the encoder produces uncorrelated symbols when fed IID random bits.
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29.6 Performance Criteria

Designing an optimal decoder for linear binary block encoders with antipodal sig-
naling is conceptually very simple but algorithmically very difficult. The structure
of the decoder depends on what we mean by “optimal.” In this chapter we focus
on two notions of optimality: minimizing the probability of a block error—also
called message error—and minimizing the probability of a bit error. Referring
to Figure 28.1, we say that a block error occurred in decoding the ν-th block if
at least one of the data bits

(
D(ν−1)K+1, . . . , D(ν−1)K+K

)
was incorrectly decoded.

We say that a bit error occurred in decoding the j-th bit if Dj was incorrectly
decoded.

We consider the case where IID random bits are transmitted in block-mode and
where the transmitted waveform is corrupted by additive Gaussian noise that is
white with respect to the bandwidth W of the pulse shape. The pulse shape is
assumed to satisfy the orthonormality condition (29.2) and the decay condition
(14.17). From Proposition 28.3.1 it follows that for both optimality criteria, there
is no loss in optimality in feeding the received waveform to a matched filter for φ
and in basing the decision on the filter’s output sampled at integer multiples of Ts.
Moreover, for the purposes of decoding a given message it suffices to consider only
the samples corresponding to the symbols that were produced when the encoder
encoded the given message (Proposition 28.4.2). Similarly, for decoding a given
data bit it suffices to consider only the samples corresponding to the symbols that
were produced when the encoder encoded the message of which the given bit is part.
These observations lead us (as in Section 28.4.3) to the discrete-time single-block
model (28.30). For convenience, we repeat this model here (with the additional
assumption that the data are IID random bits):(

X1, . . . , XN

)
= enc

(
D1, . . . , DK

)
; (29.37a)

Yη = AXη + Zη, η ∈ {1, . . . ,N}; (29.37b)

Z1, . . . , ZN ∼ IID N
(

0,
N0

2

)
; (29.37c)

D1, . . . , DK ∼ IID U ({0, 1}) , (29.37d)

where (Z1, . . . , ZN) are independent of (D1, . . . , DK). We also introduce some
additional notation. We use xη(d) for the η-th component of the N-tuple to which
the binary K-tuple d is mapped by enc(·):

xη(d) , η-th component of enc(d),
(
η ∈ {1, . . . ,N}, d ∈ FK

2

)
. (29.38)

Denoting the conditional density of (Y1, . . . , YN) given (X1, . . . , XN) by fY|X(·),
we have for every y ∈ RN of components y1, . . . , yN and for every x ∈ {−1,+1}N
of components x1, . . . , xN

fY|X=x(y) = (πN0)−N/2
N∏
η=1

exp
(
− (yη −Axη)2

N0

)
. (29.39)



666 Linear Binary Block Codes with Antipodal Signaling

Parameter In Section 21.6 In Section 29.7
number of observations J N

number of hypotheses M 2K

set of hypotheses {1, . . . ,M} FK
2

dummy hypothesis variable m d
prior {πm} uniform
conditional mean tuple

(
s
(1)
m , . . . , s

(J)
m

) (
Ax1(d), . . . ,AxN(d)

)
conditional variance σ2 N0/2

Table 29.1: A conversion table for the setups of Section 21.6 and of Section 29.7.

Likewise, for every y ∈ RN and every data tuple d ∈ FK
2 ,

fY|D=d(y) = (πN0)−N/2
N∏
η=1

exp

(
−
(
yη −Axη(d)

)2
N0

)
. (29.40)

29.7 Minimizing the Block Error Rate

29.7.1 Optimal Decoding

To minimize the probability of a block error, we need to use the random N-vector
Y = (Y1, . . . , YN) to guess the K-tuple D =

(
D1, . . . , DK

)
. This is the type of

problem we addressed in Section 21.6. The translation between the setup of that
section and our current setup is summarized in Table 29.1: the number of obser-
vations, which was given there by J, is here N; the number of hypotheses, which
was given there by M, is here 2K; the set of possible messages, which was given
there by M = {1, . . . ,M}, is here the set of binary K-tuples FK

2 ; the dummy
variable for a generic message, which was given there by m, is here the binary
K-tuple d; the prior, which was denoted there by {πm}, is here uniform; the mean
tuple corresponding to the m-th message, which was given there by

(
s
(1)
m , . . . , s

(J)
m

)
is here

(
Ax1(d), . . . ,AxN(d)

)
(see (29.38)); and the conditional variance of each

observation, which was given there by σ2, is here N0/2.

Because all the symbols produced by the encoder take value in {−1,+1}, it follows
that

N∑
η=1

(
Axη(d)

)2 = A2N, d ∈ FK
2 ,

so all the mean tuples are of equal Euclidean norm. From Proposition 21.6.1 (iii)
we thus obtain that, to minimize the probability of a block error, our guess should
be the K-tuple d∗ that satisfies

N∑
η=1

xη(d∗)Yη = max
d∈FK

2

N∑
η=1

xη(d)Yη, (29.41)

with ties being resolved uniformly at random among the data tuples that achieve
the maximum. Our guess should thus be the data sequence that when fed to the
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encoder produces the {±1}-valued N-tuple of highest correlation with the observed
tuple Y. Note that, by definition, all block encoders are one-to-one mappings
and thus the mean tuples are distinct. Consequently, by Proposition 21.6.2, the
probability that more than one tuple d∗ satisfies (29.41) is zero.

Since guessing the data tuple is equivalent to guessing the N-tuple to which it is
mapped, we can also describe the optimal decision rule in terms of the encoder’s
output.

Proposition 29.7.1 (The Max-Correlation Decision Rule). Consider the problem
of guessing D based on Y for the setup of Section 29.6.

(i) Picking at random a message from the set{
d̃ ∈ FK

2 :
N∑
η=1

xη(d̃)Yη = max
d∈FK

2

N∑
η=1

xη(d)Yη

}
(29.42)

minimizes the probability of incorrectly guessing D.

(ii) The probability that the above set contains more than one element is zero.

(iii) For the problem of guessing the encoder’s output, picking at random an N-
tuple from the set{

x̃ ∈ Image(enc) :
N∑
η=1

x̃η Yη = max
x∈Image(enc)

N∑
η=1

xη Yη

}
(29.43)

minimizes the probability of error. This set contains more than one element
with probability zero.

Conceptually, the problem of finding an N-tuple that has the highest correlation
with (Y1, . . . , YN) among all the N-tuples in the image of enc(·) is very simple: one
goes over the list of all the 2K N-tuples that are in the image of enc(·) and picks
the one that has the highest correlation with (Y1, . . . , YN). But algorithmically
this is very difficult because 2K is in most applications a huge number. It is one of
the challenges of Coding Theory to come up with encoders for which the decoding
does not require an exhaustive search over all 2K tuples. As we shall see, the
single parity check code is an example of such a code. But the performance of this
encoder is, alas, not stellar.

29.7.2 Wagner’s Rule

For the (K,K+1) systematic single parity check encoder (29.20), the decoding can
be performed very efficiently using a decision algorithm that is called Wagner’s
Rule in honor of C.A. Wagner. Unlike the brute-force approach that considers all
possible data tuples and which thus has a complexity which is exponential in K,
the complexity of Wagner’s Rule is linear in K.
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Wagner’s Rule can be summarized as follows. Consider the (K + 1) tuple

ξη ,

{
+1 if Yη ≥ 0,
−1 otherwise,

η = 1, . . . ,K + 1. (29.44)

If this tuple has an even number of negative components, then guess that the en-
coder’s output is (ξ1, . . . , ξK+1) and that the data sequence is thus the inverse of
(ξ1, . . . , ξK) under the componentwise antipodal mapping ΥK, i.e., that the data
tuple is (1− ξ1)/2, . . . , (1− ξK)/2. Otherwise, flip the sign of ξη∗ corresponding to
the Yη∗ of smallest magnitude. I.e., guess that the encoder’s output is

ξ1, . . . , ξη∗−1,−ξη∗ , ξη∗+1 . . . , ξK+1, (29.45)

and that the data bits are

1− ξ1
2

, . . . ,
1− ξη∗−1

2
,
1 + ξη∗

2
,
1− ξη∗+1

2
. . . ,

1− ξK
2

, (29.46)

where η∗ is the element of {1, . . . ,K + 1} satisfying

|Yη∗ | = min
1≤η≤K+1

|Yη|. (29.47)

Proof that Wagner’s Rule is Optimal. Recall that the (K,K + 1) single parity
check code with antipodal signaling consists of all ±1-valued (K+1)-tuples having
an even number of −1’s. We seek to find the tuple that among all such tuples max-
imizes the correlation with the received tuple (Y1, . . . , YK+1). The tuple defined in
(29.44) is the tuple that among all tuples in {−1,+1}K+1 has the highest correla-
tion with (Y1, . . . , YK+1). Since flipping the sign of ξη reduces the correlation by
2|Yη|, the tuple (29.45) has the second-highest correlation among all the tuples in
{−1,+1}K+1. Since the tuples (29.44) and (29.45) differ in one component, exactly
one of them has an even number of negative components. That tuple thus maxi-
mizes the correlation among all tuples in {−1,+1}K+1 that have an even number
of negative components and is thus the tuple we are after.

Since the encoder is systematic, the data tuple that generates a given encoder
output is easily found by considering the first K components of the encoder output
and by then applying the mapping +1 7→ 0 and −1 7→ 1, i.e., ξ 7→ (1− ξ)/2.

29.7.3 The Probability of a Block Error

We next address the performance of the detector that we designed in Section 29.7.1
when we sought to minimize the probability of a block error. We continue to assume
that the encoder is a linear binary (K,N) block encoder with antipodal signaling,
so the encoder function enc(·) can be written as enc = ΥN ◦T where T : FK

2 → FN
2

is a linear one-to-one mapping and ΥN(·) is the componentwise antipodal mapping.
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An Upper Bound

It is usually very difficult to precisely evaluate the probability of a block error. A
very useful bound is the Union Bound, which we encountered in Section 21.6.3.
Denoting by pMAP(error|D = d) the probability of error of our guessing rule con-
ditional on the binary K-tuple D = d being fed to the encoder, we can use (21.59),
Table 29.1, and (29.18) to obtain

pMAP(error|D = d) ≤
∑

d′∈FK
2 \{d}

Q

√2A2dH

(
T(d′),T(d)

)
N0

 . (29.48)

It is customary to group all the equal terms on the RHS of (29.48) and to write
the bound in the equivalent form

pMAP(error|D = d) ≤
N∑
ν=1

#
{
d′ ∈ FK

2 : dH

(
T(d′),T(d)

)
= ν

}
Q

√2A2ν

N0

 ,

(29.49)
where

#
{
d′ ∈ FK

2 : dH

(
T(d′),T(d)

)
= ν

}
(29.50)

is the number of data tuples that are mapped by T(·) to a binary N-tuple that
is at Hamming distance ν from T(d), and where the sum excludes ν = 0 because
the fact that T(·) is one-to-one implies that if d′ 6= d then the Hamming distance
between T(d′) and T(d) must be at least one.

We next show that the linearity of T(·) implies that the RHS of (29.49) does not
depend on d. (In Section 29.9 we show that this is also true of the LHS.) To this
end we show that for every ν ∈ {1, . . . ,N} and for every d ∈ FK

2 ,

#
{
d′ ∈ FK

2 : dH

(
T(d′),T(d)

)
= ν

}
= #

{
d̃ ∈ FK

2 : wH

(
T(d̃)

)
= ν

}
(29.51)

= #
{
c ∈ Image(T) : wH(c) = ν

}
, (29.52)

where the RHS of (29.51) is the evaluation of the LHS at d = 0. To prove (29.51)
we note that the mapping d′ 7→ d′⊕d is a one-to-one mapping from the set whose
cardinality is written on the LHS to the set whose cardinality is written on the
RHS, because (

dH

(
T(d′),T(d)

)
= ν

)
⇔
(
wH

(
T(d)⊕ T(d′)

)
= ν

)
⇔
(
wH

(
T(d⊕ d′)

)
= ν

)
,

where the first equivalence follows from (29.13), and where the second equivalence
follows from the linearity of T(·). To prove (29.52) we merely substitute c for T(d̃)
in (29.51) and use the fact that T(·) is one-to-one.

Combining (29.49) with (29.52) we obtain the bound

pMAP(error|D = d) ≤
N∑
ν=1

#
{
c ∈ Image(T) : wH(c) = ν

}
Q

√2A2ν

N0

 . (29.53)
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The list of N + 1 nonnegative integers(
#
{
c ∈ Image(T) : wH(c) = 0

}
, . . . ,#

{
c ∈ Image(T) : wH(c) = N

})
(whose first term is equal to one and whose terms sum to 2K) is called the weight
enumerator of the code.

For example, for the (K,K + 1) single parity check code

#
{
d̃ ∈ FK

2 : wH

(
T(d̃)

)
= ν

}
=

{
0 if ν is odd,(
K+1
ν

)
if ν is even,

ν = 0, . . . ,K + 1

because this code consists of all (K + 1)-tuples of even Hamming weight. Conse-
quently, this code’s weight enumerator is(

1, 0,
(

K + 1
2

)
, 0,
(

K + 1
4

)
, 0, . . . , 0,

(
K + 1
K + 1

))
, if K is odd;

(
1, 0,

(
K + 1

2

)
, 0,
(

K + 1
4

)
, 0, . . . ,

(
K + 1

K

)
, 0

)
, if K is even.

The minimum Hamming distance dmin,H of a linear (K,N) F2 code is the
smallest Hamming distance between distinct elements of the code. (If K = 0, i.e.,
if the only codeword is the all-zero codeword, then, by convention, the minimum
distance is said to be infinite.) By (29.52) it follows that (for K > 0) the minimum
Hamming distance of a code is also the smallest weight that a nonzero codeword
can have

dmin,H = min
c∈Image(T)\{0}

wH(c). (29.54)

With this definition we can rewrite (29.53) as

pMAP(error|D = d) ≤
N∑

ν=dmin,H

#
{
c ∈ Image(T) : wH(c) = ν

}
Q

√2A2ν

N0

 .

(29.55)

Engineers sometimes approximate the RHS of (29.55) by its first term:

#
{
c ∈ Image(T) : wH(c) = dmin,H

}
Q

√2A2dmin,H

N0

 . (29.56)

This is reasonable when A2/N0 � 1 because the Q(·) function decays very rapidly;
see (19.18).

The term
#
{
c ∈ Image(T) : wH(c) = dmin,H

}
(29.57)

is sometimes called the number of nearset neighbors.
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A Lower Bound

Using the results of Section 21.6.4, we can obtain a lower bound on the probability
of a block error. Indeed, by (21.65), Table 29.1, (29.18), the monotonicity of Q(·),
and the definition of dmin,H

pMAP(error|D = d) ≥ Q

√2A2dmin,H

N0

 . (29.58)

29.8 Minimizing the Bit Error Rate

In some applications we want to minimize the number of data bits that are incor-
rectly decoded. This performance criterion leads to a different guessing rule, which
we derive and analyze in this section.

29.8.1 Optimal Decoding

We next derive the guessing rule that minimizes the average probability of a bit
error, or the Bit Error Rate. Conceptually, this is simple. For each κ ∈ {1, . . . ,K}
our guess of the κ-th data bit Dκ should minimize the probability of error. This
problem falls under the category of binary hypothesis testing, and, since Dκ is a
priori equally likely to be 0 or 1, the Maximum-Likelihood rule of Section 20.8 is
optimal. To compute the likelihood-ratio function, we treat the other data bits
D1, . . . , Dκ−1, Dκ+1, . . . , DK as unobserved random parameters (Section 20.15.1).
Thus, using (20.101) with the random parameter Θ now corresponding to the tuple
(D1, . . . , Dκ−1, Dκ+1, . . . , DK) we obtain2

fY|Dκ=0(y1, . . . , yN)

= 2−(K−1)
∑

d∈Aκ,0

fY1,...,YN|D=d(y1, . . . , yN) (29.59)

= 2−(K−1)(πN0)−N/2
∑

d∈Aκ,0

N∏
η=1

exp

(
−
(
yη −Axη(d)

)2
N0

)
, (29.60)

where the set Aκ,0 consists of those tuples in FK
2 whose κ-th component is zero

Aκ,0 =
{

(d1, . . . , dK) ∈ FK
2 : dκ = 0

}
. (29.61)

Likewise,

fY|Dκ=1(y1, . . . , yN)

= 2−(K−1)
∑

d∈Aκ,1

fY1,...,YN|D=d(y1, . . . , yN) (29.62)

2Our assumption that the data are IID random bits guarantees that the random parameter
Θ , (D1, . . . , Dκ−1, Dκ+1, . . . , DK) is independent of the RV Dκ that we wish to guess.
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= 2−(K−1)(πN0)−N/2
∑

d∈Aκ,1

N∏
η=1

exp

(
−
(
yη −Axη(d)

)2
N0

)
, (29.63)

where we similarly define

Aκ,1 =
{

(d1, . . . , dK) ∈ FK
2 : dκ = 1

}
. (29.64)

Using Theorem 20.7.1 and (29.60) & (29.63) we obtain the following.

Proposition 29.8.1 (Minimizing the BER). Consider the problem of guessing Dκ

based on Y for the setup of Section 29.6, where κ ∈ {1, . . . ,K}. The decision rule
that guesses “Dκ = 0” if

∑
d∈Aκ,0

N∏
η=1

exp

(
−
(
yη −Axη(d)

)2
N0

)
>

∑
d∈Aκ,1

N∏
η=1

exp

(
−
(
yη −Axη(d)

)2
N0

)
;

that guesses “Dκ = 1” if

∑
d∈Aκ,0

N∏
η=1

exp

(
−
(
yη −Axη(d)

)2
N0

)
<

∑
d∈Aκ,1

N∏
η=1

exp

(
−
(
yη −Axη(d)

)2
N0

)
;

and that guesses at random in case of equality minimizes the probability of guessing
the data bit Dκ incorrectly.

The difficulty in implementing this decision rule is that, unless we exploit some
algebraic structure, the computation of the sums above has exponential complexity
because the number of terms in each sum is 2K−1.

It is interesting to note that, unlike the decision rule that minimizes the probability
of a block error, the above decision rule depends on the value of N0/2.

29.8.2 The Probability of a Bit Error

We next obtain bounds on the probability that the detector of Proposition 29.8.1
errs in guessing the κ-th data bit Dκ. We denote this probability by p∗κ.

An Upper Bound

Since the detector of Proposition 29.8.1 is optimal, the probability that it errs
in decoding the κ-th data bit Dκ cannot exceed the probability of error of the
suboptimal rule whose guess for Dκ is the κ-th bit of the message produced by the
detector of Section 29.7. Thus, if φMAP(·) denotes the decision rule of Section 29.7,
then

p∗κ ≤ Pr
[
D⊕ φMAP(Y) ∈ Aκ,1

]
, κ ∈ {1, . . . ,K}, (29.65)

where the set Aκ,1 was defined in (29.64) as the set of messages whose κ-th com-
ponent is equal to one, and where Y is the observed N-tuple whose components
are given in (29.37b).



29.8 Minimizing the Bit Error Rate 673

Since the data are IID random bits, we can rewrite (29.65) as

p∗κ ≤
1
2K

∑
d∈FK

2

∑
d̃∈Aκ,1

Pr
[
φMAP(Y) = d⊕ d̃

∣∣D = d
]
, κ ∈ {1, . . . ,K}. (29.66)

Since φMAP(Y) can only equal d⊕ d̃ if Y is at least as close in Euclidean distance
to enc(d ⊕ d̃) as it is to enc(d), it follows from Lemma 20.14.1, Table 29.1, and
(29.18) that

Pr
[
φMAP(Y) = d⊕ d̃

∣∣D = d
]
≤ Q

AdE

(
ΥN

(
T(d⊕ d̃)

)
,ΥN

(
T(d)

))
2
√

N0
2



= Q


√√√√A2d2

E

(
ΥN

(
T(d⊕ d̃)

)
,ΥN

(
T(d)

))
2N0


= Q

√2A2dH

(
T(d⊕ d̃),T(d)

)
N0


= Q

√2A2wH

(
T(d⊕ d̃)⊕ T(d)

)
N0


= Q

√2A2wH

(
T(d̃)

)
N0

 . (29.67)

It follows from (29.66) and (29.67) upon noting that RHS of (29.67) does not
depend on the transmitted message d that

p∗κ ≤
∑

d̃∈Aκ,1

Q

√2A2wH

(
T(d̃)

)
N0

 , κ ∈ {1, . . . ,K}. (29.68)

This bound is sometimes written as

p∗κ ≤
N∑

ν=dmin,H

γ(ν, κ)Q

√2A2ν

N0

 , κ ∈ {1, . . . ,K}, (29.69a)

where γ(ν, κ) denotes the number of elements d̃ of FK
2 whose κ-th component is

equal to one and for which T(d̃) is of Hamming weight ν, i.e.,

γ(ν, κ) = #
{
d̃ ∈ Aκ,1 : wH

(
T(d̃)

)
= ν

}
, (29.69b)

and where the minimum Hamming distance dmin,H is defined in (29.54).

Sometimes one is more interested in the arithmetic average of p∗κ

1
K

K∑
κ=1

p∗κ, (29.70)
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which is the optimal bit error rate. We next show that (29.68) leads to the
upper bound

1
K

K∑
κ=1

p∗κ ≤
1
K

∑
d∈FK

2

wH(d)Q

√2A2wH

(
T(d)

)
N0

 . (29.71)

This follows from the calculation

K∑
κ=1

p∗κ ≤
K∑
κ=1

∑
d∈Aκ,1

Q

√2A2wH

(
T(d)

)
N0


=

K∑
κ=1

∑
d∈FK

2

Q

√2A2wH

(
T(d)

)
N0

 I{d ∈ Aκ,1}

=
∑
d∈FK

2

Q

√2A2wH

(
T(d)

)
N0

 K∑
κ=1

I{d ∈ Aκ,1}

=
∑
d∈FK

2

Q

√2A2wH

(
T(d)

)
N0

wH(d),

where the inequality in the first line follows from (29.68); the equality in the second
by introducing the indicator function for the set Aκ,1 and extending the summa-
tion; the equality in the third line by changing the order of summation; and the
equality in the last line by noting that every d ∈ FK

2 is in exactly wH(d) of the sets
A1,1, . . . ,AK,1.

A Lower Bound

We next show that, for every κ ∈ {1, . . . ,K}, the probability p∗κ that the optimal
detector for guessing the κ-th data bit errs is lower-bounded by

p∗κ ≥ max
d∈Aκ,1

Q

√2A2wH

(
T(d)

)
N0

 , (29.72)

where Aκ,1 denotes the set of binary K-tuples whose κ-th component is equal to
one (29.64). To derive (29.72), fix some d ∈ Aκ,1 and note that for every d′ ∈ FK

2(
d′ ∈ Aκ,0

)
⇔
(
d′ ⊕ d ∈ Aκ,1

)
. (29.73)

This allows us to express fY|Dκ=1(y) for every y ∈ RN as

fY|Dκ=1(y) = 2−(K−1)
∑

d̃∈Aκ,1

fY|D=d̃(y)

= 2−(K−1)
∑

d′∈Aκ,0

fY|D=d⊕d′(y), (29.74)
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where the first equality follows from (29.62) and the second from (29.73).

Using the exact expression for the probability of error in binary hypothesis testing
(20.20) we have:

p∗κ =
1
2

∫
y∈RN

min
{
fY|Dκ=0(y), fY|Dκ=1(y)

}
dy

=
1
2

∫
min

{
2−(K−1)

∑
d′∈Aκ,0

fY|D=d′(y), 2−(K−1)
∑

d′∈Aκ,0

fY|D=d⊕d′(y)
}

dy

= 2−(K−1) 1
2

∫
min

{ ∑
d′∈Aκ,0

fY|D=d′(y),
∑

d′∈Aκ,0

fY|D=d⊕d′(y)
}

dy

≥ 2−(K−1) 1
2

∫ ∑
d′∈Aκ,0

min
{
fY|D=d′(y), fY|D=d⊕d′(y)

}
dy

= 2−(K−1)
∑

d′∈Aκ,0

∫
1
2

min
{
fY|D=d′(y), fY|D=d⊕d′(y)

}
dy

= 2−(K−1)
∑

d′∈Aκ,0

Q

√2A2dH

(
T(d′),T(d′ ⊕ d)

)
N0


= 2−(K−1)

∑
d′∈Aκ,0

Q

√2A2wH

(
T(d)

)
N0


= Q

√2A2wH

(
T(d)

)
N0

 , d ∈ Aκ,1,

where the first line follows from (20.20); the second by the explicit forms (29.59) &
(29.74) of the conditional densities fY|Dκ=0(·) and fY|Dκ=1(·); the third by pulling
the common term 2−(K−1) outside the minimum; the fourth because the minimum
between two sums with an equal number of terms is lower-bounded by the sum of
the minima between the corresponding terms; the fifth by swapping the summation
and integration; the sixth by Expression (20.20) for the optimal probability of error
for the binary hypothesis testing between D = d′ and D = d⊕ d′; the seventh by
the linearity of T(·); and the final line because the cardinality of Aκ,0 is 2(K−1).
Since the above derivation holds for every d ∈ Aκ,1, we may choose d to yield the
tightest bound, thus establishing (29.72).

29.9 Assuming the All-Zero Codeword

When simulating linear binary block encoders with antipodal signaling over the
Gaussian channel we rarely simulate the data as IID random bits. Instead we
assume that the message that is fed to the encoder is the all-zero message and that
the encoder’s output is hence the N-tuple whose components are all +1. In this
section we shall explain why it is correct to do so. More specifically, we shall show
that pMAP(error|D = d) does not depend on the message d and is thus equal to
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pMAP(error|D = 0). We shall also prove an analogous result for the decoder that
minimizes the probability of a bit error. The proofs are based on two features of
our setup: the encoder is linear and the Gaussian channel with antipodal inputs is
symmetric in the sense that

fY |X=−1(y) = fY |X=+1(−y), y ∈ R. (29.75)

Indeed, by (29.37b),

fY |X=−1(y) =
1√
πN0

e−
(y+A)2

N0

=
1√
πN0

e−
(−y−A)2

N0

= fY |X=+1(−y), y ∈ R.

Definition 29.9.1 (Memoryless Binary-Input/Output-Symmetric Channel). We
say that the conditional distribution of Y = (Y1, . . . , YN) conditional on X =
(X1, . . . , XN) corresponds to a memoryless binary-input/output-symmetric
channel if

fY|X=x(y) =
N∏
η=1

fY |X=xη (yη), x ∈ {−1,+1}N, (29.76a)

where
fY |X=−1(y) = fY |X=+1(−y), y ∈ R. (29.76b)

For every d ∈ FK
2 define the mapping ψd : RN → RN as

ψd :
(
y1, . . . , yN

)
7→
(
y1x1(d), . . . , yNxN(d)

)
. (29.77)

The function ψd(·) thus changes the sign of those components of its argument
that correspond to the negative components of enc(d). The key properties of this
mapping are summarized in the following lemma.

Lemma 29.9.2. As in (29.38), let xη(d) denote the result of applying the antipodal
mapping Υ to the η-th component of T(d), where T : FK

2 → FN
2 is some one-to-one

linear mapping. Let the conditional law of (Y1, . . . , YN) given D = d be given by∏N
η=1 fY |X=xη(d)(yη), where fY |X(·) satisfies the symmetry property (29.75). Let

ψd(·) be defined as in (29.77). Then

(i) ψ0(·) maps each y ∈ RN to itself.

(ii) For any d,d′ ∈ FK
2 the composition of ψd′ with ψd is given by ψd⊕d′ :

ψd ◦ψd′ = ψd⊕d′ . (29.78)

(iii) ψd is equal to its inverse

ψd

(
ψd(y)

)
= y, y ∈ RN. (29.79)

(iv) For every d ∈ FK
2 the Jacobian of the mapping ψd(·) is one.
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(v) For every d ∈ FK
2 and every y ∈ RN,

fY|D=d(y) = fY|D=0

(
ψd(y)

)
. (29.80)

(vi) For any d,d′ ∈ FK
2 and every y ∈ RN,

fY|D=d′
(
ψd(y)

)
= fY|D=d′⊕d(y). (29.81)

Proof. Part (i) follows from the definition (29.77) because the linearity of T(·) and
the definition of ΥN guarantee that xη(0) = +1, for all η ∈ {1, . . . ,N}. Part (ii)
follows by linearity and from (29.15):

(ψd ◦ψd′)(y1, . . . , yN) = ψd

(
y1x1(d′), . . . , yNxN(d′)

)
=
(
y1x1(d′)x1(d), . . . , yNxN(d′)xN(d)

)
=
(
y1x1(d′ ⊕ d), . . . , yNxN(d′ ⊕ d)

)
= ψd⊕d′(y1, . . . , yN),

where in the third equality we used (29.15) and the linearity of the encoder.
Part (iii) follows from Parts (i) and (ii). Part (iv) follows from Part (iii) or di-
rectly by computing the partial derivative matrix and noting that it is diagonal
with the diagonal elements being ±1 only. Part (v) follows from (29.75). To prove
Part (vi) we substitute d′ for d and ψd(y) for y in Part (v) to obtain

fY|D=d′
(
ψd(y)

)
= fY|D=0

(
ψd′
(
ψd(y)

))
= fY|D=0

(
ψd⊕d′(y)

)
= fY|D=d⊕d′(y),

where the second equality follows from Part (ii), and where the third equality
follows from Part (v).

With the aid of this lemma we can now justify the all-zero assumption in the
analysis of the probability of a block error. We shall state the result not only for
the Gaussian setup but also for the more general case where the conditional den-
sity fY|X(·) corresponds to a memoryless binary-input/output-symmetric channel.

Theorem 29.9.3. Consider the setup of Section 29.6 with the conditional den-
sity fY|X(·) corresponding to a memoryless binary-input/output-symmetric chan-
nel. Let pMAP(error|D = d) denote the conditional probability of a block error for
the detector of Proposition 29.7.1, conditional on the data tuple being d. Then,

pMAP(error|D = d) = pMAP(error|D = 0), d ∈ FK
2 . (29.82)

Proof. The proof of this result is not very difficult, but there is a slight technicality
that arises from the way ties are resolved. Since on the Gaussian channel ties occur
with probability zero (Proposition 21.6.2), this issue could be ignored. But we
prefer not to ignore it because we would like the proof to apply also to channels
satisfying (29.76) that are not necessarily Gaussian. To address ties, we shall
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assume that they are resolved at random as in Proposition 29.7.1 (i.e., as in the
Definition 21.3.2 of the MAP rule).

For every d ∈ FK
2 and every ν ∈ {1, . . . , 2K}, define the set Dd,ν ⊂ RN to contain

those y ∈ RN for which the following two conditions hold:

fY|D=d(y) = max
d′∈FK

2

fY|D=d′(y), (29.83a)

#
{
d̃ ∈ FK

2 : fY|D=d̃(y) = fY|D=d(y)
}

= ν. (29.83b)

Whenever y ∈ Dd,ν , the MAP rule guesses “D = d” with probability 1/ν. Thus,

pMAP(error|D = d) = 1−
2K∑
ν=1

1
ν

∫
y∈RN

I{y ∈ Dd,ν} fY|D=d(y) dy. (29.84)

The key is to note that, by Lemma 29.9.2 (v), for every d ∈ FK
2 and ν ∈ {1, . . . , 2K}(

y ∈ Dd,ν

)
⇔
(
ψd(y) ∈ D0,ν

)
. (29.85)

(Please pause to verify this.) Consequently, by (29.84),

pMAP(error|D = d) = 1−
2K∑
ν=1

1
ν

∫
y∈RN

I{y ∈ Dd,ν} fY|D=d(y) dy

= 1−
2K∑
ν=1

1
ν

∫
y∈RN

I{y ∈ Dd,ν} fY|D=0

(
ψd(y)

)
dy

= 1−
2K∑
ν=1

1
ν

∫
ỹ∈RN

I{ψd(ỹ) ∈ Dd,ν} fY|D=0(ỹ) dỹ

= 1−
2K∑
ν=1

1
ν

∫
ỹ∈RN

I{ỹ ∈ D0,ν} fY|D=0(ỹ) dỹ

= pMAP(error|D = 0),

where the first equality follows from (29.84); the second by Lemma 29.9.2 (v); the
third by defining ỹ , ψd(y) and using Parts (iv) and (iii) of Lemma 29.9.2; the
fourth by (29.85); and the final equality by (29.84).

We now formulate a similar result for the detector of Proposition 29.8.1. Let
p∗κ(error|D = d) denote the conditional probability that the decoder of Proposi-
tion 29.8.1 incorrectly decodes the κ-th data bit, conditional on the tuple d being
fed to the encoder. Since the data are IID random bits,

p∗κ = 2−K
∑
d∈FK

2

p∗κ(error|D = d). (29.86)
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Since ties are resolved at random

p∗κ(error|D = d)

= Pr
[ ∑

d′∈Aκ,0

fY|D=d′(Y) >
∑

d′∈Aκ,1

fY|D=d′(Y)
∣∣∣∣D = d

]
+

1
2

Pr
[ ∑

d′∈Aκ,0

fY|D=d′(Y) =
∑

d′∈Aκ,1

fY|D=d′(Y)
∣∣∣∣D = d

]
, d ∈ Aκ,1, (29.87)

and

p∗κ(error|D = d)

= Pr
[ ∑

d′∈Aκ,0

fY|D=d′(Y) <
∑

d′∈Aκ,1

fY|D=d′(Y)
∣∣∣∣D = d

]
+

1
2

Pr
[ ∑

d′∈Aκ,0

fY|D=d′(Y) =
∑

d′∈Aκ,1

fY|D=d′(Y)
∣∣∣∣D = d

]
, d ∈ Aκ,0. (29.88)

Theorem 29.9.4. Under the assumptions of Theorem 29.9.3, we have for every
κ ∈ {1, . . . ,K}

p∗κ(error|D = d) = p∗κ(error|D = 0), d ∈ FK
2 , (29.89)

and consequently

p∗κ = p∗κ(error|D = 0). (29.90)

Proof. It suffices to prove (29.89) because (29.90) will then follow by (29.86). To
prove (29.89) we begin by defining e(d) for d ∈ FK

2 as follows. If d is in Aκ,1, then
we define e(d) as

e(d) , Pr
[ ∑

d′∈Aκ,0

fY|D=d′(Y) >
∑

d′∈Aκ,1

fY|D=d′(Y)
∣∣∣∣D = d

]
, d ∈ Aκ,1.

Otherwise, if d is in Aκ,0, then we define e(d) as

e(d) , Pr
[ ∑

d′∈Aκ,0

fY|D=d′(Y) <
∑

d′∈Aκ,1

fY|D=d′(Y)
∣∣∣∣D = d

]
, d ∈ Aκ,0.

We shall prove (29.89) for the case where

d ∈ Aκ,1. (29.91)

The proof for the case where d ∈ Aκ,0 is almost identical and is omitted. For d
satisfying (29.91) we shall prove that e(d) does not depend on d. The second term
in (29.87) which accounts for the random resolution of ties can be treated very
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similarly. To show that e(d) does not depend on d we compute:

e(d)

=
∫
y∈RN

I
{ ∑

d′∈Aκ,0

fY|D=d′(y) >
∑

d′∈Aκ,1

fY|D=d′(y)
}
fY|D=d(y) dy

=
∫
y∈RN

I
{ ∑

d′∈Aκ,0

fY|D=d′(y) >
∑

d′∈Aκ,1

fY|D=d′(y)
}
fY|D=0

(
ψd(y)

)
dy

=
∫
ỹ∈RN

I
{ ∑

d′∈Aκ,0

fY|D=d′
(
ψd(ỹ)

)
>

∑
d′∈Aκ,1

fY|D=d′
(
ψd(ỹ)

)}
fY|D=0(ỹ) dỹ

=
∫
ỹ∈RN

I
{ ∑

d′∈Aκ,0

fY|D=d′⊕d(ỹ) >
∑

d′∈Aκ,1

fY|D=d′⊕d(ỹ)
}
fY|D=0(ỹ) dỹ

=
∫
ỹ∈RN

I
{ ∑

d̃∈Aκ,1

fY|D=d̃(ỹ) >
∑

d̃∈Aκ,0

fY|D=d̃(ỹ)
}
fY|D=0(ỹ) dỹ

= e(0),

where the second equality follows from Lemma 29.9.2 (v); the third by defining
the vector ỹ as ỹ , ψd(y) and by Parts (iv) and (iii) of Lemma 29.9.2; the fourth
by Lemma 29.9.2 (vi); and the fifth equality by defining d̃ , d ⊕ d′ and using
(29.73).

29.10 System Parameters

We next summarize how the system parameters such as power, bandwidth, and
block error rate are related to the parameters of the encoder. We only address the
case where the pulse shape φ satisfies the orthonormality condition (29.2). As we
next show, in this case the bandwidth W in Hz of the pulse shape can be expressed
as

W =
1
2

Rb
N

K
(1 + excess bandwidth), (29.92)

where Rb is the bit rate at which the data are fed to the modem in bits per
second, and where the excess bandwidth, which is defined in Definition 11.3.6, is
nonnegative. To verify (29.92) note that if the data arrive at the encoder at the
rate of Rb bits per second and if the encoder produces N real symbols for every K

bits that are fed to it, then the encoder produces real symbols at a rate

Rs =
N

K
Rb

[
real symbol

second

]
, (29.93)

so the baud period must be

Ts =
K

N

1
Rb
. (29.94)

It then follows from Definition 11.3.6 that the bandwidth of φ is given by (29.92)
with the excess bandwidth being nonnegative by Corollary 11.3.5.
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As to the transmitted power P, by (29.27) and (29.94) it is given by

P = Eb Rb, (29.95)

where Eb denotes the energy per data bit and is given by

Eb =
N

K
A2. (29.96)

It is customary to describe the error probability by which one measures performance
as a function of the energy-per-bit Eb.3 Thus, for example, one typically writes the
upper bound (29.55) on the probability of a block error using (29.96) as

pMAP(error|D = d)

≤
N∑

ν=dmin,H

#
{
c ∈ Image(T) : wH(c) = ν

}
Q

√2Eb(K/N)ν
N0

 . (29.97)

29.11 Hard vs. Soft Decisions

In Section 29.7 we derived the decision rule that minimizes the probability of a block
error. We saw that, in general, its complexity is exponential in the dimension K of
the code because a brute-force implementation of this rule requires correlating the
N-tuple Y with each of the 2K tuples in Image(enc). For the single parity check
rule we found a much simpler implementation of this rule, but for general codes
the decoding problem can be very difficult.

A suboptimal decoding rule that is sometimes implemented is the Hard Decision
decoding rule, which has two steps. In the first step one uses the observed real-
valued N-tuple (Y1, . . . , YN) to form the binary tuple (Ĉ1, . . . , ĈN) according to
the rule

Ĉη =

{
0 if Yη ≥ 0,
1 if Yη < 0,

η = 1, . . . ,N,

and in the second step one searches for the message d for which T (d) is closest in
Hamming distance to (Ĉ1, . . . , ĈN). The advantage of this decoding rule is that
the first step is very simple and that the second step can be often performed very
efficiently if the code has a strong algebraic structure.

29.12 The Varshamov and Singleton Bounds

Motivated by the approximation (29.56) and by (29.58), a fair bit of effort in
Coding Theory has been invested in finding (K,N) codes that have a large minimum

3The terms “energy-per-bit,” “energy-per-data-bit,” and “energy-per-information-bit” are
used interchangeably.
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Hamming weight and reasonable decoding complexity. One of the key existence
results in this area is the Varshamov Bound. We state here a special case of this
bound pertaining to our binary setting.

Theorem 29.12.1 (The Varshamov Bound). Let K and N be positive integers,
and let d be an integer in the range 2 ≤ d ≤ N− K + 1. If

d−2∑
ν=0

(
N− 1
ν

)
< 2N−K, (29.98)

then there exists a linear (K,N) F2 code whose minimum distance dmin,H satisfies
dmin,H ≥ d.

Proof. See, for example, (MacWilliams and Sloane, 1977, Chapter 1, Section 10,
Theorem 12) or (Blahut, 2002, Chapter 12, Section 3, Theorem 12.3.3).

A key upper bound on dmin,H is given by the Singleton Bound.

Theorem 29.12.2 (The Singleton Bound). If N and K are positive integers, then
the minimum Hamming distance dmin,H of any linear (K,N) F2 code must satisfy

dmin,H ≤ N− K + 1. (29.99)

Proof. See, for example, (Blahut, 2002, Chapter 3, Section 3, Theorem 3.2.6) or
(van Lint, 1998, Chapter 5, Section 2, Corollary 5.2.2) or Exercise 29.10.

29.13 Additional Reading

We have only had a glimpse of Coding Theory. A good starting point for the
literature on Algebraic Coding Theory is (Roth, 2006). For more on the modern
coding techniques such as low-density parity-check codes (LDPC) and turbo-codes,
see (Richardson and Urbanke, 2008).

The degredation resulting from hard decsions is addressed, e.g., in (Viterbi and
Omura, 1979, Chapter 3, Section 3.4).

The results of Section 29.9 can be extended also to non-binary codes with other
mappings. See, for example, (Loeliger, 1991) and (Forney, 1991).

For some of the literature on the minimum distance and its asymptotic behavior
in the block length, see, for example, (Roth, 2006, Chapter 4)

For more on the decoding complexity see the notes on Section 2.4 in Chapter 2 of
(Roth, 2006).

29.14 Exercises

Exercise 29.1 (Orthogonality of Signals). Recall that, given a binary K-tuple d ∈ FK
2

and a linear (K,N) F2 encoder T(·), we use xη(d) to denote the result of applying the
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antipodal mapping Υ(·) to the η-th component of T(d). Let the pulse shape φ be such
that its time shifts by integer multiples of the baud period Ts are orthonormal. Show that〈

t 7→
N∑
η=1

xη(d)φ(t− ηTs), t 7→
N∑
η=1

xη(d
′)φ(t− ηTs)

〉
= 0,

if, and only if, dH

(
T(d),T(d′)

)
= N/2.

Exercise 29.2 (How Many Encoders Does a Code Have?). Let the linear (K,N) F2

encoder T : FK
2 → FN

2 be represented by the K × N matrix G. Show that any linear
(K,N) F2 encoder whose image is equal to the image of T can be written in the form

d 7→ dAG,

where A is a K×K invertible matrix whose entries are in F2. How many such matrices A
are there?

Exercise 29.3 (The (4,7) Hamming Code). A systematic encoder for the linear (4, 7) F2

Hamming code maps the four data bits d1, d2, d3, d4 to the 7-tuple(
d1, d2, d3, d4, d1 ⊕ d3 ⊕ d4, d1 ⊕ d2 ⊕ d4, d2 ⊕ d3 ⊕ d4

)
.

Suppose that this encoder is used in conjunction with the componentwise antipodal map-
ping Υ7(·) over the white Gaussian noise channel with PAM of pulse shape whose time
shifts by integer multiples of the baud period are orthonormal.

(i) Write out the 16 binary codewords and compute the code’s weight enumerator.

(ii) Assuming that the codewords are equally likely and that the decoding minimizes the
probability of a message error, use the Union Bound to upper-bound the probability
of codeword error. Express your bound using the transmitted energy per bit Eb.

(iii) Find a lower bound on the probability that the first bit D1 is incorrectly decoded.
Express your bound in terms of the energy per bit. Compare with the exact ex-
pression in uncoded communication.

Exercise 29.4 (The Repetition Code). Consider the linear (1,N) F2 repetition code
consisting of the all-zero and all-one N-tuples (0, . . . , 0) and (1, . . . , 1).

(i) Find its weight enumerator.

(ii) Find an optimal decoder for a system employing this code with the componentwise
antipodal mapping ΥN(·) over the white Gaussian noise channel in conjunction
with PAM with a pulse shape whose times shifts by integer multiples of the baud
period are orthonormal.

(iii) Find the optimal probability of error. Express your answer using the energy per
bit Eb. Compare with uncoded antipodal signaling.

(iv) Describe the hard decision rule for this setup. Find its performance in terms of Eb.

Exercise 29.5 (The Dual Code). We say that two binary κ-tuples u = (u1, . . . , uκ) and
v = (v1, . . . , vκ) are orthogonal if

u1 · v1 ⊕ u2 · v2 ⊕ · · · ⊕ uκ · vκ = 0.

Consider the set of all N-tuples that are orthogonal to every codeword of some given
linear (K,N) F2 code. Show that this set is a linear (N − K,N) F2 code. This code is
called the dual code. What is the dual code of the (K,K + 1) single parity check code?
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Exercise 29.6 (Hadamard Code). For a positive integer N which is a power of two, define
the N×N binary matrix HN recursively as

H2 =

(
0 0
0 1

)
, HN =

(
HN/2 HN/2

HN/2 H̄N/2

)
, N = 4, 8, 16, . . . , (29.100)

where H̄ denotes the componentwise negation of the matrix H, that is, the matrix whose
Row-j Column-` element is given by 1⊕[H]j,`, where [H]j,` is the Row-j Column-` element
of H. Consider the set of all rows of HN.

(i) Show that this collection of N binary N-tuples forms a linear (log2 N,N) F2 code.
This code is called the Hadamard code. Find this code’s weight enumerator.

(ii) Suppose that, as in Section 29.6, this code is used in conjunction with PAM over
the white Gaussian noise channel and that Y1, . . . , YN are as defined there. Show
that the following rule minimizes the probability of a message error: compute the
vector

H̃N


Y1

Y2

...
YN

 (29.101)

and guess that the m-th message was sent if the m-th component of this vector is
largest. Here H̃N is the N ×N matrix whose Row-j Column-` entry is the result
of applying Υ(·) to the Row-j Column-` entry of HN.

(iii) A brute-force computation of the vector in (29.101) requires N2 additions, which
translates to N2/ log2 N additions per information bit. Use the structure of HN

that is given in (29.100) to show that this can be done with N log2 N additions
(or N additions per information bit).

Hint: For Part (iii) provide an algorithm for which c(N) = 2c(N/2) + N, where c(n)
denotes the number of additions needed to compute this vector when the matrix is n× n.
Show that the solution to this recursion for c(2) = 2 is c(n) = n log2 n.

Exercise 29.7 (Bi-Orthogonal Code). Referring to the notation introduced in Exer-
cise 29.6, consider the 2N×N matrix (

HN

H̄N

)
,

where N is some positive power of two.

(i) Show that the rows of this matrix form a linear
(
log2(2N),N

)
F2 code.

(ii) Compute the code’s weight enumerator.

(iii) Explain why we chose the title “Bi-Orthogonal Code” for this exercise.

(iv) Find an efficient decoding algorithm for the setup of Section 29.6.

Exercise 29.8 (Non-IID Data). How would you modify the decision rule of Section 29.8 if
the data bits (D1, . . . , DK) are not necessarily IID but have the general joint probability
mass function PD(·)?

Exercise 29.9 (Asymmetric Channels). Show that Theorem 29.9.3 will no longer hold if
we drop the hypothesis that the channel is symmetric.
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Exercise 29.10 (A Proof of the Singleton Bound). Use the following steps to prove the
Singleton Bound.

(i) Consider a linear (K,N) F2 code. Let π : FN
2 → FK−1

2 map each N-tuple to the
(K−1)-tuple consisting of its first K−1 components. By comparing the number of
codewords with the cardinality of the range of π, argue that there must exist two
codewords whose first K− 1 components are identical.

(ii) Show that these two codewords are at Hamming distance of at most N−K + 1.

(iii) Show that the minimum Hamming distance of the code is at most N−K + 1.

(iv) Does linearity play a role in the proof?

Exercise 29.11 (Binary MDS Codes). Codes that satisfy the Singleton Bound with equal-
ity are called Maximum Distance Separable (MDS). Show that the linear (K,K + 1) F2

single parity check code is MDS. Can you think of other binary MDS codes?

Exercise 29.12 (Existence via the Varshamov Bound). Can the existence of a linear (4, 7)
F2 code of minimum Hamming distance 3 be deduced from the Varshamov Bound?



Appendix A

On the Fourier Series

A.1 Introduction and Preliminaries

We survey here some of the results on the Fourier Series that are used in the book.
The Fourier Series has numerous other applications that we do not touch upon.
For those we refer the reader to (Katznelson, 1976), (Dym and McKean, 1972),
and (Körner, 1988).

To simplify typography, we denote the half-open interval [−1/2, 1/2) by I:

I ,
{
θ ∈ R : −1

2
≤ θ < 1

2

}
. (A.1)

Definition A.1.1 (Fourier Series Coefficient). The η-th Fourier Series Coef-
ficient of an integrable function g : I → C is denoted by ĝ(η) and is defined for
every integer η by

ĝ(η) ,
∫

I
g(θ) e−i2πηθ dθ. (A.2)

The periodic extension of the function g : I→ C is denoted by gP : R→ C and
is defined as

gP(n+ θ) = g(θ),
(
n ∈ Z, θ ∈ I

)
. (A.3)

We say that g : I→ C is periodically continuous if its periodic extension gP is
continuous, i.e., if g(·) is continuous in I and if, additionally,

lim
θ↑1/2

g(θ) = g(−1/2). (A.4)

A degree-n trigonometric polynomial is a function of the form

θ 7→
n∑

η=−n
aη e

i2πηθ, θ ∈ R, (A.5)

where an and a−n are not both zero. Note that if p(·) is a trigonometric polynomial,
then p(θ + 1) = p(θ) for all θ ∈ R.

686
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If g : I→ C is integrable, and if p(·) is a trigonometric polynomial, then we define
the convolution g ? p at every θ ∈ R as

(g ? p)(θ) =
∫

I
g(ϑ) p(θ − ϑ) dϑ (A.6)

=
∫

I
p(ϑ) gP(θ − ϑ) dϑ. (A.7)

Lemma A.1.2 (Convolution with a Trigonometric Polynomial). The convolution
of an integrable function g : I→ C with the trigonometric polynomial

θ 7→
n∑

η=−n
aη e

i2πηθ (A.8)

is the trigonometric polynomial

θ 7→
n∑

η=−n
ĝ(η) aη ei2πηθ, θ ∈ R. (A.9)

Proof. Denote the trigonometric polynomial in (A.8) by p(·). By swapping sum-
mation and integration we obtain

(g ? p)(θ) =
∫

I
g(ϑ) p(θ − ϑ) dϑ

=
∫

I
g(ϑ)

n∑
η=−n

aη e
i2πη(θ−ϑ) dϑ

=
n∑

η=−n

∫
I
g(ϑ) aη ei2πη(θ−ϑ) dϑ

=
n∑

η=−n
aη e

i2πηθ

∫
I
g(ϑ) e−i2πηϑ dϑ

=
n∑

η=−n
aη e

i2πηθ ĝ(η), θ ∈ R.

Definition A.1.3 (Fejér’s Kernel). Fejér’s degree-n kernel kn is the trigono-
metric polynomial

kn(θ) =
n∑

η=−n

(
1− |η|

n+ 1

)
ei2πηθ (A.10a)

=


n+ 1 if θ ∈ Z,

1
n+1

(
sin((n+1)πθ)

sin(πθ)

)2

if θ ∈ R \ Z.
(A.10b)

The key properties of Fejér’s kernel are that it is nonnegative

kn(θ) ≥ 0, θ ∈ R; (A.11a)
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that it integrates over I to one ∫
I
kn(θ) dθ = 1; (A.11b)

and that for every fixed 0 < δ < 1/2

lim
n→∞

∫
δ<|θ|< 1

2

kn(θ) dθ = 0. (A.11c)

Here (A.11a) follows from (A.10b); (A.11b) follows from (A.10a) by term-by-term
integration over I; and (A.11c) follows from the inequality

kn(θ) ≤
1

n+ 1

(
1

sinπδ

)2

, δ ≤ |θ| ≤ 1
2
,

which follows from (A.10b) by upper-bounding the numerator by 1 and by using
the monotonicity of sin2(πθ) in |θ| ∈ [0, 1/2].

For an integrable function g : I→ C, we define for every n ∈ N and θ ∈ R

σn(g, θ) , (g ? kn)(θ) (A.12)

=
n∑

η=−n

(
1− |η|

n+ 1

)
ĝ(η) ei2πηθ, (A.13)

where the second equality follows from (A.10a) and Lemma A.1.2. We also define
for g : R→ C or g : I→ C

‖g‖I,1 =
∫

I

∣∣g(θ)∣∣ dθ. (A.14)

Finally, for every function h : I→ C and ϑ ∈ R we define the mapping hϑ : R→ C
as

hϑ : θ 7→ hP(θ − ϑ). (A.15)

A.2 Reconstruction in L1

Lemma A.2.1. If g : R → C is integrable over I and g(θ + 1) = g(θ) for every
θ ∈ R, then

lim
ϑ→0

∫
I

∣∣g(θ)− g(θ − ϑ)
∣∣ dθ = 0. (A.16)

Proof. This is easy to see if g is continuous, because in this case g is uniformly
continuous. The general result follows from this case by picking a periodic con-
tinuous function h that approximates g in the sense that ‖g − h‖I,1 < ε/2; by
computing

‖g − gϑ‖I,1 = ‖g − h + h− gϑ‖I,1
= ‖g − h + h− hϑ + hϑ − gϑ‖I,1
≤ ‖g − h‖I,1 + ‖h− hϑ‖I,1 + ‖hϑ − gϑ‖I,1
= ‖g − h‖I,1 + ‖h− hϑ‖I,1 + ‖h− g‖I,1
≤ ε+ ‖h− hϑ‖I,1 ; (A.17)
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and by then applying the result to h, which is continuous.

Theorem A.2.2 (Reconstruction in L1 ). If g : I→ C is integrable, then

lim
n→∞

∫
I

∣∣g(θ)− σn(g, θ)∣∣ dθ = 0. (A.18)

Proof. Let gP be the periodic extension of g. Then for every δ ∈ (0, 1/2),∫
I

∣∣g(θ)− σn(g, θ)∣∣ dθ =
∫

I

∣∣∣∣gP(θ)−
∫

I
gP(θ − ϑ) kn(ϑ) dϑ

∣∣∣∣ dθ
=
∫

I

∣∣∣∣∫
I
kn(ϑ)

(
gP(θ)− gP(θ − ϑ)

)
dϑ
∣∣∣∣ dθ,

=
∫

I

∣∣∣∣∫ δ

−δ
+
∫
δ<|ϑ|< 1

2

kn(ϑ)
(
gP(θ)− gP(θ − ϑ)

)
dϑ
∣∣∣∣ dθ, (A.19)

where the first equality follows from the definition of σn(g, θ) (A.12), and where the
second equality follows from (A.11b). We now bound the two integrals in (A.19)
separately: ∫

I

∣∣∣∣∫ δ

−δ
kn(ϑ)

(
gP(θ)− gP(θ − ϑ)

)
dϑ
∣∣∣∣ dθ

≤
∫

I

∫ δ

−δ
kn(ϑ)

∣∣gP(θ)− gP(θ − ϑ)
∣∣ dϑ dθ (A.20)

=
∫ δ

−δ

∫
I
kn(ϑ)

∣∣gP(θ)− gP(θ − ϑ)
∣∣ dθ dϑ

=
∫ δ

−δ
kn(ϑ)

∫
I

∣∣gP(θ)− gP(θ − ϑ)
∣∣ dθ dϑ

≤
∫ δ

−δ
kn(ϑ) max

|ϑ′|≤δ

{∫
I

∣∣gP(θ)− gP(θ − ϑ′)
∣∣ dθ} dϑ

≤
∫

I
kn(ϑ) max

|ϑ′|≤δ

{∫
I

∣∣gP(θ)− gP(θ − ϑ′)
∣∣ dθ} dϑ

= max
|ϑ|≤δ

∫
I

∣∣gP(θ)− gP(θ − ϑ)
∣∣ dθ, (A.21)

where the first inequality follows from the Triangle Inequality for Integrals (Propo-
sition 2.4.1) and the nonnegativity of kn(·) (A.11a), and where the last equality
follows because kn(·) integrates to one (A.11b).

The second integral in (A.19) is bounded as follows:∫
I

∫
δ<|ϑ|< 1

2

kn(ϑ)
∣∣gP(θ)− gP(θ − ϑ)

∣∣ dϑ dθ

=
∫
δ<|ϑ|< 1

2

kn(ϑ)
∫

I

∣∣gP(θ)− gP(θ − ϑ)
∣∣ dθ dϑ

≤ max
ϑ′∈I

{∫
I

∣∣gP(θ)− gP(θ − ϑ′)
∣∣ dθ} ∫

δ<|ϑ|< 1
2

kn(ϑ) dϑ

≤ 2 ‖g‖I,1
∫
δ<|ϑ|< 1

2

kn(ϑ) dϑ. (A.22)
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From (A.19), (A.21), and (A.22) we obtain∫
I

∣∣g(θ)− σn(g, θ)∣∣ dθ ≤ max
|ϑ|≤δ

∫
I

∣∣gP(θ − ϑ)− gP(θ)
∣∣ dθ

+ 2 ‖g‖I,1
∫
δ<|ϑ|< 1

2

kn(ϑ) dϑ. (A.23)

Inequality (A.23) establishes the theorem as follows. For every ε > 0 we can find
by Lemma A.2.1 some δ > 0 such that

max
|ϑ|≤δ

∫
I

∣∣gP(θ − ϑ)− gP(θ)
∣∣ dθ < ε, (A.24)

and keeping this δ > 0 fixed we have by (A.11c)

lim
n→∞

2 ‖g‖I,1
∫
δ<|ϑ|< 1

2

kn(ϑ) dϑ = 0. (A.25)

It thus follows from (A.23), (A.24), and (A.25) that

lim
n→∞

∫
I

∣∣g(θ)− σn(g, θ)∣∣ dθ < ε, (A.26)

from which the theorem follows because ε > 0 was arbitrary.

From Theorem A.2.2 we obtain:

Theorem A.2.3 (Uniqueness Theorem). Let g1,g2 : I→ C be integrable. If

ĝ1(η) = ĝ2(η), η ∈ Z, (A.27)

then g1 and g2 are equal except on a set of Lebesgue measure zero.

Proof. Let g = g1 − g2. By (A.27)

ĝ(η) = 0, η ∈ Z, (A.28)

and consequently, by (A.13), σn(g, θ) = 0 for every n ∈ N and θ ∈ I. By Theo-
rem A.2.2

lim
n→∞

∫
I

∣∣g(θ)− σn(g, θ)∣∣ dθ = 0, (A.29)

which combines with (A.28) to establish that∫
I
|g(θ)| dθ = 0.

Thus, g is zero except on a set of Lebesgue measure zero (Proposition 2.5.3 (i)),
and the result follows by recalling that g = g1 − g2.

Theorem A.2.4 (Riemann-Lebesgue Lemma). If g : I→ C is integrable, then

lim
|η|→∞

ĝ(η) = 0. (A.30)
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Proof. Given any ε > 0, let p be a degree-n trigonometric polynomial satisfying∫
I

∣∣g(θ)− p(θ)∣∣ dθ < ε. (A.31)

(Such a trigonometric polynomial exists for some n ∈ N by Theorem A.2.2). Ex-
pressing g as (g − p) + p and using the linearity of the Fourier Series Coefficients
we obtain for every integer η whose magnitude exceeds the degree n of p∣∣ĝ(η)∣∣ = ∣∣∣ ̂(g − p)(η) + p̂(η)

∣∣∣
=
∣∣∣ ̂(g − p)(η)

∣∣∣
≤
∫

I

∣∣g(θ)− p(θ)∣∣ dθ
< ε, (A.32)

where the equality in the first line follows from the linearity of the Fourier Series
Coefficient; the equality in the second line because |η| is larger than the degree n
of p; the inequality in the third line because for every integrable h : I→ C we have∣∣ĥ(η)∣∣ = ∣∣∣∣∫

I
h(θ) e−i2πηθ dθ

∣∣∣∣
≤
∫

I

∣∣∣h(θ) e−i2πηθ
∣∣∣ dθ

=
∫

I
|h(θ)|dθ, η ∈ Z;

and where the inequality in the last line of (A.32) follows from (A.31).

A.3 Geometric Considerations

Every square-integrable function that is zero outside the interval [−1/2, 1/2] is also
integrable (Proposition 3.4.3). For such functions we can discuss the inner product
and some of the related geometry. The main result is the following.

Theorem A.3.1 (Complete Orthonormal System). The bi-infinite sequence of
functions . . . ,φ−1,φ0,φ1, . . . defined for every η ∈ Z by

φη(θ) = ei2πηθ I
{
θ ∈ I

}
, θ ∈ R

forms a complete orthonormal system for the subspace of L2 consisting of those
energy-limited functions that are zero outside the interval I.

Proof. The orthonormality follows by direct calculation∫
I
ei2πηθ e−i2πη′θ dθ = I{η = η′}, η, η′ ∈ Z. (A.33)

To show completeness it suffices by Proposition 8.5.5 (ii) to show that a square-
integrable function g : I→ C that satisfies

〈g,φη〉 = 0, η ∈ Z (A.34)
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must be equal to the all-zero function except on a subset of I of Lebesgue measure
zero. To show this, we note that

〈g,φη〉 = ĝ(η), η ∈ Z, (A.35)

so (A.34) is equivalent to
ĝ(η) = 0, η ∈ Z, (A.36)

and hence, by Theorem A.2.3, g must be zero except on a set of Lebesgue measure
zero.

Recalling Definition 8.2.1 and Proposition 8.2.2 (d) we obtain that, because the
functions . . . ,φ−1,φ0,φ1, . . . form a CONS and because 〈g,φη〉 = ĝ(η), we have:

Theorem A.3.2. Let g,h : I→ C be square integrable. Then∫
I

∣∣g(θ)∣∣2 dθ =
∞∑

η=−∞

∣∣ĝ(η)∣∣2 (A.37)

and ∫
I
g(θ)h∗(θ) dθ =

∞∑
η=−∞

ĝ(η) ĥ∗(η). (A.38)

There is nothing special about the interval I, and, indeed, by scaling we obtain:

Theorem A.3.3. Let S be nonnegative.

(i) The bi-infinite sequence of functions defined for every η ∈ Z by

s 7→ 1√
S
ei2πηs/S I

{
−S

2
≤ s < S

2

}
, s ∈ R (A.39)

forms a CONS for the class of square-integrable functions that are zero out-
side the interval [−S/2,S/2).

(ii) If g is square integrable and zero outside the interval [−S/2,S/2), then∫ S/2

−S/2

∣∣g(ξ)∣∣2 dξ =
∞∑

η=−∞

∣∣∣∣∫ S/2

−S/2

g(ξ)
1√
S
e−i2πηs/S dξ

∣∣∣∣2. (A.40)

(iii) If g,h : R→ C are square integrable and zero outside the interval [−S/2,S/2),
then∫ S/2

−S/2

g(ξ)h∗(ξ) dξ

=
∞∑

η=−∞

(∫ S/2

−S/2

g(ξ)
1√
S
e−i2πηs/S dξ

)(∫ S/2

−S/2

h(ξ)
1√
S
e−i2πηs/S dξ

)∗
.
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Note A.3.4. The theorem continues to hold if we replace the half-open interval
with the open interval (−S/2,S/2) or with the closed interval [−S/2,S/2], because
the integrals are insensitive to these replacements.

Note A.3.5. We refer to ∫ S/2

−S/2

g(ξ)
1√
S
e−i2πηs/S dξ

as the η-th Fourier Series Coefficient of g with respect to the interval
[−S/2,S/2).

Lemma A.3.6 (A Mini Parseval Theorem).

(i) If

x(t) =
∫ W

−W

g(f) ei2πft df, t ∈ R, (A.41)

where g : R→ C satisfies ∫ W

−W

|g(f)|2 df <∞, (A.42)

then ∫ ∞

−∞
|x(t)|2 dt =

∫ W

−W

|g(f)|2 df. (A.43)

(ii) If for both ν = 1 and ν = 2

xν(t) =
∫ W

−W

gν(f) ei2πft df, t ∈ R, (A.44)

where the functions g1,g2 : R→ C satisfy∫ W

−W

|gν(f)|2 df <∞, ν = 1, 2, (A.45)

then ∫ ∞

−∞
x1(t)x∗2(t) dt =

∫ W

−W

g1(f) g∗2(f) df. (A.46)

Proof. We first prove Part (i). We begin by expressing the energy in x in the form∫ ∞

−∞
|x(t)|2 dt =

∞∑
`=−∞

∫ − `
2W + 1

2W

− `
2W

|x(t)|2 dt

=
∞∑

`=−∞

∫ 1
2W

0

∣∣∣x(α− `

2W

)∣∣∣2 dα

=
∫ 1

2W

0

∞∑
`=−∞

∣∣∣x(α− `

2W

)∣∣∣2 dα, (A.47)
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where in the second equality we changed the integration variable to α , t+`/(2W);
and where the third equality follows from Fubini’s Theorem and the nonnegativity
of the integrand. The proof of Part (i) will follow from (A.47) once we show that
for every α ∈ R

∞∑
`=−∞

∣∣∣x(α− `

2W

)∣∣∣2 = 2W

∫ W

−W

|g(f)|2 df. (A.48)

This can be shown by noting that by (A.41)

1√
2W

x
(
α− `

2W

)
=
∫ W

−W

1√
2W

e−i2πf `
2W ei2πfα g(f) df,

so (2W)−1/2x
(
α − `/(2W)

)
is the `-th Fourier Series Coefficient of the mapping

f 7→ ei2πfα g(f) with respect to the interval [−W,W) and consequently

∞∑
`=−∞

∣∣∣∣ 1√
2W

x
(
α− `

2W

)∣∣∣∣2 =
∫ W

−W

∣∣∣ei2πfα g(f)
∣∣∣2 df

=
∫ W

−W

∣∣g(f)
∣∣2 df,

where the first equality follows from Theorem A.3.3 (ii) and the second because
the magnitude of ei2πfα is one.

To prove Part (ii) we note that by opening the square and then applying Part (i)
to the function βx1 + x2 we obtain for every β ∈ C

|β|2
∫ ∞

−∞

∣∣x1(t)
∣∣2 dt+

∫ ∞

−∞

∣∣x2(t)
∣∣2 dt+ 2 Re

(
β

∫ ∞

−∞
x1(t)x∗2(t) dt

)
=
∫ ∞

−∞

∣∣βx1(t) + x2(t)
∣∣2 dt

=
∫ W

−W

∣∣βg1(f) + g2(f)
∣∣2 df

= |β|2
∫ ∞

−∞

∣∣g1(f)
∣∣2 df +

∫ ∞

−∞

∣∣g2(f)
∣∣2 df + 2 Re

(
β

∫ ∞

−∞
g1(f) g∗2(f) df

)
.

Consequently, upon applying Part (i) to x1 and to x2 we obtain

Re
(
β

∫ ∞

−∞
x1(t)x∗2(t) dt

)
= Re

(
β

∫ W

−W

g1(f) g∗2(f) df
)
, β ∈ C,

which implies ∫ ∞

−∞
x1(t)x∗2(t) dt =

∫ W

−W

g1(f) g∗2(f) df.
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Corollary A.3.7.

(i) Let y : R→ C be of finite energy, and let T > 0 be arbitrary. Let

g̃(f) =
∫ T

−T

y(t) e−i2πft dt, f ∈ R.

Then ∫ T

−T

|y(t)|2 dt =
∫ ∞

−∞
|g̃(f)|2 df.

(ii) Let the signals x1,x2 : R→ C be of finite energy, and let T > 0. Define

gν(f) =
∫ T

−T

xν(t) e−i2πft dt,
(
ν = 1, 2, f ∈ R

)
.

Then ∫ T

−T

x1(t)x∗2(t) dt =
∫ ∞

−∞
g1(f) g∗2(f) df.

Proof. Part (i) follows from Lemma A.3.6 (i) by substituting T for W; by substi-
tuting ~y for g; and by swapping the dummy variables f and t. Part (ii) follows
analogously.

A.4 Pointwise Reconstruction

If g : I → C is periodically continuous, then we can reconstruct its value at every
point from its Fourier Series Coefficients:

Theorem A.4.1 (Reconstructing Periodically Continuous Functions). Let the
function g : I→ C be periodically continuous. Then

lim
n→∞

max
θ∈I

{∣∣g(θ)− σn(g, θ)∣∣} = 0. (A.49)

Proof. Let gP denote the periodic extension of g. Then for every θ ∈ I,

g(θ)− σn(g, θ) = g(θ)−
∫

I
kn(ϑ) gP(θ − ϑ) dϑ

=
∫

I
kn(ϑ)

(
gP(θ)− gP(θ − ϑ)

)
dϑ, (A.50)

where the first equality follows from the definition of σn(g, θ) (A.12) and the second
from (A.11b). Consequently, for every θ ∈ I,∣∣g(θ)− σn(g, θ)∣∣

≤
∫

I
kn(ϑ)

∣∣gP(θ)− gP(θ − ϑ)
∣∣ dϑ

=
∫ δ

−δ
+
∫
δ<|ϑ|< 1

2

kn(ϑ)
∣∣gP(θ)− gP(θ − ϑ)

∣∣ dϑ, 0 ≤ δ < 1
2
. (A.51)



696 On the Fourier Series

We next treat the two integrals separately. For the first we have for every θ ∈ I
and every 0 ≤ δ < 1/2,∫ δ

−δ
kn(ϑ)

∣∣gP(θ)− gP(θ − ϑ)
∣∣ dϑ ≤ max

|ϑ′|≤δ

{∣∣gP(θ)− gP(θ − ϑ′)
∣∣} ∫ δ

−δ
kn(ϑ) dϑ

≤ max
|ϑ|≤δ

{∣∣gP(θ)− gP(θ − ϑ)
∣∣}, (A.52)

where the first inequality follows from the the nonnegativity of kn(·) (A.11a), and
where the second inequality follows because kn(·) is nonnegative and integrates
over I to one (A.11b). For the second integral in (A.51) we have for every θ ∈ I
and every 0 ≤ δ < 1/2,∫
δ<|ϑ|< 1

2

kn(ϑ)
∣∣gP(θ)− gP(θ−ϑ)

∣∣ dϑ ≤ 2 max
θ′∈I
{|g(θ′)|}

∫
δ<|ϑ|< 1

2

kn(ϑ) dϑ, (A.53)

where the maximum on the RHS is finite because g is periodically continuous.
Combining (A.51), (A.52), and (A.53) we obtain for every 0 ≤ δ < 1/2

max
θ∈I

{∣∣g(θ)− σn(g, θ)∣∣}
≤ max

θ∈I
max
|ϑ|≤δ

{∣∣gP(θ)− gP(θ − ϑ)
∣∣}+ 2 max

θ′∈I

{∣∣g(θ′)∣∣} ∫
δ<|ϑ|< 1

2

kn(ϑ) dϑ. (A.54)

Because g(·) is periodically continuous it follows that its periodic extension gP is
uniformly continuous. Consequently, for every ε > 0 we can find some δ > 0 such
that

max
|ϑ|≤δ

∣∣gP(θ)− gP(θ − ϑ)
∣∣ < ε, θ ∈ I. (A.55)

By letting n tend to infinity in (A.54) we obtain from (A.11c) and (A.55)

lim
n→∞

max
θ∈I

{∣∣g(θ)− σn(g, θ)∣∣} < ε,

which establishes the result because ε > 0 was arbitrary.

As a corollary we obtain:

Corollary A.4.2 (Weierstrass’s Approximation Theorem). Every periodically con-
tinuous function from I to C can be approximated uniformly using trigonometric
polynomials.
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Theorems Referenced by Name

Bernstein’s Inequality Theorem 6.7.1
Bochner’s Theorem Theorem 25.8.1
Cauchy-Schwarz Inequality Theorem 3.3.1
Cauchy-Schwarz Inequality for Random Variables Theorem 3.5.1
Characterization of Shift-Orthonormal Pulses Corollary 11.3.4
Covariance Inequality Corollary 3.5.2
Dominated Convergence Theorem (Rudin, 1974, Theorem 1.34)
Factorization Theorem Theorem 22.3.1
Fubini’s Theorem See Section 2.6
Hölder’s Inequality Theorem 3.3.2
Kolmogorov’s Existence Theorem Theorem 25.2.1
L2 -Sampling Theorem Theorem 8.4.3
Minimum Bandwidth Theorem Corollary 11.3.5
Nyquist’s Criterion Theorem 11.3.2
Parseval’s Theorem Theorem 6.2.9
Pointwise Sampling Theorem Theorem 8.4.5
Pythagorean Theorem Theorem 4.5.2
Riesz-Fischer Theorem Theorem 8.5.3
Sandwich Theorem Chapter 8, Footnote 5
Triangle Inequality for Complex Numbers (2.11) and (2.12)
Triangle Inequality in L2 (4.12) and (4.14)
Union-of-Events Bound (or Union Bound) Theorem 21.5.1
Wiener-Khinchin Theorem Theorem 25.14.1

702



Abbreviations

Abbreviations in Mathematics

CDF Cumulative Distribution Function
CONS Complete Orthonormal System
CRV Complex Random Variable
CSP Complex Stochastic Process
FDD Finite-Dimensional Distribution
FT Fourier Transform
IFT Inverse Fourier Transform
IID Independent and Identically Distributed
LHS Left-Hand Side
MGF Moment Generating Function
PDF Probability Density Function
PMF Probability Mass Function
PSD Power Spectral Density
RHS Right-Hand Side
RV Random Variable
SP Stochastic Process
WSS Wide-Sense Stationary

Abbreviations in Communications

BER Bit Error Rate
BPF Bandpass Filter
LPF Lowpass Filter
M-PSK M-ary Phase Shift Keying
PAM Pulse Amplitude Modulation
PSK Phase Shift Keying
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Keying
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List of Symbols

General

A⇒ B Statement B is true whenever Statement A is true.
A⇔ B Statement A is true if, and only if, Statement B is true.∑

Summation.∏
Product.

, Equal by definition.
� End of proof.

Sets

∅ Empty set.
{− : −} The set of all objects described before the colon that satisfy

the condition stated after the colon.
#A Number of elements of the set A.
a ∈ A Set membership: a is an element of A.
a /∈ A Exclusion: a is not an element of A.
A ⊂ B Proper subset: every element of A is an element of B but some

elements of B are not elements of A.
A ⊆ B Subset: every element of A is also an element of B.
B \ A Setminus: {b ∈ B : b /∈ A}.
Ac Set-complement.
A4B Symmetric Set Difference: (A \ B) ∪ (B \ A).
A× B Cartesian product:

{
(a, b) : a ∈ A, b ∈ B

}
.

An n-fold Cartesian product: A×A× · · · × A︸ ︷︷ ︸
n times

.

A ∩ B Intersection: {ξ ∈ A : ξ ∈ B}.
A ∪ B Union: elements of A or B.

Specific Sets

N Natural Numbers: {1, 2, . . .}.
Z Integers: {. . . ,−2,−1, 0, 1, 2, . . .}.
R Real Numbers.
C Complex Numbers.
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F2 Binary Field (Section 29.2).
I Unit interval [−1/2, 1/2); see (A.1).

Intervals and Some Functions

≤, <, ≥, > Inequality signs.
+∞, −∞, ∞ Infinities.
[a, b] Closed Interval: {ξ ∈ R : a ≤ ξ ≤ b}.
[a, b) Interval open on the right: {ξ ∈ R : a ≤ ξ < b}.
(a, b] Interval open on the left: {ξ ∈ R : a < ξ ≤ b}.
(a, b) Open interval: {ξ ∈ R : a < ξ < b}.
[0,∞] Nonnegative reals including infinity: {ξ ∈ R : ξ ≥ 0} ∪ {∞}.
bξc Floor: the largest integer not larger than ξ.
dξe Ceiling: the smallest integer not smaller than ξ.
max Maximum.
min Minimum.
sup Least upper bound.
inf Greatest lower bound.

Complex Numbers

C Complex field.
i i =

√
−1.

Re(z) Real part of z.
Im(·) Imaginary part of z.
|z| Modulus of z.
z∗ Complex conjugate of z.
D(z0, r) Open disc: {z ∈ C : |z − z0| < r}.

Limits

an → a Convergence: the sequence a1, a2, . . . converges to a.
limn→∞ an Limit: the limit of an as n tends to infinity.
→ Converges to.
limn→∞ an Upper limit (limit superior).
limn→∞ an Lower limit (limit inferior).

Defining and Operating on Functions

g : D → R Function of name g, domain D, and range R.
g : t 7→ t2 Function of name g mapping t to t2. (Domain & range un-

specified.)
g ◦ h Composition: ξ 7→ g

(
h(ξ)

)
.

d Differentiation operator.
∂g(x)
∂x(j) Partial derivative of g(·) with respect to x(j).
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∂g(x)
∂x

Jacobian matrix.∫
D Integral over the region D.

f(ξ)
∣∣
ξ=a The evaluation of the function ξ 7→ g(ξ) at a.

g(ξ)
∣∣b
a

The evaluation g(b)− g(a).

Function Norms, Relations, and Equivalence Classes

‖x‖1 See (2.6).
‖x‖2 See (3.12).
‖x‖I,1 See (A.14).
x ≡ y x and y are indistinguishable; see Definition 2.5.2.
[u] The equivalence class of x; see (4.60).

Function Spaces

L1 Integrable functions from R to C or R to R (depending on
context); see Sections 2.2 and 2.3.

L2 Square-integrable functions from R to C or R to R (depending
on context); see Section 3.1.

L2 Collection of equivalence classes of square-integrable functions;
see Section 4.7.

Special Functions

I{statement} Indicator function. Its value is 1 if the statement is true and 0
otherwise.

0 All-zero function: t 7→ 0.
n! n factorial: 1× 2× · · · × n.(
n
k

)
Number of subsets of {1, . . . , n} containing k (distinct) ele-
ments (= n!/(k!(n− k)!)).√

ξ Nonnegative square root of ξ.
cos(·) Cosine function (argument in radians).
sin(·) Sine function (argument in radians).
sinc(·) Sinc function; see (5.20).
tan−1(·) Inverse tangent.
Q(·) Q-function; see (19.9).
Γ(·) Gamma function; see (19.39).
I0(·) The zeroth-order modified Bessel function; see (27.47).
ln(·) Natural logarithm (base e).
exp(·) Exponential function: exp(ξ) = eξ.
ξ mod [−π, π) element of [−π, π) that differs from ξ by an integer multiple

of 2π.
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Operations on Signals

~x The mirror image of x; see (5.1).
x̂ The Fourier Transform of the signal x; see (6.1).
x̌ Inverse Fourier Transform of x; see (6.4).
〈x,y〉 Inner product between the signals x and y; see (3.1) and (3.4).
x ? y Convolution of x with y; see (5.2).
x + y The signal t 7→ x(t) + y(t).
αx The scaling of the signal x by complex or real number α, i.e.,

the signal t 7→ αx(t).
Rxx Self-similarity function of signal x.
ĝ(η) The η-th Fourier Series Coefficient; see (A.2).

Filters

L̂PFWc(·) Frequency response of a unit-gain lowpass filter of cutoff fre-
quency Wc. That is, L̂PFWc(f) = I{|f | ≤Wc}.

LPFWc(·) Impulse response of a unit-gain lowpass filter of cutoff fre-
quency Wc. That is, LPFWc(t) = 2Wc sinc(2Wct).

B̂PFW,fc(·) Frequency response of a unit-gain bandpass filter of band-
width W around the carrier frequency fc. That is, the mapping
of f to I

{∣∣|f | − fc∣∣ ≤W/2
}
. It is assumed that fc > W/2.

BPFW,fc(·) Impulse response of a unit-gain bandpass filter of band-
width W around the carrier frequency fc. That is, the mapping
of t to 2W cos(2πfct) sinc(Wt). It is assumed that fc > W/2.

PAM Signaling

g or φ Pulse shape; see Section 10.7.
Ts Baud period; see Section 10.7.
1/Ts Baud rate.
X Constellation; see Section 10.8.
δ Minimum distance of a constellation; see Section 10.8.
enc(·) Block encoder; see Definition 10.4.1 and (18.3).
x(t;d) Transmitted signal at time t when the data are d; see (28.6).
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QAM Signaling

g or φ Pulse shape; see Sections 16.3 & 16.5.
Ts Baud period; see Section 16.3.
1/Ts Baud rate.
C Constellation; see Section 16.7.
δ Minimum distance of a constellation; see Section 16.7.
enc(·) Block encoder; see (18.3).
x(t;d) The transmitted signal at time t when the data are d; see

(28.31).

Matrices

n×m matrix A matrix with n rows and m columns.
0 The all-zero matrix.
In The n× n identity matrix.
a(k,`) The Row-k Column-` component of the matrix A.
A∗ Componentwise complex conjugate.
AT Transpose of A.
A† Hermitian conjugate of A.
tr(A) Trace of A.
det(A) Determinant of A.
Re(A) Componentwise real part of A.
Im(A) Componentwise imaginary part of A.
A � 0 A is a positive semidefinite matrix.
A � 0 A is a positive definite matrix.

Vectors

Rn Set of column vectors of n real components.
Cn Set of column vectors of n complex components.
0 The all-zero vector.
a(j) The j-component of the column vector a.
aT The transpose of the vector a.
‖a‖ Euclidean norm of a; see (20.85).
〈a,b〉E Euclidean inner product; see (20.84).
dE(a,b) Euclidean distance between a and b, i.e., ‖a− b‖.

Linear Algebra

span(v1, . . . ,vn) Linear subspace spanned by the n-tuple (v1, . . . ,vn); see (4.8).
Dim(V) Dimension of the subspace V.
Ker(T) Kernel of the linear mapping T(·).
Image(T) Image of the linear mapping T(·).
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Probability

(Ω,F , P ) Probability triplet; see Page 3.
PX(·) Probability Mass Function (PMF) of X.
PX,Y (·, ·) Joint PMF of (X,Y ).
PX|Y (·|·) Conditional PMF of X given Y .
fX(·) Probability density function of X.
fX,Y (·, ·) Joint PDF of (X,Y ).
fX|Y (·|·) Conditional PDF of X given Y .
fX|A Conditional PDF of X given the event A.
FX(·) Cumulative distribution function of X.
ΦX(·) Characteristic function of X.
MX(·) Moment generating function of X; see (19.23).
E[X] Expectation of X; see (17.9).
Var[X] Variance of X; see (17.14a).
Cov[X,Y ] Covariance between X and Y ; see (17.17).
E[· | ·] Conditional expectation.
Pr(·) Probability of an event.
Pr(· | ·) Conditional probability of an event.
Pr[·] Probability that a RV satisfies some condition.
Pr[· | ·] Conditional version of Pr[·].
L= Equal in law.
X(−−Y(−−Z X and Z are conditionally independent given Y .
{Xk} Sequence of random variables . . . , X−1, X0, X1, . . .
X ∼ Distribution X has the specified distribution.
χ2
n,λ Noncentral χ2 distribution with n degrees of freedom

and noncentrality parameter λ.
Bernoulli(p) Bernoulli distribution (takes on the values 0 and 1 with

probabilities p and 1− p).
U (A) Uniform distribution over the set A.
NC(0,K) Multivariate proper complex Gaussian distribution of

covariance K; see Note 24.3.13.
N (µ,K) Multivariate real Gaussian distribution of mean µ and

covariance K.

Stochastic Processes(
X(n)

)
,
(
Xn, n ∈ Z

)
Discrete-time stochastic process.(

X(t)
)
,
(
X(t), t ∈ R

)
Continuous-time stochastic process.

KXX Autocovariance function.
SXX Power spectral density (PSD).
ρXX(·) Correlation function.
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Hypothesis Testing

Bm,m′ The subset of Rd defined in (21.33).
H RV to be guessed in binary hypothesis testing.
LLR(·) Log likelihood-ratio function; see (20.41).
LR(·) Likelihood-ratio function; see (20.38).
M Number of hypotheses in multi-hypothesis testing.
M Set of hypotheses {1, . . . ,M}.
M RV to be guessed in multi-hypothesis testing.
φGuess Generic guessing rule; see Sections 20.2 & 21.2.
φ∗Guess Generic optimal guessing rule.
φMAP MAP Decision Rule.
φML Maximum-Likelihood Rule.
p∗(error) Optimal probability of error.
pMAP(error|·) Conditional probability of error of MAP rule.

The Binary Field and Binary Tuples

F2 Binary field {0, 1}.
Fκ2 The set of binary κ-tuples.
⊕ Addition in F2; see (29.3).
· Multiplication in F2; see (29.4).
dH(u,v) Hamming distance; see Section 29.2.4.
wH(u) Hamming weight; see Section 29.2.4.
Υ and Υη Antipodal mappings (29.14) and (29.17).

Coding

Aκ,0 Binary N-tuples whose κ-th component is zero; see (29.61).
Aκ,1 Binary N-tuples whose κ-th component is one; see (29.64).
c Generic element of Image(T).
dmin,H Minimum Hamming distance; see (29.54).
enc Encoder.
p∗κ Optimal probability of error in guessing the κ-th data bit.
pMAP(error|D = d) Conditional probability of error of the MAP rule designed

to minimize block errors.
ψd(·) See (29.77).
x Generic element of Image(enc).
xη(d) The η-th symbol in the N-tuple enc(d).



Index

A

absolute value, 2, 16

affine transformation

of a multivariate Gaussian, 473

of a scalar, 341

of a univariate Gaussian, 341

of a vector, 473

all-zero

function, 3

matrix, 456

signal, 3

all-zero codeword assumption, 675–680

almost sure convergence

of random variables, 356

of random vectors, 487

amplification, 3, 27

analytic continuation, 350, 351n

analytic function, 60

analytic representation, 109, 135

of an energy-limited signal, 135

characterization, 135

definition, 135

of an integrable signal, 109–116

characterization, 110

definition, 110

inner products, 114

recovering from, 113

analytic signal, see analytic representation

antipodal mapping, 653, 656

argument, 65n

Arithmetic-Geometric Inequality, 421

assuming the all-zero codeword, 675–680

autocorrelation function, 211, see also self-
similarity function

autocovariance function

of a continuous-time SP, 517

of a discrete-time CSP, 300

of a discrete-time SP, 211

average probability of a bit error, 637

B
Bölcskei, Helmut, xxiv
band-edge symmetry, 193
bandlimited stochastic process, 252
bandpass filter, 61, see also ideal unit-gain

bandpass filter
bandwidth, 680

around a carrier, 101, 104
of a product, 90–92
of a stochastic process, 252
of baseband representation

energy-limited signal, 137
integrable signal, 122

of energy-limited signal, 81
of integrable signal, 89

Barker code, 264
baseband representation, 101, 109, 116,

136, 162
FT of, 117
inner product, 125, 137, 276–278
of convolution, 126, 137
of energy-limited signal, 136–139

characterization, 136, 137
definition, 136
inner product, 137
properties, 138
recovering from, 137
sampling of, see complex sampling

of filter’s output, 128, 137
of integrable signal, 116–129

characterization, 120, 123
definition, 116
FT of, 117
inner product, 126
recovering from, 123

of QAM, 267
sampling of, see complex sampling

basis, 29, 144, 144n
baud period, 680

in PAM, 177
in QAM, 268
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baud rate
in PAM, 177
in QAM, 268

Baudot, J.M.E, 177n
BER, 637
Bernoulli, 442
Bernstein’s Inequality, 92–93, 614
Bessel function, 355, 624
Bhattacharyya Bound, 373, 419–421
bi-infinite block-mode

with PAM
definition, 229
operational PSD, 255
power, 229

with QAM
operational PSD, 318
power, 313

bi-orthogonal code, 684
bi-orthogonal keying, 596–599
BIBO stable, see stable
Biglieri, Ezio, xxiv
binary field, 654
binary hypothesis testing, 360–403
binary-input/output-symmetric, 676
binary-to-complex block encoder, 308
binary-to-reals block encoder, 173, 229
Binomial Expansion, 592
bit error, 654
bit error rate, 637, 674
bit rate, 680
block error, 654
block-encoder

binary-to-complex
definition, 308
rate, 308

binary-to-reals
definition, 173
rate, 173

block-mode, 172–174, 313
blocklength, 657
Boche, Holger, xxiv
Bochner’s Theorem, 526
Bonferroni Inequalities, 429
Boole’s Inequality, 414n
Borgmann, Moritz, xxiv
bounded-input/bounded-output stable, see

stable
Boyd, Stephen, xxiv
Brändle, Marion, xxiv
Braendle, Samuel, xxiv
Brickwall function, 75

FT of, 67, 75–76

IFT of, 67, 75–76
Bross, Shraga, xxiv

C
C, 1
Cantor set, 8n
carrier frequency, 103, 161, 161n
Cauchy-Riemann equations, 291
Cauchy-Schwarz Inequality, 18–22

for d-tuples, 25
for random variables, 23
for sequences, 25

causal filter, 58
causality, 182
centered complex Gaussian

random variable, 500
random vector, 504

centered Gaussian
random variable, 341
random vector, 454

centered stochastic process, 203
central chi-square distribution, 352–356
Central Limit Theorem, 339
change of variable

complex random variable, 291
complex vector, 296, 305
real vector, 290

characteristic function
of a central χ2, 353
of a complex random variable, 289
of a complex random vector, 295
of a pair of real random variables, 289
of a real Gaussian RV, 351
of a real Gaussian vector, 475
of a real random variable, 350
of a real random vector, 468–469
of a squared Gaussian, 352

charge density, 245
circular symmetry, 494–511

of a complex Gaussian, 502
of a complex Gaussian vector, 507–509
of a complex random vector

and linear functionals, 503
and linear transformations, 503
and properness, 504
definition, 502

of a CRV
and expectation, 495
and properness, 499
characterization, 498
definition, 495

clock, 613
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closed subspace, 144n, 152
code property, 659
Coding Theory, 653
coherent decoder, 628
colored noise, 599–604
compact support

function of, 330
complete (space), 71, 152
complete orthonormal system, see CONS
complex conjugate

of a matrix, 284
of a scalar, 15

complex dimensions per second, 266, 271
complex Gaussian

random variable, 499–502, 511
centered, 500
circularly-symmetric, 502
definition, 500
proper, 500

random vector, 504
and linear transformations, 505
centered, 504
characterization, 505
circularly-symmetric, 507
definition, 504
proper, 505, 507–509

complex magnitude, see absolute value
complex modulus, see absolute value
complex positive semidefinite matrix, 304,

507
complex random variable, see CRV
complex random vector

characteristic function, 295
circularly-symmetric, see circular sym-

metry
covariance matrix, 293
definition, 292
expectation, 293
finite variance, 293
proper, 293–295
transforming, 296, 305

complex sampling, 122, 162–163
reconstruction from, 163–166

complex signal, 3
complex stochastic process, see CSP
complex symbols per second, 266
complex-valued signal, 3
componentwise antipodal mapping, 656
composite hypothesis testing, 430n, 614
composition (of functions), 2
conditional

distribution, 363–364, 483

independence, 379
probability, 406

conjugate (of a matrix), 284
conjugate-symmetric, 65, 108
conjugate-symmetric matrix, 284
CONS, 143–159

characterization, 145
definition, 144
for closed subspaces, 155
for energy-limited signals that are

bandlimited to W Hz, 148, 149
for energy-limited signals that vanish

outside an interval, 147
Prolate Spheroidal Wave Functions,

157
consistency property (of FDDs), 513
constellation

M-PSK, 274
of PAM, 177–181

definition, 177
minimum distance, 178
normalization, 178
number of points, 178
second moment, 178

of QAM, 274
definition, 274
minimum distance, 274
number of points, 274
second moment, 274

QPSK, 274
square 4-QAM, 274

convergence of random variables
almost surely, 356
in distribution, 357
in mean square, 356
in probability, 356
with probability one, 356

convergence of random vectors
almost surely, 487
in distribution, 488
in mean square, 487
in probability, 487
with probability one, 487

convolution, 53–63, 68, 139
baseband representation of, 126, 137
between real and complex signals, 121
FT of, 77
limits of, 327
uniformly continuous, 55

correlation coefficient, 23
covariance

between two CRVs, 288–289
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between two RVs, 23
Covariance Inequality, 23
covariance matrix

and positive semidefinite matrices, 471
of a complex random vector, 293
of a real random vector, 464
singular, 466–468

covariance stationary, see WSS
Craig’s formula, 345
CRV, 283–306

argument, 290
characteristic function, 289
circularly-symmetric, see circular sym-

metry
covariance, 288–289
definition, 285
density, 286
distribution, 285
expectation, 283, 286
magnitude, 290
proper, 287–288
transforming, 289, 291
variance, 283, 287

cryptography, 496
CSP

centered, 297
continuous time

measurable, 315n
operational PSD, 315

definition, 297
discrete-time, 297–306

autocovariance function, 300
covariance stationary, see WSS
proper, 298
PSD, 300
second-order stationary, see WSS
spectral distribution function, 303
stationary, see stationary
strict-sense stationary, see station-

ary
strongly stationary, see stationary
weakly stationary, see WSS
wide-sense stationary, see WSS
WSS, see WSS

finite variance, 297
cumulative distribution function, 343
cyclostationary, 245n

D
de Caen’s Inequality, 429
decision rule, see guessing rule
decoding rule, see guessing rule

degree-n trigonometric polynomial, 686
degrees of freedom

of a central χ2 distribution, 353
of a noncentral χ2 distribution, 354
of a signal, 98

delay
in PAM, 181
introduced by channel, 613

Dembo, Amir, xxiv
dense subset of L1 , 330
detection in white Gaussian noise, 562–612

M-PSK, 588–590
antipodal signaling, 586–587
bi-orthogonal keying, 596–599
binary signaling, 586–588
in passband, 584–585
optimal decision rule, 572–576
orthogonal keying, 590–593
probability of error, 576–577
signals of infinite bandwidth, 604–605
simplex, 593–596
sufficient statistics, 567–572

differentiable complex function, 290
digital implementation, 182
dimension, 30, 657
Dirac’s Delta, 3
discrete-time single-block model, 642
distance spectrum, see weight enumerator
domain, 2
Dominated Convergence Theorem, 702
dual code, 683
duality, 151
Durisi, Giuseppe, xxiv
dynamic range, 582

E
eigenvalue, 459
eigenvector, 459
encoder property, 659
energy

in baseband and passband, 126, 138
in PAM, 220–223
in QAM, 307–310
of a complex signal, 16
of a real signal, 14

energy per bit
in PAM, 222
in QAM, 310

energy per complex symbol
in PAM, 337
in QAM, 310

energy per symbol
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in PAM, 222
in QAM, 310

energy-limited passband signal, see pass-
band signal

energy-limited signal, 16
that is bandlimited, 47, 79–87

bandwidth of, 81
continuity of, 84
definition, 80
of zero energy, 80
through a stable filter,

through an ideal unit-gain LPF, 85
entire function, 60, 93–96

of exponential type, 96
Ephraim, Yariv, xxiv
equal law

complex random variables, 285
complex random vectors, 292, 295
random variables, 208
random vectors, 208

equalization, 649
equivalence class, 49–50, 70
equivalence relation, 48
essential supremum, 50n
estimation

and conditional expectation, 486
jointly Gaussian vectors, 486

Estimation Theory, 486
Euler’s Identity, 121
event, 3, 201
excess bandwidth, 193, 196, 271, 680
exclusive-or, 448, 565n, 654
expectation

of a complex random vector, 293
of a CRV, 286
of a random matrix, 464
of a random vector, 463

expected energy, 221
experiment outcome, 3, 201
exponential distribution, 353

F
F2, 654
Factorization Theorem, 433–435
FDD, 204, 512–515

consistency property, 513
of a continuous-time Gaussian SP, 515
symmetry property, 513

Fejér’s kernel, 687
field, 654
filter, 58–61

baseband representation of output,
128, 137

causal, 58
front-end, see front-end filter
stable, 58
whitening, see whitening filter

finite-dimensional distribution, see FDD
finite-variance

complex random vector, 293
complex stochastic process, 297
continuous-time real SP, 512
random vector, 464

Fisher, R. A., 451
Forney, David Jr., xxiv
Fourier Series, 147–148, 686–696

CONS, 691
pointwise reconstruction, 695
reconstruction in L1 , 688

Fourier Series Coefficient, 148, 686, 693
Fourier Transform, 64–100

boundedness, 73
conjugate-symmetric, 65, 101, 108–109
continuity, 73
definition

for elements of L2 , 71
for signals in L1 , 64

of sinc(·), 70, 76
of a product, 90
of baseband representation, 117
of convolution, 77
of real signals, 65
of symmetric signals, 65
of the Brickwall function, 67
preserves inner products, 65, 67–69
properties, 67
reconstructing from, 74
reconstructing using IFT, 74, 75

frequency response, 77
of ideal unit-gain BPF, 79
of ideal unit-gain LPF, 78
with respect to a band, 129

front-end filter, 582–584
FT, see Fourier Transform
Fubini’s Theorem, 10, 11, 69
function, 14

all-zero, 3
domain, 2, 14
energy-limited, 15, 16
image, 2
injective, 172
integrable, 5
Lebesgue measurable, 4
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notation, 2
one-to-one, 172
onto, 2
range, 2, 14
surjective, 2

G
Gallager, Robert, xxiv
Galois Field, 654
Gamma function, 353
Gaussian

complex random vector, see complex
Gaussian

continuous-time SP, 515–516, 518–520,
524, 537–552, 554–558

definition, 515
FDDs, 515
filtering, 546, 552
linear functionals, 537–545
PSD, 524
stationary, 518
white, xix, 554–558

CRV, see complex Gaussian
random variable, 341

and affine transformations, 341
characteristic function, 351
convergence, 356–357
density, 342
MGF, 349
standard, see standard Gaussian

random vector, 455
a canonical representation, 478–481
and affine transformations, 473
and pairwise independence, 477
centered, 454
characteristic function, 475
convergence, 487–488
density, 481–482
linear functionals of, 482–483
moments, 486
standard, see standard Gaussian

generalized Rayleigh distribution, 354
generalized Rice distribution, 355
generator matrix, 659
GF(2)

addition, 654
multiplication, 654

Gram-Schmidt procedure, 44–48
guessing rule

definition, 361, 405
MAP, see MAP
maximum a posteriori, see MAP

maximum likelihood, see ML
ML, see ML
optimal, 362, 405
probability of error, 362, 405
randomized, 368–370, 408
with random parameter, 396–398

H
Hösli, Daniel, xxiv
Hadamard code, 684
half-normal, 351n
Hamming and Euclidean distance, 657
Hamming code, 683
Hamming distance, 656
Hamming weight, 656
hard decisions, 681
Hellinger distance, 403
Herglotz’s Theorem, 217
Hermite functions, 99
Hermitian conjugate, 284
Hermitian matrix, 284
Hilbert Transform, 139
Hilbert Transform kernel, 140
Ho, Minnie, xxiv
holomorphic function, see analytic function
hypothesis testing

M-ary, see multi-hypothesis testing
binary, see binary hypothesis testing

I
I{·}, 1
ideal unit-gain bandpass filter, 61, 79, 103

frequency response, 61, 79
impulse response, 61
is not causal, 61
is unstable, 61

ideal unit-gain lowpass filter, 60
cutoff frequency, 60
frequency response, 60, 78
impulse response, 60
is not causal, 60
is unstable, 60

IID random bits, 229
image

of a linear transformation, 655
of a mapping, 2

impulse response, 58
in-phase component, 121, 122, 137

of energy-limited signal, 137
of integrable signal, 122

independent random variables, 378, 476
independent stochastic processes, 515



Index 717

indistinguishable, 48
infinite divisibility, 359
injective, 172
inner product, 14–25

and baseband representation, 126
and QAM, 275–280
and the analytic representation, 114
and the baseband representation, 125,

137, 276–278
between complex signals, 15
between real signals, 14
between tuples, 392n
properties, 16

integrable
complex functions, 17
complex signal, 5
passband signal, see passband signal

integrable signal
definition, 5
that is bandlimited, 87–89

bandwidth of, 89
through a stable filter, 90

integral
of a complex signal, 5–6

definition, 5
properties, 6

of a real signal, 4
inter-symbol interference, xix, 649
Inverse Fourier Transform, 65

definition, 66
of symmetric signals, 65
of the Brickwall function, 67
properties, 66

irrelevant data, 447–449
and random parameters, 450

isomorphism, 156, 166
Itô Calculus, 605

J
joint distribution function, 513n
jointly Gaussian random vectors, 483–486

and estimation, 486

K
kernel, 655
Kim, Young-Han, xxiv
Koch, Tobias, xxiv
Koksal, Emre, xxiv
Kolmogorov’s Existence Theorem, 513
Kolmogorov, A. N., 363, 451
Kontoyiannis, Ioannis, xxiv

L
L1 , 5
L1 -Fourier Transform, 64
L2 , 15, 26–51, 70
L2 , 43, 48–50, 70
L2 -Fourier Transform, 70–73

definition, 71
properties, 71

L2 -Sampling Theorem, 151, 162, 164
for passband signals, 165

Laneman, Nicholas, xxiv
Lapidoth, Danielle, xxv
Laplace Transform, 349
Lebesgue integral, 4
Lebesgue measurable

complex signal, 5
real signal, 4

Lebesgue null set, see set of Lebesgue mea-
sure zero

length of a vector, 30
likelihood-ratio function, 371
linear (K,N) F2 code, 657
linear (K,N) F2 encoder, 657
linear binary code with antipodal signaling,

653–682
definition, 660
minimizing block errors, 666–671

max-correlation decision rule, 667
optimal decoding, 666
probability of a block error, 668–671

power, 661, 664
PSD, 664

linear binary encoder with antipodal signal-
ing

definition, 659
minimizing bit errors, 671–675

optimal decoding, 671
probability of a bit error, 672–675

linear combination, 28
linear functionals

of a Gaussian SP, 537–545
of a SP, 530–545
on Fκ2 , 661
on Rn

definition, 482
of Gaussian vectors, 483

linear mapping, 655
linear modulation, 174, 177
linear subspace, see subspace
linearly independent, 29
LLR(·), 372
Loeliger, Hans-Andrea, xxiv
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log likelihood-ratio function, 372
look-up table, 182
low-density parity-check codes, 682
lowpass filter, 60, see also ideal unit-gain

lowpass filter
LR(·), 371

M
magnitude, see absolute value
MAP, 370–372, 408–409
mapping, see function
Markov chain, 379, 439–440
mass density, 246
mass line density, 247
Massey, James, xxiv, 186
matched filter, 58–60, 175, 176

and inner products, 59–60
definition, 59

matrix
conjugate-symmetric, 284
conjugation, 284
Hermitian, 284
Hermitian conjugate, 284
orthogonal, 458
positive definite, 461
positive semidefinite

complex, 304, 507
real, 461

self-adjoint, 284
symmetric, 284
Toeplitz, 304
transpose, 284

matrix representation of an encoder, 658
maximum a posteriori, see MAP
maximum distance separable (MDS), 685
maximum likelihood, see ML
maximum-correlation rule, 424, 574, 575
measurable

complex signal, 5
complex stochastic process, 315n
real signal, 4
stochastic process, 238, 529

memoryless
binary-input/output-symmetric, 676
property of the exponential, 205

message error, 637, 654
MGF, 349

definition, 349
of a central chi-square, 353
of a Gaussian, 349
of a noncentral chi-square, 354
of a squared Gaussian, 352

of the sum of independent RVs, 354
Miliou, Natalia, xxiv
minimum bandwidth, 192
minimum Hamming distance, 670
Minimum Shift Keying, 608
mirror image, 3, 53, 66
Mittelholzer, Thomas, xxiv
ML, 372–373, 408–409
mod 2 addition, 654
modified zeroth-order Bessel function, 355,

624
modulation, 169
modulator, 169
modulus, see absolute value
moment generating function, see MGF
monotone likelihood ratio, 355, 491
Morgenshtern, Veniamin, xxiv
Moser, Stefan, xxiv
M-PSK, 274, 410–414, 418–419, 588–590
multi-dimensional hypothesis testing

M-ary, 421–427
binary, 390–396

multi-hypothesis testing, 404–429
multiplication by a carrier

doubles the bandwidth, 105
FT of the result of, 105

multivariate Gaussian, 454–493, see also
Gaussian

N
N, 1
Narayan, Prakash, xxiv
nearest-neighbor decoding, 410, 411, 423,

424
Nefedov, Nikolai, xxiv
noncentral chi-square distribution, 352–356
noncoherent detection, 613–631
normal distribution, see Gaussian
n-tuple of vectors, 28
nuisance parameter, see random parameter
number of nearest neighbors, 670
Nyquist pulse, 189
Nyquist’s Criterion, 185–197

O
observation, 361, 405
one-to-one, 172
open subset, 289, 289n
operational PSD, 245–264

and the PSD, 552
definition, 250–252
of a CSP, 315
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of PAM, 252–264
of QAM, 315–320
uniqueness, 252

optimal guessing rule, 362, 405
orthogonal

binary tuples, 683
real passband signals, 126
signals, 32

orthogonal keying, 590–593
noncoherent detection, 613–631

orthogonal matrix, 458
orthonormal

basis, 36–48
construction, 45
definition, 37
existence, 43

tuple, 36

P
packet, 639
pairwise independence, 476
pairwise sufficiency, 435–439
Paley-Wiener, 95–96
PAM, 176–184, 220–244, 634–642

baud period, 177
baud rate, 177
constellation, 177–181

definition, 177
minimum distance, 178
normalization, 178
number of points, 178
second moment, 178

detection in white noise, 634–642
digital implementation, 182
energy, 220–223
energy per bit, 222
energy per symbol, 222
operational PSD, 252–264
power, 223–244
pulse shape, 177
spectral efficiency, 266

parity-check matrix, 659
Parseval’s Theorem, 72, 115
Parseval-like theorems, 67–69
passband signal, 101–141

analytic representation of, 109, 135
definition, 103
energy-limited, 101, 130–139

bandwidth around a carrier, 104
baseband representation of, 136
characterization, 131, 133
definition, 103

is bandlimited, 133
sampling, 161–168
through BPF, 134

integrable, 101
analytic representation of, 110
bandwidth around a carrier, 104
baseband representation of, 116
characterization, 103
definition, 103
inner product, 114
is bandlimited, 104
is finite-energy, 104
through stable filter, 104

sampling, 161–168
periodic extension, 686
periodically continuous, 686
phase shift keying, see M-PSK
picket fences, 96–98
picket-fence miracle, 96
π/4-QPSK, 337
Plackett’s Identities, 492
Plancherel’s Theorem, 72
Pointwise Sampling Theorem, 151, 163

for passband signals, 165
Poisson distribution, 355
Poisson summation, 96–98
positive definite function

from R to C, 199
from R to R, 521
from Z to C, 300
from Z to R, 212

positive definite matrix, 461
positive semidefinite matrix

complex, 304, 305, 507
real, 461

power
in baseband and passband, 311, 320–

327
in PAM, 223–244
in QAM, 310–314
of a SP, 238

power spectral density, see PSD
Price’s Theorem, 492
prior

definition, 361, 404
nondegenerate, 361, 404
uniform, 361, 404

probability density function, 247
probability of error

binary hypothesis testing
Bhattacharyya Bound, 373
general decision rule, 366
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in IID Gaussian noise, 393–395
in white noise, 586, 587
no observables, 362
noncoherent, 626–627
optimal, 367, 407

multi-hypothesis testing
M-PSK, 412–414
8-PSK, 590
bi-orthogonal keying, 599
in IID Gaussian noise, 425–427
no observables, 406
noncoherent, 630–631
orthogonal keying, 592
simplex, 596
Union Bound, 416–419
Union-Bhattacharyya Bound, 419–

421
probability space, 3, 201
processing, 376–381, 409
projection

as best approximation, 145
onto a finite-dimensional subspace, 40
onto a vector in L2 , 34
onto a vector in R2, 34
onto an infinite-dimensional subspace,

159
Prolate Spheroidal Wave Functions, 157
proper

complex Gaussian RV, 500
complex Gaussian vector, 505, 507–

509
complex random vector, 293–295
CRV, 287–288
discrete-time CSP, 298

PSD
of a continuous-time SP, 523, 552–554
of a discrete-time CSP, 300
of a discrete-time SP, 213–218

pulse amplitude modulation, see PAM
pulse shape

in PAM, 177
in QAM, 268

Pythagoras’s Theorem, 32
Pythagorean Theorem, 33

Q
QAM, 265–282, 307–338, 642–649

bandwidth, 270
baseband representation of, 267
baud period, 268
baud rate, 268
constellation, 274

definition, 274
minimum distance, 274
M-PSK, 274
number of points, 274
second moment, 274
square 4-QAM, 274

detection in white noise, 642–649
energy, 307–310
energy per bit, 310
energy per symbol, 310
inner products, 275–280
operational PSD, 315–320
power, 310–314
pulse shape, 268
spectral efficiency, 273–274
symbol recovery, 275–280

Q-function, 344–348
QPSK, 274
quadrature amplitude modulation (QAM),

see QAM
quadrature component, 121, 122, 137

of energy-limited signal, 137
of integrable signal, 122

R
R, 1
radially-symmetric function, 495
Radon-Nikodym Theorem, 405n
raised-cosine, 196
random function, see stochastic process
random parameter, 396–398, 449–451, 617

and white noise, 613–631
random process, see stochastic process
random variable, 3, 201
random vector

characteristic function, 468–469
covariance matrix, 464
finite variance, 464

randomized decision rule, 368–370, 408
randomized guessing rule, see randomized

decision rule
rate, 173

in bits per complex symbol, 172, 268
in bits per real symbol, 172

Rayleigh distribution, 354
real dimensions per second, 177
real passband signals

analytic representation, see analytic
representation

baseband representation, see baseband
representation

condition for orthogonality, 126
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Sampling Theorem, see Sampling The-
orem

real positive semidefinite matrix, 461
real signal, 2
real symbols per second, 177
real-valued signal, 2
reflection, 3, 53, see mirror image
repetition code, 683
representation of an encoder by a matrix,

658
Rice distribution, 355
Riemann

integrable, 4
integral, 4, 6

Riemann-Lebesgue Lemma, 690
Riesz-Fischer Theorem, 153
Rimoldi, Bixio, xxiv
Rockefeller Foundation, xxv

S
Saengudomlert, Poompat, xxiv
sample function, see sample-path
sample of a stochastic process, 202
sample-path, 201
sample-path realization, see sample-path
sampling as an isomorphism, 156
Sampling Theorem, 75, 143, 148–157

for passband signals, 161–168
isomorphism, 156
L2 , 151
pointwise, 151

Sandwich Theorem, 154, 154n
Sanjoy, Mitter, xxiv
Sason, Igal, xxiv
second-order stationary, see WSS
self-adjoint matrix, 284
self-similarity function

of energy-limited signal, 186–188
definition, 186
properties, 186

of integrable signal
definition, 198
FT of, 198

set of Lebesgue measure zero, 7, 9
Shannon, Claude E., xvii, 171
Shrader, Brook, xxiv
σ-algebra

generated by a SP, 514
generated by RVs, 364n
generated by the cylindrical sets, 514
product, 238, 238n

signal

complex, 14
real, 14

signature, 243
simplex, 593–596
simulating observables, 441–443
sinc(·), 75

definition, 60
FT of, 70, 76

single parity check code, 657
Singleton Bound, 681, 685
singular covariance matrix, 466–468
Slepian’s Inequality, 492
soft decisions, 681
SP, see stochastic process
span, 29
spectral efficiency, 266, 273–274
Spectral Theorem, 460
stable filter, 58
standard complex Gaussian

random variable, 494–495
and properness, 495
definition, 494
density, 494
mean, 495
variance, 495

random vector, 502
covariance matrix, 502
definition, 502
density, 502
mean, 502
proper, 502

standard deviation, 342
standard Gaussian

complex vector, see standard complex
Gaussian

CRV, see standard complex Gaussian
random variable

CDF, 343
definition, 339
density, 339
moments, 351

random vector
covariance matrix, 470
definition, 454
density, 469
mean, 470

standard inner product, 392n
stationarization argument, 257
stationary

continuous-time SP, 516
discrete-time CSP, 297
discrete-time SP, 208, 209
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stochastic process, 171, 201–207

centered, 203

complex, see CSP

continuous-time, 512–561

autocovariance function, 517, 520–
522

average power, 528–530

bandlimited, 252

bandwidth, 252

centered, 512

covariance stationary, see WSS

definition, 204

FDD, 512–515

filtering, 546–552

finite variance, 512

finite-dimensional distribution, see
FDD

Gaussian, see Gaussian

independence, 515

linear functionals, 530–545

measurable, 529

path, 512

PSD, 523, 552–554

realization, 512

sample-function, 512

sample-path, 512

second-order stationary, see WSS

spectral distribution function, 525–
528

state at time-t, 512

stationary, see stationary

strict-sense stationary, see station-
ary

strongly stationary, see stationary

time-t sample, 512

trajectory, 512

weakly stationary, see WSS

wide-sense stationary, see WSS

WSS, see WSS

definition, 203

discrete-time, 208–219

autocorrelation function, 211

autocovariance function, 211–218

covariance stationary, see WSS

definition, 203

one-sided, 204

power spectral density, 213–218

second-order stationary, see WSS

spectral distribution function, 217–
218

stationary, see stationary

strict-sense stationary, see station-
ary

strongly stationary, see stationary
weakly stationary, see WSS
wide-sense stationary, see WSS
WSS, see WSS

finite variance, 203
measurable, 238
power of, 238
zero mean, 203

strict-sense stationary, see stationary
strictly stationary, see stationary
strictly systematic encoder, 659
strongly stationary, see stationary
subspace, 28, 143

closed, see closed subspace
finite-dimensional, 29, 143

basis for, 29
dimension of, 30
having an orthonormal basis, 40
projection onto, 40

infinite-dimensional, 29, 143
sufficient statistics, 381–389, 430–453

and computability of the a posteriori
law, 386, 431

and noncoherent detection, 616–621
and pairwise sufficiency, 435–439
and random parameters, 449
and simulating observables, 441–443
and the likelihood-ratio function, 383
factorization criterion, 433–435
for detection in additive white noise,

567–572
in binary hypothesis testing, 381–389
Markov condition, 439–440
observation SP, 563–567
PAM in white noise, 635–642
QAM in white noise, 642–649
random parameters and white noise,

617
superposition, 3, 20, 26
support

compact, 330
of a PSD, 329

symmetric matrix, 284
symmetric random variable, 217
symmetric set difference, 565
symmetry property (of FDDs), 513
systematic encoder, 659
systematic single parity check encoder, 657
Szegő’s Theorem, 304
Sznitman, Alain-Sol, xxiv
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T
Taylor Series, 614
Tchamkerten, Aslan, xxiv
Telatar, İ. Emre, xxiv
tie, 368, 406
Tinguely, Stephan, xxiv
Toeplitz matrix, 304
total positivity of order 2, 355, 491
trajectory, see sample-path
transforming

complex random variables, 289, 291
complex random vectors, 296, 305
real random vectors, 290

transpose (of a matrix), 284
Triangle Inequality

for complex numbers, 6
for signals, 30
for stochastic processes, 320

trigonometric polynomial, 686
tuple

of bits, 173
of signals, 28

turbo-codes, 682

U
uniformly continuous, 55, 55n
Union Bound, 414–421
Union-Bhattacharyya Bound, 419–421
Union-of-Events Bound, see Union Bound
univariate Gaussian, 339–359, see also

Gaussian

V
Varshamov Bound, 681
vector space, 27
Verdú, Sergio, xxiv
Viterbi Algorithm, 649
Vontobel, Pascal, xxiv

W
Wagner’s rule, 667
Wang, Ligong, xxiv
weak convergence

of random variables, 357
of random vectors, 488

weakly stationary, see WSS
Weierstrass’s Approximation Theorem, 696
weight enumerator, 670
wheel-of-fortune, 496
white Gaussian noise, xix, 554–558

definition, 555
detection in, 562–612

in passband, 558
properties, 555

white noise, see white Gaussian noise
white noise paradigm, 605
whitening filter

definition, 600
existence, 604

Wick’s Formula, 486
wide-sense stationary, see WSS
Wiener-Khinchin Theorem, 257, 552
Wigger, Michèle, xxiv
worst-case performance, 628
WSS

continuous-time SP, 517
discrete-time CSP, 297, 298
discrete-time SP, 209–218

Y
Young’s Inequality, 61

Z
Z, 1
Zeitouni, Ofer, xxiv
zero padding, 173
zeroth-order modified Bessel function, 355,
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